
Proof of Concept or Get The Fuck Out

0, $0 USD, $0 AUD, 0 RSD, 0 SEK, $50 CAD, 6× 1029 Pengő, 100 JPC. Это не Госкомиздат.
Compiled for a dozen reasons many dozens of times, the last of which was on February 12, 2022.
Eleven thousand persons have suffered death rather than submit to break eggs at the smaller end.

21
:0

2
(p

.6
)

G
la

vl
it

an
d

Sa
m

iz
da

t
21

:0
3

(p
.7

)
Sp

oo
fin

g
IP

w
it

h
IP

IP
21

:0
4

(p
.8

)
A

nt
id

eb
ug

gi
ng

in
C

or
te

x-
M

21
:0

5
(p

.1
1)

A
W

eb
A

P
I

fo
r

T
hu

m
b2

Sy
m

bo
ls

21
:0

6
(p

.1
7)

R
ev

er
si

ng
a

B
as

eb
al

l
Sc

or
eb

oa
rd

21:07
(p.24)

A
ltera

N
IO

S
21:08

(p.31)
A

n
E

lectrom
echanical

T
elephone

E
xchange

21:09
(p.42)

E
L
F

P
alindrom

e
21:10

(p.50)
A

B
ootloader

P
alindrom

e
21:11

(p.55)
W

indrose
F
ingerprinting

of
C

ode
A

rchitecture
21:12

(p.59)
N

SA
’s

B
ackdoor

of
the

P
X

1000-C
r

21:13
(p.67)

Solving
the

L
oad

A
ddress

21:14
(p.71)

C
ounting

w
ords

w
ith

a
state

m
achine.

of Altera NIOS Disassembly,of Altera NIOS Disassembly,
Routable IPIP Spoofing,Routable IPIP Spoofing,
PCAP-NG Polyglots,PCAP-NG Polyglots,
Weird Machinery,Weird Machinery,
Code Golfing,Code Golfing,

Legal Note: This magazine is a labor of love, written so that you fine folks might read it and share it. If
you have access to a halfway decent laserjet, please make a paper copy for a friend.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!—pocorgtfo21.pdf and our other issues far and wide, so our articles can help
fight the coming flame deluge. We like the following mirrors.

https://unpack.debug.su/pocorgtfo/ https://pocorgtfo.hacke.rs/
https://www.alchemistowl.org/pocorgtfo/ https://www.sultanik.com/pocorgtfo/
git clone https://github.com/angea/pocorgtfo

Technical Note: The electronic edition of this magazine is valid as both PDF and ZIP. Thanks to Ange
Albertini, it is also a PCAP-NG packet capture of an experiment by Yannay Livneh. See page 7.

Cover Art: The cover art for this issue is adapted from a 1951 television repair manual by Edward M.
Noll, a lecturer at Temple University in Philadelphia.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC∥GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper
in Samland, then fold to get a booklet in A4 or Letter size. Secret volcano labs in Canada may use P3
(280 mm x 430 mm) if they like, folded to make P4. The outermost sheet with pages 1, 2, 79 and 80 should
be on thicker paper to form a cover.

This is how to convert an issue for duplex printing.
sudo apt-get install pdfjam
pdfbook --short-edge --vanilla --paper a3paper pocorgtfo21.pdf -o pocorgtfo21-book.pdf

Man of The Book Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funkmaster of File Formats Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Scooby Bus Driver Ryan Speers
Stunts (Uncredited) Alexei Bulazel

with the good assistance of
Tree Killer EVM

2

21:01 Don’t give up on your library card!

Neighbors, please join me in reading this twenty-
second release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little
collection of articles for ladies and gentlemen of dis-
tinguished ability and taste in the field of reverse
engineering and the study of weird machines. This
release is a gift to our fine friends in D.C., Berlin,
and Fort Washington, Pennsylvania.

If you are missing the first twenty one releases,
we suggest asking a neighbor who picked up a copy
of the first in Vegas, the second in São Paulo, the
third in Hamburg, the fourth in Heidelberg, the fifth
in Montréal, the sixth in Las Vegas, the seventh
from his parents’ inkjet printer during the Thanks-
giving holiday, the eighth in Heidelberg, the ninth
in Montréal, the tenth in Novi Sad or Stockholm,
the eleventh in Washington D.C., the twelfth in
Heidelberg, the thirteenth in Montréal, the four-
teenth in São Paulo, San Diego, or Budapest, the
fifteenth in Canberra, Heidelberg, or Miami, the six-
teenth release in Montréal, New York, or Las Ve-
gas, the seventeenth release in São Paulo or Bu-
dapest, the eighteenth release in Leipzig or Wash-
ington, D.C., the nineteenth in Montréal, the twen-
tieth in Heidelberg, Knoxville, Canberra, Baltimore,
or Raleigh, or the twenty-first in Leipzig or Wash-
ington, D.C. Three collected volumes are available
from No Starch Press, wherever fine books are sold.

The old joke goes that Stalin’s 1936 Constitution
of the USSR guaranteed freedom of speech, but that
rat bastard never made any promises about freedom
after speech. On page 6, our own Pastor Manul
Laphroaig takes a step back from the tragedy of so
many brilliant works being unpublished or unwrit-
ten, to consider another question: If you had the
power to censor just the bad stuff, would you use
it?

A long time ago in a fancy bar in Tel Aviv, Yan-
nay Livneh told us of a bug in the IPIP tunneling
protocol that might allow for convenient injection of
an IP frame into a remote network, that this might
be nested to create a very complicated route, and
that a large number of machines on the Internet were
possibly vulnerable. His proof of concept took just a
week or two, but the coordinated disclosure dragged
on for many months, and the only way you can re-
pay this blood debt is by reading his fine article on
page 7.

Suppose that you have some firmware, but you
don’t want us meddlesome reverse engineers to run
that same firmware under a debugger, even after
they’ve defeated the readout protection. On page 8,
Balda describes a grab bag of these anti-debugging
tricks.

Travis Goodspeed and EVM have spent the past
year collecting three hundred gigabytes of microcon-
troller SDKs, which they’ve parsed and blinded into
a SQL database. Accessible through a JSON API,
this database allows such nifty queries as function
name recovery and I/O port naming. See page 11.

EVM has also been playing with a baseball score-
board, the FairPlay 710. On page 17, he describes
his method for attaching this ancient artifact to a
modern network, allowing parents in his town to dis-
play the scores from the comfort of the bleachers.

Our fine journal frequently runs tourist guides
to strange CPU architectures. On page 24, Christo-
pher Hewitt introduces us to Altera’s original Nios
architecture, a soft CPU from the year 2000 that
was largely forgotten after Intel’s acquisition of the
FPGA company in 2015. This particular Nios ma-
chine was used in a GPS-disciplined oscillator that
Chris wanted to repurpose for other uses.

3

Those of our readers old enough to have used a
rotary telephone might have explored the network
with a blue box or at least made free payphone calls
with a red box. Younger readers might’ve made
their own small telephone networks with VoIP and
other newfangled technologies. An anonymous ar-
ticle on page 31 goes beyond those tricks, to show
you how a rotary telephone network might be built
from scratch with vintage technology.

Netspooky is a damned clever code golpher who
is new to these pages. On page 42, you’ll find a
technique for producing palindrome ELF files. Har-
vey Phillips also describes his own techniques for
machine code palindromes, applied to an X86 boot-
loader on page 50. These were both written for
2020’s Binary Golf Grand Prix, and we eagerly await
what clever things they’ll do this year.

Suppose that you have a bit of raw firmware that
you’re pretty sure is executable code, but you don’t
yet know the architecture. You might try looking for
common sequences, or you might check that relative
function calls match entry points. EVM has a sim-
pler method, which is to draw a windrose diagram of
byte frequencies, skipping universally common ones
like 0x00. Page 55.

In the early eighties, a gizmo called the Text Lite
PX-1000 allowed folks to encrypt short messages
with DES, then transmit them by audio coupler mo-
dem. At some point the NSA got nervous about
this, purchased all outstanding units, and convinced
the manufacturer to update the ROM to support a
unique and proprietary encryption protocol, rather
than the standard for which it was made. On page
59, Stefan Marsiske explains how he reverse engi-
neered the backdoored algorithm and cracked it with
modern tooling.

It’s not so uncommon to find a firmware image,
but not a load address. On page 67, EVM describes
a generalized solution to this problem, first defin-
ing function entry points as a function of the load
address and then solving for the load address that
matches a strong majority of any absolute calls.

Robert Graham has often lectured our editors
on the virtues of state machine implementations of
software, as a leaner and meaner alternative to the
object oriented monstrosities that might be more or-
ganized, but are undeniably more computationally
expensive. On page 71, he applies his highfalutin
performance optimizations to the wc command.

On page 80, we pass the collection plate, not for
bitcoins or wooden nickles, but for nifty stories.

4

5

21:02 A Tale of Glavlit and Samizdat
by PML

Gather around, neighbors. You’ve all heard the
tale of Samizdat, and of course these pages are
Samizdat. But now it’s time for a darker tale: that
of Glavlit, Samizdat’s opposite, nemesis, and chief
reason for existence. As many things in the history
of humanity, it was thought to be a thing of the
past—and yet it rises again.

Glavlit (Главлит) started as a part of the
Commissariat of Enlightenment, to prevent print-
ing of harmful things: religious, anti-science, anti-
Communist, pornographic, liable to stoke hate or
spread rumors, and otherwise misleading1 or con-
trary to the public enlightenment as the Commissars
saw it.2 Glavlit was also charged with removal of
previously printed harmful materials from libraries,
bookstores, and any other places they could be
found. It grew and grew, until it came to report
directly to the Party’s Central Committee, and its
purview included any posters, note pads, and the-
ater tickets. Nothing could be printed without its
approval, and nothing printed could persist without
its approval.

This sounds Orwellian, and it sure was, but
that’s not my point today. The point is that, despite
employing an army of well-educated human censors,
Glavlit was incredibly dumb. Anyone whose occupa-
tion involved printed words knew it, no matter how
loyal to Soviet ideology they were. Glavlit would
reject the most loyally written books because it cre-
atively imagined some allusion critical of the Soviet
system, but would pass things it should have obvi-
ously caught, and then confer on them the special
quality of suppressed truth by chasing them down.

In short, Glavlit was a disaster. It was the dis-
aster that begat Samizdat.

It turns out that a lot of people who were made
to learn to read actually want to read—and they
want to read stuff that interests them. Scaring them
away from reading unapproved things works to a
point, until the difference between what’s approved
and what’s not stops making sense. At that point,
the folks who don’t care whether their words make
sense beyond their own career advancement take
over the printed word, with Glavlit’s blessing. The
folks who care about the actual subject-matter—

the fools, the nerds, and those obsessed with their
profession—try and try, and then reinvent Samiz-
dat, as the official print becomes synonymous with
hypocrisy.

It really didn’t matter then if the official press
had any redeeming value or not. In the end, So-
viet society became almost entirely rumor-driven
and cultish, despite science being its official highest
value. Worse, it erupted in ethnic cleansing wars
as soon as it could, despite decades of “peace and
friendship between the peoples” lessons dominating
the school curricula, the news, the TV, and any
other mass medium. Glavlit absolutely succeeded in
its mission of control—and it totally failed at every
good thing it was meant to achieve. It even failed at
pushing the Party line, because the press it shaped
was so stupid and boring that it wasn’t even good
for propaganda, let alone persuasion.

These days, there seem to be quite a few folks
trying to reinvent Glavlit with technology. Wouldn’t
it be nice if computers could tell what’s harmful and
block it before it could do any harm, or at least un-
print it soon afterwards? Lately it’s been looking
like the “Web 2.0” is having a giant Glavlit cosplay
party. Even nerdy news some days look like there’s
been a record-smashing new manga about Glavlit-
senpai who is part AI and part superhero.

It might behoove us all to remember how the
actual continent-scale 100% expert human baseline
effort turned out. As they say, “Play Soviet games,
win Soviet prizes.”

There’s an old Soviet joke about a bicycle fac-
tory worker who wanted a bicycle but couldn’t af-
ford one. So he started sneaking out parts, one at
a time, to assemble them at home. But no matter
how hard he tried, he’d get not a bicycle but a ma-
chine gun. Well, Glavlit was that kind of a factory.
It wouldn’t produce enlightenment no matter how
hard they tried.

For what it’s worth, here’s a prediction: there
is no such thing as a smart Glavlit, and the larger
it gets, the dumber it will be. So we might as well
work on building a better Samizdat, neighbors, for
it was the past and it will be the future. Amen.

1Also state secrets, which included any kinds of statistics that contradicted the official Party line. So it goes.
2At the start of the XXth century the idea that the generally uncouth population was there to be forcibly enlightened by

their betters was shared by imperial elites and socialists alike. Judging by how the first half of the century worked out, it was
not the best of ideas, but the meeting of minds that refined British intellectuals had with Bolsheviks on this was truly touching.

6

21:03 Spoofing IP with IPIP
by Yannay Livneh

On the Internet, nobody knows you’re a dog. Or
so they said in 1993. IP, the most fundamental pro-
tocol of the Internet, does not enforce or verify the
validity of the source field specified in the header
of an IP packet. Anyone could just send packets
spoofing whichever origin address as they liked. It
was as easy as executing this Python code. (The /
operator in the scapy package is used to stack the
latter layer over the former.)

1 from scapy . a l l import ∗
packet = IP (s r c=’ 13 . 3 7 . 1 3 . 3 7 ’ ,

3 dst=’ 8 . 8 . 8 . 8 ’) /"some data"
send (packet)

This made a lot of people very angry and been
widely regarded as a bad move. So the elders of the
Internet, the IETF, sat together in May 2000. They
decided to drop packets they deemed fishy, and thus
BCP 38 was born.3 This fine document requires
ISPs, the moderators of the Internet, to filter pack-
ets that originate from their customers with source
IPs which were not assigned by the ISP.

Fast forward to 2020: many ISPs implemented
this policy and cloud providers followed suit. Nowa-
days, the average Internet user can’t really spoof IP
packets. However, some machines in the Internet
don’t suffer from these policies. So if a user wants
to spoof a packet, all they need to do is to ask one
of these machines nicely to send a spoofed packet
on the user’s behalf. How does one ask a friendly
machine to send a packet? Just send it over IP and
the remote machine will do the rest. To illustrate it
with Python code:
from scapy . a l l import ∗

2 packet = IP (s r c=’ 13 . 3 7 . 1 3 . 3 7 ’ ,
dst=’ 8 . 8 . 8 . 8 ’) /"some data"

4 f r i end ly_ip = ’ 1 . 2 . 3 . 4 ’
send (IP (dst=fr i end ly_ip , proto=’ i p i p ’) / packet)

And this is it: all you need to do is find such
a friendly machine and send it a spoofed packet to
send using the somewhat forgotten “IP over IP” pro-
tocol (protocol number 4). This protocol was an
early implementation for VPN. It’s dead simple, just
encapsulate another IP in an IP packet and send it.
The receiver simply decapsulates the outer packet

and sends the inner IP packet. No authentication,
no filters, and no hassles. The Internet has evolved
since those naïve days, but operating systems still
implement this protocol. And sometimes, if you are
lucky, some vendor opens it to the Internet for one
reason or another. Surprisingly, this scenario hap-
pens quite more often than you might imagine. In
fact, this is how I found it. I imagined the bug and
then tried to scan the Internet to find such a ma-
chine.

This issue has more uses than simply spoofing,
and some are worse than others (perhaps the subject
for a future article). However, I find one of the uses
rather amusing. Packet encapsulation is not limited
and can be done multiple times in a recursive man-
ner. The only limitation is the IP packet maximum
length which is 216−1. As every IP header size is at
least twenty bytes, the limit for IPIP encapsulation
is 3,276 layers. This is way more than the classic
limitation of maximal network hops (TTL) a packet
is allowed to in the IP protocol: 255. So using our
new technique, we can craft the longest Pass-The-
Parcel game in the history of the Internet. We can
craft a single packet that would bounce around for
a really long time, way more than you might have
expected. I really like this idea.

Scanning code is attached to the PDF of this fine
journal.4 As for a proof that this technique works?
Simply open pocorgtfo21.pdf in Wireshark!5

3BCP38: Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing
4unzip pocorgtfo21.pdf zmap-ipip.patch
5wireshark pocorgtfo21.pdf

7

21:04 Anti-debugging tips and tricks for Cortex-M microcontrollers
by Balda

ARM-based microcontrollers are ubiquitous in
the so-called smart devices we all live around. If
you take the time to open these up, you will most
certainly find an accessible JTAG interface, or more
often now using SWD. As a security-aware person
you might say that these interfaces should be dis-
abled at the factory, but they most of the times are
not for multiple and often non-relevant reasons like
failure analysis and such. As a firmware developer,
this interface is also a nightmare as any curious per-
son with the right tools would be able to access the
internal secrets held inside the flash memory.

The purpose of this article is to provide fellow
firmware developers some ways to detect a debug
access from the firmware itself and react to such un-
desirable intrusion. We also will focus on ARM’s
Cortex-M family of microcontrollers.

Debugging a Cortex-M core

For nearly all of the Cortex-M cores out there,
the most used way to access the debug interface is
through the SWD port. The SWD protocol itself
is extensively described in ARM’s Debug Interface
Architecture Specification or ADI, which is freely
available from ARM’s website. From that docu-
ment, we know that the interface uses a memory
access controller which can read and write to ar-
bitrary locations called the MEM-AP. This means
that all subsequent debug operations are performed
using memory reads and writes to specific memory-
mapped registers.

One of these registers is the Debug Halting Con-
trol and Status Register, DHCSR for short. This
32-bit register is located at address 0xE000EDF0 and
is used by debuggers to control the core execution
state and contains several control bits. Two of them
are very interesting: C_HALT[1] halts the core exe-
cution, and C_DEBUGEN[0] enables core debug.

To set C_HALT and stop the core, C_DEBUGEN
must already be set to 1. This means that a de-
bugger has to perform two writes to this register in
order to stop the core. As this register can also be
read from the core itself, it is possible to detect if
a debugger is trying to connect by looking at the
C_DEBUGEN bit value.

1 uint8_t detect_debug (void) {
uint32_t ∗DHCSR=(uint32_t ∗) 0xE000EDF0 ;

3 i f (∗DHCSR&1) { // Detect C_DEBUGEN b i t
// debugger de t e c t ed

5 return 1 ;
} else {

7 return 0 ;
}

9 }

In practice, we used this simple detection
method in a CTF challenge by placing the detection
routine inside a FreeRTOS thread to clear a secret
key from RAM whenever a debug interface tries to
connect. If the action is simple enough like in this
example, it will complete before the core halts and
protect the secret key. Note that this technique can-
not be used on Cortex-M0 cores because DHCSR is
not reachable from the CPU on this architecture.

Hardware breakpoints

Like their x86 cousins, ARM cores have two kinds
of breakpoints: software and hardware. Hardware
breakpoints use a dedicated core component, called
the BreakPoint Unit (BPU) on Cortex M0 and M1,
or the Flash Patch BreakPoint Unit (FPB) on Cor-
tex M3 and later.

The BPU uses a control register BP_CTRL and
up to four comparator registers BP_COMPx. If the
PC register matches the value of one of the BP_COMP
registers and the BPU is enabled, the core will halt
the execution. By default, OpenOCD will enable
the BPU when connecting to a Cortex-M0 core, it is
therefore possible to look for this value in the same
way as with the DHCSR register above:

1 uint8_t detect_debug (void) {
uint32_t ∗BP_CTRL=(uint32_t ∗) 0xE0002000 ;

3 i f (∗BP_CTRL&1) { // de t e c t ENABLE b i t
// debugger de t e c t ed

5 return 1 ;
} else {

7 return 0 ;
}

9 }

8

The FPB replaces the BPU and has the same
functionality and conveniently uses the same address
for its control register FP_CTRL as for BP_CTRL, so
the detection and breakpoint features work the same
way. However, there is an added functionality called
the Flash Patch, which allows to redirect the execu-
tion flow to a different path based on a comparator
and a destination address. Instead of breaking when
the PC register matches the comparator, the core
will update the PC value with the value stored in a
remap table located in RAM. The remap table is a
pointer array, and if comparator x matches and is
enabled, the xth entry of the table replaces the PC
value.

In the following example, we use the FPB
remap to call the return_zero() function instead
of return_one(). This would produce a valid bi-
nary and headaches to any reverse engineer trying
to understand what the code does.

1 uint8_t return_one (void)
{ return 1 ; }

3
uint8_t return_zero (void)

5 { return 0 ; }

7 void∗ FP_REMAP_TABLE[6] = {
(void ∗)&return_zero

9 } ;

11 void setup_fpb (void) {
// Point FP_REMAP re g i s t e r to our remap t a b l e

13 uint32_t ∗ FP_REMAP = (uint32_t ∗) 0xE0002004 ;
∗FP_REMAP = (uint32_t)FP_REMAP_TABLE;

15
// Setup the compatator

17 uint32_t ∗ FP_COMP0 = (uint32_t ∗) 0xE0002008 ;
uint32_t comp_value = 0 ;

19 // Set comparison address
comp_value |= (uint32_t)&return_one ;

21 // Enable comparator
comp_value |= 1 ;

23 ∗FP_COMP0 = comp_value ;

25 // Enable FPB unit
uint32_t ∗ FP_CTRL = (uint32_t ∗) 0xE0002000 ;

27 ∗FP_CTRL |= ∗FP_CTRL | 0b11 ;
}

29
int main (void) {

31 [. . .]
setup_fpb () ;

33
while (1) {

35 i f (return_one ()) {
// This branch w i l l NEVER execute

37 } else {
// This branch w i l l ALWAYS execute

39 }
}

41 }

Another nice feature of the FPB remap for ob-
fuscation is that OpenOCD resets all FPB registers
when connecting to a target. This means that as
soon as the debugger is connected to a target run-
ning the previous example, the core will execute the
first branch instead of the second one, effectively
hiding the correct code flow from unauthorized eyes.

Software breakpoints

Software breakpoints halt execution when the CPU
executes a bkpt instruction which is really useful
when debugging your firmware. The instruction also
takes a byte-sized parameter to further help the de-
veloper manage multiple breakpoints.

An interesting property of the bkpt instruction is
that if it is executed while the core has no debug en-
abled, it will generate a HardFault. As a developer,
we can leverage this property within the firmware
and create a dedicated Hardfault handler. The plan
is to detect if the fault happened because of a bkpt
instruction, restore the registers and resume execu-
tion to the next instruction.

Looking at the ARM documentation, we can find
that a register contains information about the type
of fault that happened. On Cortex-M0, it’s the DFSR
register and on Cortex-M3 and later the register is
called the HFSR (Hard Fault Status Register). On
both of these, a bit is set when the fault occured
because of an untrapped debug event (ie. a bkpt
instruction with no debugger): the BKPT[1] and
DEBUGEVT[31] respectively.

Now that we know how to detect the debugger,
we need to resume execution. Upon entering a fault,
some registers are saved on the stack for further
analysis. This process is automatically managed by
the core, and the following registers are saved (from
top to bottom): r0, r1, r2, r3, r12, lr, pc, xPSR

When entering the fault handler, the execution
context changes to handler mode. It is possible to
get back into thread mode by linking to a special ad-
dress of 0xFFFFFFF9, which coincidently is the value
of the link register set when entering the fault han-
dler. Jumping to that address will automatically
restore the register values and resume execution.

The only thing left is to increment the saved PC
value in the stack by 2 to point to the instruction
following the bkpt instruction and resume execu-
tion. In the following example, we update a global
variable containing the detection status.

9

1 uint8_t DEBUGGER_DETECTED = 1 ;

3 void HardFault_Handler (void) {
uint32_t ∗HFSR=(uint32_t ∗) 0xE000ED2C ;

5 i f (HFSR & 0x80000000) { // DEBUGEVT b i t
// re se t de tec t ion var i ab l e

7 DEBUGGER_DETECTED = 0 ;
asm(

9 "push { r0 }\n"
" l d r r0 , [sp , #28]\n"

11 "add r0 , r0 , #2\n" // increment saved pc
" s t r r0 , [sp , #28]\n"

13 "pop { r0 }\n"
"bx l r \n" // resume execut ion

15) ;
} else {

17 while (1) {} // other f a u l t
}

19 }

21 int main (void) {
while (1) {

23 DEBUGGER_DETECTED = 1 ;
asm("bkpt 8\n") ;

25 i f (DEBUGGER_DETECTED) {
// debugger i s present

27 } else {
// debugger not present

29 }
}

31 }

Semihosting
Messing with reverse engineers and people trying to
debug your firmware isn’t enough? Let’s take a look
at another ARM debugging feature: semihosting.

Semihosting is a way for the target firmware to
access data on the debugger side by using syscall-
like operations like open, read, and write. It is
typically used to allow functions like printf to be
used in the firmware, with the output being printed
in the debugger console on the host. It uses a clever
mechanism to work. If the firmware halts on a bkpt
instruction while being debugged, the debugger will
fetch the argument to the bkpt instruction. If the
argument value is 0xAB, the debugger will fetch the
operation to be performed in r0, and the arguments
at a location pointed to by r1.

The following code implements semihosting to
perform a SYS_WRITE operation (semihosting call 5)
to the host’s stdout, file descriptor 1.

1 void pr int_semihost ing (char ∗ data , s i z e) {
/∗ use SYS_WRITE to STDOUT ∗/

3 uint32_t args [3] ;
a rgs [0] = 1 ; // FD 1 = STDOUT

5 args [1] = (uint32_t) data ;
args [2] = s i z e ;

7 asm(
"mov r0 , #5\n" // Op #5 − SYS_WRITE

9 "mov r1 , %0\n"
"bkpt 0x00AB" : : " r " (args) : " r0 " , " r1 ") ;

11 }

The same applies to the other semihosting
operations, but one in particular is interesting:
SYS_SYSTEM. As the name implies, this operation
asks the debugger to fetch a command from the tar-
get and pass it to the system() function on the host.
It is therefore possible to use any if the debugging
detection routines shown in this article to call this
function if a debugger is detected. As a mandatory
example, this function will spawn the xcalc binary
on the debugger host:

1 void spawn_calc (void) {
const char ∗ cmd = " xca l c " ;

3 uint32_t args [2] ;
a rgs [1] = (uint32_t)cmd ;

5 args [2] = 6 ;
asm(

7 "mov r0 , #18\n" // Op #18 − SYS_SYSTEM
"mov r1 , %0\n"

9 "bkpt 0x00AB" : : " r " (args) : " r0 " , " r1 ") ;
}

Many variations of this trick exist, and can easily
mess with the debugger host. Fortunately, semihost-
ing is not enabled by default in OpenOCD. The com-
mand arm semihosting enable must be entered
in OpenOCD’s console to activate semihosting sup-
port.

Conclusion

ARM microcontrollers are wonderful devices pack-
ing lots of hidden gems like the ones I briefly pre-
sented to you today. There surely are more of them
hidden deep in the documentation or in an obscure
corner of a dumped firmware. I hope that this
small introduction will trigger your curiosity and
help you find other clever ways to practice firmware
self-defence. Code is attached.6

6git clone https://github.com/Baldanos/cortex-m-antidebug || unzip pocorgtfo21.pdf cortex-m-antidebug.zip

10

21:05 Symgrate: A Web API for Thumb2 Symbol Recovery
by Travis Goodspeed and EVM

Hey folks!

Today we’d like to share with you our nifty lit-
tle summer project, a publicly accessible server for
recovering Thumb2 symbols. You send us the first
18 bytes of a function as a hex-encoded string, and
if that function exists in our collection of hundreds
of thousands of embedded SDK libraries, we’ll give
you back the function’s name and the library’s file-
name in easily parsed JSON. Client plugins for most
interactive disassemblers have already been written.

The first popular symbol recovery tool was IDA
Pro’s FLIRT technology, which debuted in 1996.
FLIRT matches are performed by exact equality be-
tween the first 32 bytes of a function, except for
those bytes which a linker would relocate. These
are stored in a tree structure, to take advantage of
overlaps between similar functions to minimize the
file size.

FLIRT does handle some of the stranger link-
ing choices of X86, but it does not try to solve the
general problem of false positives and collisions that
arise from related functions having identical signa-
tures despite different behavior. It won’t be putting
us reverse engineers out of business anytime soon!

In this article, we’ll be implementing a function
matcher similar to FLIRT, in that we’ll produce
blinded signatures of functions which demand that
most of the code exactly match, while forgiving dif-
ferences in the bytes that will be adjusted during
linking. We’ll implement this both as C code that
compares functions within its own address space,
and as a PostgreSQL table that can be queried to
quickly recover function names.

Thumb2 Instruction Blinding

Before we can build a database, or even compare
two functions locally, we need to learn a little bit
about the Thumb2 instruction set. We’ll do this to
create a sort of optimized disassembler, whose only
job is to blind out the bytes that don’t matter.

Thumb2 is the denser of two instruction sets in
32-bit ARM, and it’s the one that’s most commonly
found in embedded systems. Instructions are either
one or two 16-bit instruction words in length; unlike
the original Thumb and MIPS16, the 32-bit wide
instructions cannot be treated as two independent
16-bit wide instructions.

Thumb2 code uses relative addressing for
branches for reasons of efficiency, but it has the nice
side effect of making much code accidentally posi-
tion independent.

This applies to branches and function calls, but
not to explicit pointers, such as immediate values.
Those are stored in something called a constant
pool, which is a group of 32-bit constants that are
placed after the ret instruction at the end of a func-
tion and before the entry point of the next function.
These constant pools exist because Thumb2 instruc-
tions are too short to include long immediate values,
so rather than include these values inside of the in-
struction, they are referenced by a PC-relative offset
to the pool.

So a Thumb2 linker is mostly adjusting (1) rel-
ative calls between functions, and (2) absolute ad-
dresses held in literal pools at the end of a function.
Relative branches within a function aren’t adjusted,
because they remain the same wherever that func-
tion might be loaded. Our basic strategy will be to
count from the beginning of a function, enforcing
that a minimum number of instructions are either
identical or function calls. And those absolute ad-
dresses which might change in the constant pool?
Those we don’t worry about, because they come late

11

The Thumb Instruction Set

ARM DDI 0308D Copyright © 2004, 2005 ARM Limited. All rights reserved. 3-31

3.3.6 Branches, miscellaneous control instructions

Figure 3-9 shows the encodings for branches and various control instructions.

Figure 3-9 Branches and miscellaneous control instructions

In these instructions:
A, I, F specifies which interrupt disable flags a CPS instruction must alter
I1,I2 contain bits[23:22] of the offset, exclusive ORed with the S bit
J1,J2 contain bits[19:18] of the offset
M specifies whether a CPS instruction modifies the mode (M == 1) or not (M == 0)
R specifies whether an MRS instruction accesses the SPSR (R== 1) or the CPSR (R == 0)
S contains the sign bit, duplicated to bits[31:24] of the offset, or to bits[31:20] of the offset for

conditional branches.

For further details about the No operation and hint instructions, see Table 3-36 on page 3-32.

For further details about the Special control operation instructions, see Table 3-37 on page 3-32.

For further details about Exception Return, see SUBS PC, LR on page 4-373.

!

!

"" " "

!"#"$%&'()$*%+

" # " $ " % " & " " " ! ' () * # $ % & " !" # " $ " % " & " " " ! ' () * # $ % & " !

+ , &+,"

-./01+

" " " "

!" " " "

2!" " " " 3445678&"9"&:

!"" " "

"

-./01+;,<7+;=<0>?
1+/0@6;73;ABC

B656.D6E

2 "

"

"

"

3445678&"9"&: "

"

F" F&

F" F&

"

!

!

!

"

G30E<7<30/=
H./01+ 2 3445678")9"&:

3445678""9&:

3445678""9":

3445678""9":130E ! !F" F&

!

!

"" " "

" " " "

!" " " "

!" " " "

!"" " "

"

!" " " "

" " " "

! " " "

! " " "

! " " "

! " " "

! " " "

! !

" ! !
2
-
I

B0

" ! !
2
-
I

B0

" ! !
2
-
I

2-J

" ! !
2
-
I

" ! !
2
-
I

2-J

B

B

!" !

! !

! "

" !

"

"

"

2-J

2-J

2-I

2-I

2-I

<KK(

BE

K3E6
2
-
I

4<6=ELK/5>

<K3E C MNA

-./01+?
G+/0@6;73;F/D/

C3D6;73;57/7O5
4.3K;.6@<576.

G+/0@6;P.316553.;57/76
Q<K3E?;C;RS;!!?!T

C3D6;73;.6@<576.
4.3K;57/7O5

UV16P7<30
.67O.0

!"" " " ! " " " " ! !2-J! " ! !W3;3P6./7<30?;+<075
2
-
I

2
-
I

! +<07

-./01+;,<7+;=<0> 2!" " " " 3445678&"9"&: " F" F&" 3445678""9":"

!

!" " " " ! " " " " ! !
2
-
I

2-J"! " 2-J2P61</=;1307.3=;3P6./7<305 3P7<30

!

"" " "

X6.K/0607=Y;,-./01-/.

!" " " " "" " " " ! !!" " "261O.6;C30<73.;N076..OP7 <KK8%9!: <KK8""9$: <KK8"#9"&:

JX

!

!" " " " "" " " " ! !"" " "

2/3/24/.

" " " "

Q!TQ"T Q"T Q"T

Subset of Thumb2 instruction formats from ARM DDI 0308D.
Note well that branches begin with 1111.

12

in the function, after enough instructions that we’ll
have a match or not.

The machine language format for branches are
described in Section 3.3.6 of the Thumb2 Supple-
ment Reference Manual, ARM DDI 0308D, repro-
duced here on page 12. J1 and J2 are inverted by
the sign-extension bit for reasons of backward com-
patibility, being 1 when the branch is short. From
this table, we can see that a Branch with Link (bl)
instruction always begins with F in its first word,
and will also begin with an F in its second word
except when the target is very far away.

Comparing Instructions from C

If you need to quickly compare short functions for
similarity in C, where src16() and dst16 grab 16-
bit words from your source and destination address
spaces, you might do something like the following,
counting 16-bit words which are either exactly equal
or are short branches.

// ! How s im i l a r are two func t i ons ?
2 int scorematch (int sadr , int dadr) {

int i =0;
4

// Comparing ha l f −words .
6 do{

i +=2;
8 }while (

(
10 //Halfwords e x a c t l y agree

s r c16 (sadr+i)==dst16 (dadr+i)
12

//or ha l fwords might both be a BL.
14 | | ((s r c16 (sadr+i)&0xF000)==0xF000 &&

(dst16 (dadr+i)&0xF000)==0xF000)
16)

// s top a f t e r a wh i l e .
18 && i <1024

) ;
20

return i ;
22 }

This scruffy little example is missing range
checks, and it will fail to recognize the second word
of longer branches, when J1 or J2 might be zero, but
it is brutally effective at moving symbols between
minor revisions of small firmware images.

We used this code, complete with an embarrass-
ing bug or two, in the MD380Tools project for years.
See PoC∥GTFO 10:8 and 13:5.

Comparing Instructions from SQL
Having some C code that can quickly compare

one function to another is great for porting sym-
bols from one executable to another, but we’d rather
have a giant database of functions, on a central
server, than any friend or stranger can query freely
when useful. For this, we needed to convert our rag
tag algorithm into one that was just as scruffy, but
could be expressed in terms of SQL for convenient
querying.

We decided to implement this as a string that is
wildcarded in the style of a SQL LIKE clause, ASCII-
armored and with two underscores (__) to replace
any byte which might be changed by the linker.

Our table schema is roughly like this,

drop table i f exists f un c t i on s ;
2 create table f un c t i on s (

id s e r i a l primary key ,
4 arch varchar (10) not null ,

−− C++ names can be very long .
6 name varchar (2048) not null ,

f i l ename varchar (2048) not null ,
8 raw varchar (100) not null ,

b l inded varchar (100) not null ,
10 unique (b l inded) −−saves pruning l a t e r

) ;

SQL Optimizations
When this scheme was mentioned in passing to a
mainframe old-timer by the name of Jim, he pan-
icked! “Why in hell are you traversing every table
on every query?” We’re not, of course, as that would
be much too slow.

The naïve version of this, the one that scared
Jim so much, is easily read but even after indexing
it is rather slow.

1 −− 70ms . Slow and naive , but easy to read .
select name from f un c t i on s

3 where $1 l ike bl inded ;

If we ask Postgres to explain analyze this
query, it takes nearly 70ms because every row of our
functions table must be scanned directly, and even
split into parallel threads that’s a lot of overhead.
As our database grows, the overhead will only get
worse.

We can speed things up a little more by doing
the barest minimum of parsing on the start of the
string. See how 10b50446 (0xb510 0x4604) does
not begin with an f, and is not a branch function
that might be wild-carded in our database by the

13

% cur l −X POST −d 8000 bee f =02780b78012a28bf9a42f5d16de9044540ea \
2 https : // symgrate . com/ j f n s | jq

{
4 "8000 bee f " : {

"Name" : " strcmp " ,
6 "Filename " : " i c cv9 co r t ex /GnuARM/arm−none−eab i / l i b /thumb/v7e−m+dp/hard/ l i b g . a"

}
8 }

instruction format on page 12? We can add a little
piece to the where clause, such that the first eight
characters must exactly match our unknown func-
tion. With this addition, the like operation will
only be calculated against a small subset of the to-
tal table.

1 −− 7ms when f i r s t two are not branches .
select name from f un c t i on s where

3 (substr ($1 , 3 , 1)=’ f ’
or substr ($1 , 7 , 1)=’ f ’

5 or substr ($1 , 1 , 8)=substr (bl inded , 1 , 8)
) and $1 l ike bl inded ;

300 Gigs of Object Files

The one big shortcoming of this technique is that
while it is rather robust against changes made by
the linker, it is terribly fragile to changes in com-
piler optimization.

We counter this by recognizing that much de-
vice firmware is compiled from static libraries dis-
tributed with compiler toolchains as part of an In-
tegrated Development Environment (IDE) from the
chip vendor. We’ve taken to collecting every one of
these we can publicly find online, buying the really
old ones on eBay.

All told, we’re now well above 300GB of .a, .o
and other object files, which are crunched into a
SQL table by a bunch of Binary Ninja scripts run-
ning in parallel. While Binja offers excellent script-
ing support that is a joy to use, we’re ashamed to
admit that we use it here only as a glorified ELF
parser, to quickly give us the function prefixes and
names.

All told, we have a couple hundred different IDE
versions that supply us with 41 unique fingerprints
for strcpy, 43 for strlen, 134 for strncpy and 50
for sprintf.

Clients and Server

Our server is written in Golang, presenting a few
simple API pages that return json describing every
function that matches our collection. For those in a
hurry, results can also be requested in ASCII.

There’s some overhead to the HTTPS connec-
tion, and some overhead to the searching, so we rec-
ommend sending requests in batches of a hundred
or so functions.

Let’s walk through how the IDA script works,
using a fragment in Figure 1. We’re going to iterate
over the whole program on every function that IDA
found in auto-analysis. We’ll either grab the bound-
aries of the .text section (if we’re in an ELF) with
ida_segment.get_segm_by_name or we’ll just start
at memory address 0, get the next function with
idc.get_next_func(0) (which will always be the
first function in the binary), and work forward to
the end of the binary.

The script calls ida_getfunctionprefix, a lit-
tle helper function we wrote to grab the first bytes of
the function used as the Symgrate signature, which
is currently 18 bytes. We add (address, function
bytes) pairs to our query string up to 64 times.
This allows us to query 64 signatures at a time, with

14

I t e r a t e over a l l the func t ions , query ing from the database and p r i n t i n g them .
2 fnhandled =0;

4 q s t r="" ;

6 s t a r t=0
end=0

8 t = ida_segment . get_segm_by_name(" . t ex t ")
i f (t and t . s tart_ea != ida_idaapi .BADADDR) :

10 s t a r t = t . start_ea
end = t . end_ea

12 else :
s t a r t = idc . get_next_func (0)

14 end = ida_idaapi .BADADDR

16 f=s t a r t

18 while (f != ida_idaapi .BADADDR) and (f <= end) :
iname=idc . get_func_name (f)

20 adr=f
ad r s t r="%x"%f

22 r e s=None

24 bs t r = ida_func t i onpr e f i x (f)
We query the se rve r in ba tches o f 64 func t i ons to reduce HTTP overhead .

26 q s t r+="%s=%s&"%(adrst r , b s t r)
f = idc . get_next_func (f)

28
i f fnhandled&0x3F==0 or f i s None :

30 r e s=Symgrate2 . que ry j f n s (q s t r)
q s t r=""

32 i f r e s !=None :
Symgrate2 . j p r i n t (r e s)

34 #op t i o n a l l y rename func t i ons to the va lue s found in the query
#ida_renamefunctions (res)

36
fnhandled+=1

Figure 1: Fragment of Symgrate2Query.py from the IDA Pro plugin.

15

much less network overhead than making a separate
HTTPS transaction for each function.

Once we get to 64 functions we submit the query
with Symgrate2.queryjfns. This function con-
verts marshals the query string into a JSON ob-
ject and submits the JSON object over HTTP to
the server. The server returns (address, function
name) pairs in a JSON object. By default, the
script prints the pairs, but there is also a line that
if uncommented will rename functions to the names
found by Symgrate. We find it’s usually better to
see what kind of results you get back first before
committing the names to your database.

A Database of SVDs

By this point, we hope to have already convinced
you of the value that a Web API server can have
for firmware reverse engineering. If you can use our
server to recover missing symbols from a firmware
image, why not query it for other useful things?

Among our collection of object files, we also have
nearly twenty thousand .svd files. Each .svd file
contains an XML description of a Device, the base
address of each I/O Peripheral, and the offset af-
ter that base address for each I/O Register in that
Peripheral.

Querying our server quickly gives all of the reg-
isters for the STM32F407. (There’s no support for
hexadecimal numbers before JSON5; please forgive
us if that makes your eyes bleed.)

1 % cu r l −d STM32F407=STM32F407 −X POST \
https : // symgrate . com/ jsvd | jq

3 {
"STM32F407" : [

5 {
"PeripheralName " : "TIM2" ,

7 "Name" : "CR1" ,
"Adr " : 1073741824

9 } ,
{

11 "PeripheralName " : "TIM2" ,
"Name" : "CR2" ,

13 "Adr " : 1073741828
} ,

15 {
"PeripheralName " : "TIM2" ,

17 "Name" : "SMCR" ,
"Adr " : 1073741832

19 } ,

But what you if you don’t yet know that you
are using an STM32F407? Simply send a list of the
registers and their access mode, or u for undefined,
to the server, and it’ll give you a list of potentially
compatible chips.

1 % cu r l −d 0x58000148=u −X POST \
https : // symgrate . com/ j r e g s | jq

3 [
{

5 "Name" : "STM32WBxx_CM4" ,
"Count " : 1

7 } ,
{

9 "Name" : "STM32MP1_v0r3" ,
"Count " : 1

11 } ,

– — — – — — — — – — –
We hope to have convinced you find folks that

these new-fangled Web APIs are useful, not just for
dancing babies and hamster dances, but also to ex-
pose valuable databases to otherwise slim plugins of
reverse engineering frameworks. Expect some new
database functions in the near future, and kindly
buy us a beer if the database gives you some useful
results.

16

21:06 Reversing the Fairplay 710 Baseball Scoreboard
by EVM

The local baseball league where my kids play has
some old electronic FairPlay 710 scoreboards that
needed rehabilitation. FairPlay is a line of score-
boards made since 1975 by the Fairtron Corpora-
tion, which is still around in some fashion. The
boards in our league date to 1992 and have be-
come disused because of the way they were originally
wired. At a league meeting over the summer, some-
body asked what it would take to make them WiFi
controlled. In this article, I’ll walk through my RE
process and my WiFi controller implementation, in
the off chance that any of you fine neighbors want
to rig up something similar.

At installation the boards were wired up to 110V
AC power and a low voltage signal line. The pro-
cessor box inside the board takes a 1/4 inch au-
dio cable, and controls the bulbs. The board is
comprised of standard E26/A19 bulb sockets (for
the Ball/Strike/Out/Hit/Error lights) and E26/A15
bulb sockets (for all of the digit displays). The sig-
nal line is usually terminated indoors with a corre-
sponding audio jack. The controller box can then
be plugged into the jack to control the board.

On the two primary fields of play these jacks were
put in the top level of a snack shed—a sort of score-
keeping booth. The problem is that no parent wants
to be banished to the booth, so the boards don’t get
used. We wanted to make it so that parents could
easily operate the boards from their phone, sitting
comfortably in the bleachers.

The Controller

Since it was going to be logistically difficult to haul
an oscilloscope out to the field, I decided to attack
the controller box. After popping open the case I
saw a beautiful little old lady of a board, featuring
a Motorola 68HC11 and a 128K EPROM. Normally
I would be all about popping that EPROM into a
reader and dropping the image into a disassembler,
but I figured that would be a long path to getting re-
sults, since the signal was probably pretty straight-
forward. And like a batting practice fastball, it sure
was.

Stealing Signals (like an Astro)

I could easily see the red (signal) wire hooked up
to the “ring” part of the 1/4 inch audio jack, and
the black (ground) wire hooked up to the “tip” part.
When I clipped my oscilloscope probes onto these
parts of the connector, I could immediately see the
data pulse train output by the controller and the
encoding was very clear. (Figure 5.)

_
/ \
\ / <− Tip : S i gna l ground
/_\
|_| <− Ring : S i gna l
| |
| | <− Sleeve : Chass i s ground

The FairPlay signal uses RS-232 signal levels
(±5V), but uses a proprietary protocol. In RS-232,
each bit takes the same amount of time, with a 1
being a logical high (+5V) and a 0 being a logi-
cal low (−5V). The length of each bit is determined
by chosen baud rate. In the FairPlay protocol each
symbol contains both a high part and low part, and
the difference between a 1 and a 0 is the length of
the high part. Each symbol is 30 microseconds long,

17

Figure 2: FairPlay 710 scoreboard and internal processor box.

Figure 3: FairPlay controller buttons and label.

18

Figure 4: FairPlay BA41A controller board.

19

Figure 5: Scope capture of FairPlay signal.

a 0 symbol is 5 microseconds high and 25 microsec-
onds low, a 1 symbol is 20 microseconds high and 10
microseconds low. The messages go from controller
to board, there is no path for a response from the
scoreboard.

This particular model uses a 56 bit message word
that is repeated every 50 milliseconds. (See Fig-
ure 6.) I determined the fields by pressing controller
buttons while it was hooked up to the oscilloscope
and watching which bits change. For the digit en-
coding I cycled through all possibilities once I had a
proof-of-concept implementation running on a Rasp-
berry Pi. See Figure 7 for an explanation of the bit-
fields in the message. Notice that this is how it is
transmitted on the wire.

Overkill: The Correct Amount of Kill

You might be doing the math in your head and
thinking that there are precisely zero things that
happen in a baseball game that require 50ms tim-
ing in a scoreboard. But I think it’s likely that this
same protocol is used in FairPlay scoreboards for
sports like basketball or hockey that have a game
clock. (Such a clock needs to be accurate to tenths
of seconds.) My guess is that other FairPlay boards
of similar vintage for other sports probably use the
same encoding and timing, with different message
words.

You might expect a protocol like this to have the
controller transmit numerical values and then the
scoreboard would figure out which bulbs to turn on,
but it doesn’t work that way. For the Ball, Strike,
and Out fields, each bulb directly maps to bits in the
message. The score and inning digits are controlled
by a single byte in the message, but each digit is
made up of 13 bulbs. This means not every bulb
can be directly controlled. Nor does it work like a
seven-segment display.

20

Figure 6: Repeating messages in FairPlay protocol.

1 Byte # B i t f i e l d Key
0 | br x x x e i t (3) | br − br i gh t (1) / dim (0)

3 1 | h o o s t s t b b b | h − h i t e − e r r o r
2 | inn ing ones d i g i t | i t − inn ing tens d i g i t (3 b i t s)

5 3 | home ones d i g i t | x − unused
4 | home tens d i g i t | o − out

7 5 | guest ones d i g i t | s t − s t r i k e
6 | guest tens d i g i t | b − ba l l

Figure 7: Bitfields in the FairPlay protocol.

21

22

The bulbs map to the 8 bits of the byte in the
following format:

007
2 5 1

567
4 4 2

337

For instance you can render the digit 3 in two
ways, with either the pattern 0x4F 0xCF.

1 XX XXX
X X

3 X or l i k e t h i s : XX
X X

5 XX XXX

Here are the mappings for every digit:

1 unsigned char pattern [] = {
// 0 1 2 3 4

3 0xBF, 0x86 , 0xDB, 0x4F , 0xE6 ,
// 5 6 7 8 9

5 0xED, 0xFD, 0x87 , 0xFF , 0xEF
} ;

To fully implement the WiFi control, I hooked
up a Raspberry Pi Zero to the new Pi Pico board
via UART and then I have a Pi Pico GPIO output
hooked up to a MAX3232. (Thanks to good neigh-
bor Goodspeed for that tip.) I have the Pi serve up
a pretty simple PHP script that writes the current
settings to a file, and a little server program that
converts these settings into the proper 56-bit mes-
sage word. The Pico program just reads the current
56-bit message and generates the signal which is con-
verted to ±5V by the MAX3232. Code is available,
of course.7

7git clone https://github.com/evm-apl/FairPlay || unzip pocorgtfo21.pdf FairPlay.zip

23

21:07 A Tourist’s Guide to Altera NIOS
by Christopher Hewitt

Sziasztok, szomszédok!

Welcome to another installment of our series of
quick-start guides for reverse engineering embed-
ded systems. Our goal here is to get you situated
with the Nios family of embedded soft processors
as quickly as possible, with a minimum of fuss and
formality.

Those of you who have already worked with Nios
might find this to be a useful reference, while those
of you new to the architecture will find that it isn’t
really all that strange. If you’ve already reverse en-
gineered binaries for any platform, even x86, I hope
that you’ll soon feel right at home.

We’ve written this guide to broadly cover vari-
ous configurations of Nios processors. These proces-
sors are generally implemented in configuration bit-
streams for various Altera programmable logic de-
vices or system on programmable chips, but may
also be found in custom silicon. A minimalist con-
figuration of Nios might be used to execute a simple
control sequence out of ROM, while a complex de-
sign might make use of several fully-featured Nios
processors and external memory to process a com-
plex workload.8 Even though Nios was quickly su-
perseded by a complete redesign, the architecture
can still be found in the occasional embedded sys-
tem. Readers interested in the newer Nios II family
of processors may find significant differences in the
original Nios architecture and may benefit from a
different introduction.

Some Historical Context

Altera introduced Nios in June of 2000 as a recon-
figurable embedded design platform tailored to the
company’s FPGA product offerings. Building from
its commercial success, Altera was quick to develop
and release a successor, a 32-bit redesign called Nios
II, by 2003. Having vastly improved performance
and resource utilization over the original Nios plat-
form, Altera deprecated Nios and urged developers
to migrate to the new platform. After Intel acquired
Altera in 2015, it became particularly difficult to
find Nios-related design resources as Altera’s web-
site eventually went offline causing most references
to seemingly vanish. Without having encountered a
device developed during this narrow window of time
it’s easy to have missed out on ever seeing this ar-
chitecture, though there are still some traces of Nios
in the wild.

An Unexpected Rediscovery

GPS disciplined oscillators are a great way to pro-
vide a stable frequency-locked reference for test
and measurement equipment found on electron-
ics workbenches, but commercial products can be
out of reach for the hobbyist on a tight budget.
Fortunately, amateur radio operators have already
solved this problem by repurposing the TruePosi-
tion LMU300, a nifty piece of telecommunications
equipment recently decommissioned in bulk.9 These
devices were originally installed to provide caller lo-
cation to emergency services in North America in
accordance with federal E911 mandates. Each rack-
mount unit contains a separate smaller board con-
taining a GPS receiver and a disciplined 10 MHz
reference output, which can be operated indepen-
dently with some modifications.

Ordinarily, the board’s GPS function is initial-
ized by another component within the chassis send-
ing a $PROCEED command via RS-232. Without this
command, the firmware is stuck in a loop constantly
transmitting its firmware version number and device
serial number. A common workaround is to have an
external device send this command to the board au-
tomatically when powered on, but it’s preferable for

8unzip pocorgtfo21.pdf phrack6317.txt # Phrack 63:17 by Cawan
9unzip pocorgtfo21.pdf packratgps.pdf # Packrat GPS by WA2OMY and WA3YUE

24

The Development Kit that Gets You on the
Cutting Edge
The Nios™ soft core embedded processor, the
first of Altera’s new Excalibur™ embedded
processor solutions to ship, delivers just
what you need to create system-on-a-
programmable-chip (SOPC) designs.

This new flexible embedded processor solution offers a
32-bit configuration, up to 50 MIPS performance, and an
equivalent volume price point of $5. The development kit is
available now with everything you need to get started.

A Complete Solution for Only $995
This Excalibur Development Kit contains:

■ Nios Configurable RISC Embedded Processor Core and
Peripherals

■ Quartus™ Programmable Logic Development Software

■ GNUPro® C/C++ Compiler and Debugger from Cygnus®,
a Red Hat® Company

■ ByteBlasterMV™ Download Cable

■ Development Board Including an APEX™ EP20K200E
Device

■ Reference Design and Documentation

Free Hands-on Workshops
Intensive three-hour workshops, starting in June, will teach you
how to create an SOPC design using the Nios soft core embedded
processor in an APEX device. You will develop and compile C code,
then execute and troubleshoot it on the development board. You
will also learn about the GNUPro Compiler and Debugger from
Cygnus, a Red Hat company, included in the Excalibur
Development Kit.

Register Now!
To reserve your space at the FREE Excalibur workshop nearest you,
or to find out more about this revolutionary development system,
visit Altera’s web site at http://www.altera.com/workshop.

Win a Free Excalibur Development Kit!
Each workshop will feature a drawing for a free Excalibur
Development Kit. You must be present to win, so sign up today.

Introducing
the Excalibur Development Kit

Featuring Nios

Copyright © 2000 Altera Corporation. Altera, APEX, APEX 20K, APEX 20KE, ByteBlasterMV, Excalibur, Nios, Quartus, and specific designations are trademarks and/or service marks of Altera
Corporation in the United States and other countries. Other brands or products are trademarks of their respective holders. The specifications contained herein are subject to change with-
out notice. All rights reserved.

25

these kinds of problems to be solved in software.
Since all logic is handled by an Altera APEX 20KE
FPGA and MAX3000A PLD sharing 1 MB external
parallel flash, that task is somewhat more challeng-
ing.

It’s often a good idea to check what’s stored in
flash memory first. Having neither the appropriate
TSOP-48 hardware programmer adapter nor the pa-
tience to wait for one to arrive in the mail presents
a ripe opportunity to explore boundary scan tech-
niques for extracting data. Simply load the relevant
Altera-provided BSDL files for the FPGA and PLDs
into UrJTAG and it’s possible to intercept control
over all I/O lines. Without access to schemat-
ics, however, it’s necessary to first probe out de-
vice interconnects in order to determine which pins
could be used to bit-bang data from the external
flash memory. Then it’s just a matter of exercising
the JTAG commands SAMPLE and PRELOAD in
proper sequence or, better yet, just use UrJTAG’s
prototype external memory bus type to automate
the process. If anything goes wrong, make sure to
check the boundary scan definitions for helpful hints
left for hardware hackers in the distant future.

−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 −− ∗ DESIGN WARNING ∗

−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4

6 a t t r i bu t e DESIGN_WARNING of EP20K160ET144 : en t i t y i s

8 "The APEX 20KE dev i c e s support IEEE 1149.1 t e s t i n g "&
" be fo r e and a f t e r dev ice c on f i gu r a t i on ; however , "&

10 " the dev i c e s do not support t h i s t e s t i n g during "&
" dev ice c on f i gu r a t i on . The e a s i e s t way to avoid "&

12 " dev ice c on f i gu r a t i on i s to hold the nCONFIG pin low "&
"during power−up and t e s t i n g . " ;

After waiting a brief eternity for data to shuf-
fle back and forth from the boundary scan regis-
ter, a complete dump of the external flash memory
is finally available for analysis. One quick obser-
vation is that there are four binary chunks, each
at evenly-spaced offsets and surrounded by empty
space. Two of the chunks are the same size and simi-
larly don’t look particularly like any kind of program
data. Since there is an FPGA on board, it’s entirely
reasonable to suspect that these are configuration
bitstreams. The other two binary chunks, however,
contain meaningful character sequences relating to
flash programming and GPS operation. Even bet-
ter, there’s a signature near the beginning of both
binaries spelling out “Nios.” Finally, something that
we can work with!

Basics of the Instruction Set
Even though Nios processors come in 16 and 32-bit
variants, the instruction set is strictly 16-bit. In-
structions are always half-word aligned, so the low-
est bit of the Program Counter (PC) is always zero.

Data and address bus size, as well as register
and ALU width, are determined by the variant used.
Most instructions are shared between both variants,
but the 32-bit instruction set includes extra reg-
ister manipulation functions and optional support
for hardware multiply. This table highlights the in-
struction differences between the two variants.

Opcode 32-bit Name 16-bit Name
011001 STS16S
011010 EXT16D ADDC
011011 MOVHI SUBC
011101101 ST16S
01111100100 SEXT16
01111101000 SWAP
01111110001 ST16D
01111110011 FILL16
01111110100 MSTEP
01111110101 MUL
10010 PFXIO

Code targeting the 32-bit variant is easy to rec-
ognize, as jumps require an extra register load.

1 ; Global so we can see i t in dumps .
. g l oba l nr_jumptostart

3
nr_jumptostart :

5 PFX %hi (_start@h) ; 0x00
MOVI %g0 ,% lo (_start@h) ; 0x02

7 . i f d e f __nios32__
PFX %xhi (_start@h) ; 0x04

9 MOVHI %g0 ,%xlo (_start@h) ; 0x06
. end i f

11 JMP %g0 ; 0x08 / 0x04 on Nios 16
NOP ; 0x0a / 0x06 on Nios 16

13 ; 0x0c / 0x08 on Nios 16 S ignature .
. byte ’N ’ , ’ i ’ , ’ o ’ , ’ s ’

Five user-defined instructions, USR0 to USR4,
facilitate accelerated data processing through addi-
tional logic placed in the hardware design. It might
take some experimentation, or at least sufficient con-
text, to determine the purpose of these types of in-
structions when no source is available.

26

Registers and Calling Convention

If you have prior experience with SPARC or other
Berkeley RISC descendants, you might enjoy seeing
a familiar register layout as well as sliding register
windows for stack cache and the use of branch delay
slots.

Inputs : %r24 − %r31 (or %i0 − %i7)
2 Loca l s : %r16 − %r23 (or %L0 − %L7)

Outputs : %r8 − %r15 (or %o0 − %o7)
4 Globals : %r0 − %r7 (or %g0 − %g7)

6 Saved return address : %r31 (or %i7)
Current re turn address : %r15 (or %o7)

8
Frame po in t e r (%fp) : %r30 (or %i6)

10 Stack po in t e r (%sp) : %r14 (or %o6)

A Nios processor’s overall register file might span
128, 256, or 512 registers, depending on configura-
tion. As the register window slides around, CWP
is compared with the WVALID register (%ctl2) to
determine if a register underflow or overflow has oc-
curred, which generates an internal exception. Un-
less specifically disabled, Nios designs include cus-
tom exception handlers which extend the register
file with extra stack memory.

Nios programs lacking any kind of register win-
dow manipulation instructions might have been
compiled with the -mflat option. This option was
intended to improve timing predictability at the ex-
pense of overall context-switching time. As a result,
only a fixed 32 registers are available to the appli-
cation and register contents must be saved to stack
memory during interrupts since register windows are
no longer available for caching.

Memory Map
A Nios processor’s memory map depends entirely
on how it was configured. Assuming an implemen-
tation hasn’t strayed too far from one of the many
original reference designs, Altera’s Embedded Pro-
cessor Portfolio10 can serve as a convenient reference
for correlating various peripherals to their base ad-
dresses or locating the exception vector table. Since
a primary selling point of Nios (and soft proces-
sors in general) is reconfigurability, it’s possible that
a complete understanding will require significantly
more time and effort than with a conventional hard
processor.

Interrupts and Exceptions
The exception vector table can reside in either RAM
or ROM at a configurable offset specified in the pro-
cessor design. The table holds up to 64 exception
handler addresses, depending on configuration, with
each entry occupying four bytes. Exceptions can be
triggered by external hardware interrupts, internal
exceptions, or software instructions. The first entry
in the table is a non-maskable interrupt with prior-
ity 0 only intended for use by an optional on-chip
instrumentation debug module.

If the exception vector table resides in RAM
and consequently generated at run-time, try track-
ing down the initialization code, which might resem-
ble the following instructions:

;−−−−−−−−−−−−−−−
2 ; Set up us the vec to r t a b l e

; to catch any spur ious i n t e r r up t
4 ; f o r g rea t j u s t i c e .

;
6 . i f __nios_catch_irqs__

. i f d e f nasys_printf_uart
8 MOVIA %o0 , r_spurious_irq_handler@h

MOVIP %o1 , nasys_vector_table
10 MOVIP %o2 ,64

_init_vector_table_loop :
12 ST [%o1] ,%o0

. i f d e f __nios32__
14 ADDI %o1 , 4

. e l s e
16 ADDI %o1 , 2

. e n d i f
18 SUBI %o2 , 1

IFRnz %o2
20 BR _init_vector_table_loop

NOP
22 . e n d i f ; nasys_print f_uart

. e n d i f ; __nios_catch_irqs__

10unzip pocorgtfo21.pdf nios-epp-mmap.txt # Memory maps of reference designs.

27

Memory and Peripheral Access
Nios has three address modes: (1) Full-width
register-indirect, (2) Partial-width register-indirect,
(3) and 5/16-bit immediate. Both of the register-
indirect modes support an optional offset.

Nios requires the use of aligned memory accesses,
so operations are performed on addresses which are
multiples of two (16-bit variant) or multiples of four
(32-bit variant). The lowest bit or two bits of the
address are always treated as 0, respectively.

Partial-width memory reads require the combi-
nation of a full-width register-indirect read instruc-
tion with an extra EXT-prefixed extraction instruc-
tion. Partial-width memory writes, however, can be
accomplished with a single dedicated ST-prefixed in-
struction. The additional FILL-prefixed instructions
are helpful for meeting alignment requirements.

Disassembly
Don’t worry if the Hex-Rays sales team stopped re-
turning your phone calls. IDA Pro and other pop-
ular commercial tools don’t currently support the
Nios architecture anyway. Fortunately, some of the
original components of the GNUPro Toolkit for Nios
by Cygnus are still currently available on Source-
forge through the CDK4NIOS project. At the very
least, its Nios target support for GNU binutils is
enough to get started with analyzing binaries.

Those familiar with Radare2 might recognize
that its plugin infrastructure is well-suited to adding
architectures already supported by binutils. Even
if you enjoy leafing through actual pages of objdump
output, consider the added value of Radare2’s visual
mode with colorized output, call graphs, integrated
hex editor, and instruction emulation.

Implementing support for a new target architec-
ture isn’t as difficult as it might sound. The exist-
ing in-tree nios2 arch support served as a conve-
nient reference and starting point for implementing
a nios arch plugin. After painstakingly modern-
izing the relevant code for contemporary compilers
from the vintage binutils release, it was a quick
process to write the required wrapper to hand off a
byte sequence for disassembly.

Although this article only covers disassembly,
complete target plugins implement an assembler,
disassembler, code analysis, and a representation of
each opcode using the Evaluable Strings Intermedi-
ate Language (ESIL) to enable emulation.

Support for uncommon architectures like Nios
tends to end up in the radare2-extras reposi-
tory,11 otherwise known as the source graveyard, but
Radare2 also includes a package manager which can
conveniently download and build the plugin from
source.

1 $ r2pm −i n io s
. . .

3 $ r2 −a n io s . / hel lo_world . out

As always, build Radare2 from Git master and
rebuild often to take advantage of the latest im-
provements. If you happen to stumble across an-
other rare or otherwise unusual architecture in the
course of your hardware adventures, please consider
taking a moment to implement your own plugin to
keep the architecture alive in all of our hearts and
minds.

I hope that you’ve enjoyed this friendly little
guide to Nios, and that you’ll keep it handy when
reverse engineering firmware from that platform.

11git clone https://github.com/radareorg/radare2-extras.git

28

25Altera Corporation News & Views May 1997

Altera News

Altera Target Applications

Altera Target Applications provide total solutions for
the application-specific needs of designers. Target
Applications use megafunctions from both the Altera
Megafunctions Partners Program (AMPP) and the
Altera MegaCore program to create integrated
solutions that deliver significant time-to-market
benefits. Target Applications provides technical
documentation to ensure a smooth transition from
design to implementation and focuses on markets such
as digital signal processing (DSP), peripheral
component interconnect (PCI), and wireless and
broadband communications.

DSP Imaging

Altera’s DSP imaging solutions provide the functional
blocks necessary for high-performance DSP-based
imaging systems. Combining megafunctions from the
AMPP and MegaCore programs, Altera provides
functional blocks for convolution, compression, and
filtering applications. See Table 1.

All DSP imaging solutions employ the latest, cutting-
edge technology. For example, compression support
involves discrete cosine transform and JPEG
megafunctions, which are ideally implemented in
FLEX 10K embedded array blocks. Filtering support
involves decimation and biorthogonal wavelet filters.

The new color space converter (RGB2YCrCb
and YCrCb2RGB) MegaCore functions, which are
available as MAX+PLUS II migration products, have
full precision outputs and are optimized for the
FLEX�10K and FLEX 8000 device architectures.

Target Applications CD-ROM & Selector Guide

For more information on Target Applications products,
contact Altera Literature Services for a copy of the
Target Applications CD-ROM and Target
Applications Selector Guide. The selector guide
provides you with a complete listing of megafunctions,
reference designs, and technical documentation. The
CD-ROM provides details about these applications,
and includes reference designs and a variety of
technical literature.

Table 1. DSP Imaging Functions

Function Source

Discrete cosine transform Integrated Silicon Systems
Image processing library Integrated Silicon Systems
JPEG decoder Integrated Silicon Systems
JPEG encoder Integrated Silicon Systems
Parameterized decimator FASTMAN
Biorthogonal wavelet filter FASTMAN
Color-space converters Altera MegaCore function
Video convolver Altera reference design

ACCESS PROGRAMTM

SCORE WITH THE ALTERA POWERPLAYSCORE WITH THE ALTERA POWERPLAYSCORE WITH THE ALTERA POWERPLAY

DAC ‘97
June 9-11, 1997

Anaheim, CA
Booth 1574

1 ;−− s t r l e n :
0 x000809fe 1778 save sp , 0 x17

3 0x00080a00 1033 mov l0 , i 0
0x00080a02 0132 mov g1 , l 0

5 0x00080a04 0098 pfx h i (0 x0)
0x00080a06 6138 and g1 , g3

7 0x00080a08 c17e skprz g1
/−< 0x00080a0a 1280 br 0x00080a30

9 | 0x00080a0c 0332 mov g3 , l 0
/−−> 0x00080a0e 02b0 ldp g2 , [l0 , 0 x0]

11 | | 0x00080a10 4130 mov g1 , g2
| | 0x00080a12 f 7 9 f pfx h i (0 x f ee0)

13 | | 0x00080a14 e437 movi g4 , 0 x1f
| | 0x00080a16 f 7 9 f pfx h i (0 x f ee0)

15 | | 0x00080a18 c46 f movhi g4 , 0 x1e
| | 0x00080a1a 8100 add g1 , g4

17 | | 0 x00080a1c 413 c andn g1 , g2
| | 0 x00080a1e 049 c pfx h i (0 x8080)

19 | | 0x00080a20 0234 movi g2 , 0 x0
| | 0x00080a22 049 c pfx h i (0 x8080)

21 | | 0x00080a24 026 c movhi g2 , 0 x0
| | 0x00080a26 4138 and g1 , g2

23 | | 0x00080a28 417 f skprnz g1
\−−< 0x00080a2a f187 br 0x00080a0e

25 | 0x00080a2c 9004 addi l0 , 0 x4
| 0x00080a2e 900 c sub i l0 , 0 x4

27 \−> 0x00080a30 04b0 ldp g4 , [l0 , 0 x0]
0x00080a32 044 e ext8d g4 , l 0

29 0x00080a34 447 f skprnz g4
/−< 0x00080a36 0980 br 0x00080a4a

31 | 0x00080a38 1832 mov i0 , l 0
| 0x00080a3a 3004 inc l 0

33 /−−> 0x00080a3c 01b0 ldp g1 , [l0 , 0 x0]
| | 0 x00080a3e 014 e ext8d g1 , l 0

35 | | 0x00080a40 c17e skprz g1
\−−< 0x00080a42 f c87 br 0x00080a3c

37 | 0x00080a44 3004 inc l 0
| 0x00080a46 300 c dec l 0

39 | 0x00080a48 1832 mov i0 , l 0
\−> 0x00080a4a 7808 sub i0 , g3

41 0x00080a4c d f 7 f r e t
0x00080a4e a07d r e s t o r e

Disassembly of strlen on Nios.

29

stat ic int d i sa s semble (RAsm ∗a , RAsmOp ∗op , const ut8 ∗buf , int l en) {
2 i f (l en < 2) {

return −1;
4 }

6 buf_global = &op−>buf_asm ;
memcpy(bytes , buf , 2) ;

8
struct di sas semble_in fo i n f o = {0} ;

10
i n f o . d i sas sembler_opt ions = "" ;

12 i n f o . mach = a−>b i t s == 16 ? MACH_NIOS16 : MACH_NIOS32;
i n f o . bu f f e r = bytes ;

14 i n f o . read_memory_func = &nios_buffer_read_memory ;
i n f o . symbol_at_address_func = &nios_symbol_at_address ;

16 i n f o . memory_error_func = &nios_memory_error ;
i n f o . print_address_func = &nios_print_address ;

18 i n f o . endian = ! a−>big_endian ;
i n f o . f p r i n t f_ func = &n i o s_ fp r i n t f ;

20 i n f o . stream = stdout ;

22 op−>s i z e = print_insn_nios ((bfd_vma) a−>pc , &i n f o) ;

24 i f (op−>s i z e == −1) {
r_strbuf_set(&op−>buf_asm , " (data) ") ;

26 }

28 return op−>s i z e ;
}

Radare2 plugin for disassembling Nios.

30

21:08 An Electromechanical Telephone Exchange
by Anonymous

Dear PML,

I’m sure you will enjoy reading this article and you
will remember the old times when rotary dial phones
were in common use. You will also remember the pi-
oneering phreaks who explored telephone exchange
equipment so they could make calls for free. One
could implement special switch that, when acti-
vated, put a phone in high impedance mode, allow-
ing the phone owner to accept incoming calls with-
out sending an off-hook signal. The buzzer current
would still rush in every four seconds, but the voice
circuit was also connected so that callers might talk
to each other, free-of-charge. In order to share the
knowledge, the phreaks started the first hacker mag-
azines as we know them today, 2600: The Hacker
Quarterly and Phrack.

Mechanical step-by-step dial telephone ex-
changes are now obsolete, replaced by electronic
switching solutions which have themselves been re-
placed by TCP/IP.

Many people have asked me how to build small
telephone exchanges with old mechanical parts, so
here I am to share some working solutions. It’s al-
ways fun to read about technology which appears to
be functional as far back as 1891.

For easy circuits with telephones skip to page 32.
For more complex design with two rotary stepping
switches skip to page 37. Reprinted on page 41, this
work was also described in Issue 3 of Paged.Out.

Before we begin, we must recognize the con-
tributions of Svoryen Rudolf Antolievich and his
book, Electronics Step-by-Step,12 illustrated by
S. Velitchkin and N. Frolov. This book first taught
me about early telephone exchanges and stepping
switches. Here’s how a stepping relay is depicted in
the book:

This mechanism can count pulses coming from a
phone and advances its moving contacts to the next
position. Most stepping switches are unable to step
backward; when reset is needed, they continue to
step in full circle until they get home.

A local telephone exchange office is described
in the book as a set of stepping relays. A des-
tination number is sent into the line as a series
of pulses. Each relay on its stage processes one
digit and then passes the remaining pulses to the
next stage. Pauses between each pulse series serve
as delimiters between digits. The last stage relay
performs the connection to the destination phone.
Easy, isn’t it?

I was wondering how many stepping relays are
actually needed to process each call, and how they
can be shared, to keep the number needed. It is
obvious that stepping relays require additional cir-
cuitry to distinguish between long and short pulses,
handle reset, avoid busy lines and apply buzzer cur-
rent to the target phone to make it ring.

One day I got some stepping switches, namely
two RR3 250 010 (one motion, 11-pole, 3-
plane) switches manufactured by VEF Valsts Elek-
trotehniskā Fabrika.

As well as a Tesla FN 935. Tesla was an
electronic components manufacturer in Czechoslo-
vakia, which made fine audio amplifiers and other
audio equipment. It also developed special hard-
ware for military use, including phone-line multi-
plexers, transmitters, and this 6-plane, 12-pole step-
ping switch.

12http://library.lol/main/8a7d6e726175e2679823293d58848f27 # Электроника шаг за шагом: Практическая
энциклопедия юного радиолюбителя.

31

Connecting Two Phones

A simple two-way phone line may be built like this:

Coils are actually part of a relay. A special tele-
phone relay with two coils and a single anchor can
be used, but for now, it’s okay to use two separate
24V relays. T coils pass direct current to power
the phones, but resist alternating voice current and
force it to go through another phone, rather than
back through the power supply.

Ringing the Phone

Here is a simplified schematic of an old landline
phone.

The phone does not pass direct current while on-
hook, but it does pass alternating ring current. The
ring capacitor value is typically 1µF @ 250V. Some
old phones have ring and voice capacitors made as a
single unit, like the one shown here, but they are two
separate capacitors anyway. So we need to apply al-

ternating current to the phone in order to make it
ring, as in this design where a relay coil is used to
decrease the ring voltage a little.

Another way to generate ring current is to use a
pulse pair of two relays, like this:

A phone handset shouldn’t be lifted during the
ring cycle, as the voice circuit on newer phones can
be damaged by the ring current. I blew up one
of my phones this way. Also, direct voltage must
be mixed with alternating voltage, it is required for
some phones to operate correctly.

A more sophisticated schematic is shown in Fig-
ure 8, with the marked region discussed extensively
here. A single relay with two coils A1 and A2 is
used to power the phone. One coil can be shorted
to make relay operate slower. This relay ignores ring
current, but will detect off-hook direct current and
disable ring. Busy relay RB is used to detect long
(on-hook) pulse from the phone and perform reset.

An additional coil of power transformer is used to
mix −60V with 50/60 Hz 48V ring voltage. 50 Hz
is a little fast for the phone, but still acceptable.
Normal ring speed would be 25 Hz or so.

The positive power pole may be connected to
ground, this will decrease corrosion on wires though
an effect called cathodic protection, especially when
an underground line is used. Unlike switching-mode
power supplies, a power transformer galvanically
separates the line from the mains network.

You might wonder why 48 VAC becomes 60 VDC

32

after the rectifier? That’s because AC voltage is
measured in RMS value. Peak voltage values can be
derived from RMS when needed.

A normal single-coil relay can be modified to ac-
commodate a second coil, simply by winding another
coil up on top of factory coil, like this.

Two-way Phone Line with Ring

In this design, relays A1 to A4 are separate 24V
relays without shared coils. The other five are 12V
logic relays. 48V DC can be drawn from four 12V
lead-acid batteries, or from some other source. 1µF
capacitors divide the voice line into two indepen-
dently controllable parts. The busy relay RB is
shared between two phones. When one phone goes
off-hook, a ring cycle will be triggered in the on-
hook phone. The ring length is set by the value of
the upper capacitor near the RB relay. This simple
design is recommended for home use, as it requires
little debugging effort.

Manual Switching

Almost all early manual telephone exchanges, both
large and small, have parts in common. For each
telephone there will be numbered socket on the
board accompanied by line indication lamps. PBX
operators would use connection kits to talk with cus-
tomers and perform connections to other phones or
trunks. Each connection kit has two wires with stan-

Figure 8: A more sophisticated phone schematic.

33

dard 3-pole TT jacks at the end. Each wire has a
corresponding tri-state switch for sending ring sig-
nals and for connecting an operator’s headset to the
phone.

Trunk lines are used to route call between ex-
changes. Customers were not allowed to talk to
other exchange operator via trunk lines, it’s the op-
erators who would have to talk to one another via
the trunk to setup calls.

Manual exchanges have poor scalability. One
improvement was to implement an exchange with
separate panels, A and B. The operator at panel A
would ask the customer about the destination num-
ber, while the operator at panel B would perform
the connection to the destination phone.

Automatic Step-by-Step Switching
I need to make a note about terminology. I have two
reference books on my mind: first is a Soviet ATS-47
reference book,13 and the second is AT&T’s training
course.14 There is no strict terminology in this arti-
cle, but I’m going to use the terms “forward seeking”
and “backward seeking” from ATS-47 to explain one
thing.

Each phone line usually has some fixed amount
of equipment at the exchange office, a so called “-
line kit.” For 10,000 phone lines there will be 10,000
line kits. Yes, sometimes two phones may be con-
nected to one phone line and share a line kit. (Only
one phone may be active, depending on polarity.)
The line kit will activate other equipment when a
customer begins the call. The line kit must be rel-
atively small, especially for a home-made telephone
exchange.

The Soviet ATS-47 setup uses forward seeking at
the call pre-setup stage. This means that each line
kit has a stepping switch which selects a free line
for next dialing stage. After the call, it must return
back to the home position to accept more incoming
calls. Up to ten group-seekers can be connected to
the outputs. This works faster than the backward
seeking method, but it requires one rotating one-
motion switch to be in each line kit, which can be
expensive.

13http://library.lol/main/bbe9fc9ddf1be20fc491e8e4b997da70
14http://library.lol/main/321ac6b297bd75792f318fed8da5928e

34

Backward seeking is more like manual switching.
The kit consists of two switches, with the first switch
(the line hunter) navigating to the phone that needs
to be served. The second switch accepts one digit
and connects to the destination phone.

Switch operation may be driven by pulses com-
ing from the phone, which is slow, or it may be free
switching, where the switch quickly steps itself until
it finds the right position.

Strowger Switches and Trunk Lines
It’s a good idea to use a Strowger switch with 100
outputs as an output switch. It will consume the two
final digits of the phone number to drive its arm up
and then around to the desired contact.

If we have more than 100 phones we’ll use group
seeking. A group seeker is a Strowger switch that
accepts one digit to drive the arm up, and then seeks
a free device from the next stage to continue dial-
ing. Up to ten devices may be connected to the
digit. If no free device is found, the arm will stop
at the “trunk busy” contact at the end of the row.
The group seeker must find the free line before more
digit pulses begin to arrive, so all but the very old-
est exchanges have a special mechanical feature to
increase the pause between digits.

The line hunter is a Strowger switch, too. It
connects one of the phones to the first stage group
seeker. A dial tone in the handset means that first
stage seeker is waiting for its first digit. A special

device is used to prevent multiple seekers from hunt-
ing the same phone. When all line hunters are busy,
there will be no dial tone heard. Hot line phones,
such as street phones and PBX trunks, may be con-
nected to the first stage directly without the pre-
setup stage, such phone will have one dedicated first
stage device.

Wires A and B are used for voice and pulses
transfer and for reset signaling between group seek-
ers. Wire C is used to mark the line as free or busy.
Most Strowger switches have three arrays of out-
puts and three contact arms, sometimes two fields
are sufficient.

35

Figure 9: First Timing Diagram

Figure 10: Second Timing Diagram

36

PoC Telephone Exchange Unit

I’m going to show you a more complicated de-
sign, one that I’ve built. It has just two rotating
switches, so only one pair of telephones may use the
connection kit, and other telephones must wait their
turn. Up to ten phones may be used total. There is
no dial tone circuit, as that would require an addi-
tional coil on the A1-A2 relay.

In real-world systems, wire C is more compli-
cated. One simplification was to use HIGH (12V)
logic level on wire C as a busy signal, to keep the
line kits small. Here every line kit contains one relay
and one diode. (An optional indication bulb may be
hooked to wire C.) This design can be joined with
a manual exchange desk, provided that each socket
will pull C high to prevent the line from automatic
switching.

ROH is an off-hook detection relay, it has 48V
coil. The A1, A2 relays have 24V coils. All others
are 12V logic relays with the other pole connected
to logic ground. Some of them have capacitors to
increase release time. Figure 9 is a timing diagram
that will help you understand the logic.

37

RHM and RSW are stepping relay magnets.
They draw current up to 1A, so protection diodes
are there to reduce sparks on relay contacts. Both
stepping relay and phones draw power from the
same power transformer, but there are two diode
bridges, one for voice circuit and one for the mag-
nets. Without that, the RSW relay would cause
brownouts on the −60V supply and the phone would
be unable to send clear pulses. The second part of
the circuit performs the line checking sequence. di-
agram for second part: This second timing diagram
is shown in Figure 10.

What are values of those capacitors?
Capacitors are used here to increase relay release
time. When a relay is powered, the capacitor
charges itself and accumulates a bit of energy. After
power removal, the capacitor will power the relay for
two seconds or so, and then discharge. The result-
ing delay time depends on the relay armature type,
capacitor value and other things.

A 1000µF capacitor with 12V relay coil will give
200 milliseconds delay or so. It’s suitable for the
RB, RTIM1, RTIM2, RCHECK relays. 100µF is
good for fast processes, like line hunters RH1 and
RH2. 3300µF will power the RRING relay, giving
600 milliseconds of ringing.

An alternative way to slow down a relay is to
short-circuit one of its coils or add a copper disc
near the coil. This increases the inductance of the
relay, and therefore also its release time.

How to protect relay contacts?

Inductive loads like relay coils, large electro-
magnets, and DC motors will generate inductive
peak voltage when disconnected. This inductive cur-
rent will generate sparks and degrade switching con-
tacts that control inductive circuit, so a protection
diode is needed.

ATS-47 uses RC filters instead. Spark current
can have high frequency components, and the fil-
ter will pass it around and decrease interference to
other equipment. It’s okay to use both diodes and
RC-filters, of course.

Audio!

I’ve made a small audio recording.15 Listening to
it, you can hear my telephone exchange unit in ac-
tion. Various phone rings and rotary dial sounds
follow starting from 0:37. The ring sound will dif-
fer depending on buzzer current frequency, I’ve tried
both fast (50Hz) and slow (using relays).

How can we trace a call?

On the ATS-47 all switches used in a call cannot
be released until the recipient phone goes back on
its hook. This can be used to track the originating
phone, even if the caller has gone back on the hook.

Having received a call, the recipient might dial
a special digit to signal an operator, who can then
be asked to track the circuit back to the originat-
ing phone. During this time, the caller is unable to
make another outbound call.

Wires A and B between switches are used to
transfer signals about answered phone and reset,
along the voice. These signals activate the success-
ful calls counter, which is used for billing. A first
stage seeker may swap the originating phone line
polarity when the other phone is answered. Manual
exchanges use this as an additional indication that
recipient is ready to talk. Street phones will grab
the coin when the line polarity is reversed.

A customer often forgets to place his handset
on-hook. There is a special circuit to detect such
phones, with a delay of one or two minutes.

15unzip pocorgtfo21.pdf phones3.mp3

38

Greetings for the neighbors!
I’m not alone in building relay-based devices. In
fact, there is whole Hackaday thread about this.16
There’s also Artyom Kashcanov aka Radiolok (Hi!)
and his BrainfuckPC.

There is Harry Porter and his HPRC ; Harry
made a very nice introductory video about relay
logic.17 And Michael whose demonstration setup
using five Strowger switches is well documented
at his homepage.18 Em Lazer-Walker uses small
PBX switchboard as a front-end for her videogame.
Frankfurt’s Museum of Communication also has a
large working demonstration setup.

16https://hackaday.io/project/11798-relay-based-projects
17http://web.cecs.pdx.edu/~harry/Relay/VideoTutorial/index.html
18https://www.seg.co.uk/telecomm/automat4.htm 39

40

Another coil of
power transformer

Hunter timing relays

Stepping Telephone Exchange
Lesson 1. Connect two phones:

Mains plug

Power transformer
48 volts AC output

2
2

0
0
μ

F 1
0

0
V

Fuse 1A

Rectifier diode bridge

2
2

0
0
μ

F 1
0

0
V

Relay coil - 24 volts

МБМ
100V 1μF

МБМ
100V 1μF

Non-polar capacitors
pass voice current

 Coils pass supply current to
phones and keep voice current
 away from power supply

Soviet TA-68 phone

mains
plug 48v

ta1 ta2

-60v

Rectifier diode bridge

-

+

TA1 TA2

Line relay

Supply filter
removes hum

2200μF
100V

10 ohm
3W

1μF 100V

1μF 100V

Line indication lamps

+12v supply
Fuse

r1

r2 r4

r3

Need to add one more always-on 12 volts
relay that will discharge power capacitors
at power down. Connect it after 12 volts fuse and
make it also disconnect 48 AC wire before the bridge

+12

Li
ne

 C
ur

re
nt

Time

Short low pulses
encode the digit

Long low pulse
causes line reset

Phone consumes little
current while on-hook

Lesson 2. Ring the phone:

mains
plug 48v TA1

Press here

24V coil
from relay

Lesson 3. Connect phone to Stepping Switch (easy way):

rrin

rout

Home position finder

rb relay distinguishes
long and short pulses

TA1

r1

r2

48v

voice supply with independent
rectifier and supply filter

-60 volts

voice
ground

rsw

TA5

+12

rb

rrin

Wire A

Wire B

rinv

rtim1

+12

rst

+12

+12

-60v

Dial number
on this phone

gnd60

This circuit does not detect
off-hook, so don't pick

headset during ring cycle

rtim1 relay sends ring
signal after digit is done

Diode pass self-induction
current and reduces
sparks on rst relay

Capacitors increase
relay release time pulses wire +12

Brushes
Moving
brushes

Wire A

Wire B

Wire C

Spring

Contacts

Ratchet

Magnet (rsv, rhm) Angle adjustment

Lesson 4. Off-hook line hunter, line probing, timing circuits:

roh

voice -60

voice gnd

Do-It-Yourself: +
-

+
-

Relay
name

Coil
voltage
(volts)

Desired
release

time (sec)

Capacitor
value (μF)

rb 12 0.3 1000
rtim1 12 0.3 1000
rrin 12 0.6 2200
roh 48 N/A -
rh1 12 0.08 100
rh2 12 0.08 100

rtim2 12 0.3 1000
rcheck 12 0.3 1000

Capacitor's values are
relay-type-dependent

rdi4

TA4

rdi5

TA5

rdi8

TA8

Diode prevents backflow

wire C
wire A
wire B

Phone busy lamp

r1

r2

voice
ground

rb

voice
-60

+12 +12

+12

pulses wire

rhm

rh2

rh1

+12

+12

-60

gnd60

rprobe

Line
probe

current

rsw

+12

rinv

rst

-60v

wire A

wire B

rh
o
ld

r4

r3

1μF 100V

1μF 100V

+12

rh
o
m

e

wire C

rt
im

1

+12
gnd60

rc
h
e
ck

rt
im

2

+12

rnostep
rcansel

rnoring

rhold

rhold

+12

hunter
lamp

output enable

cancel

+12

no ring

h
o
m

e

wire c

rcancel

rhold

rhm

line probing

Skip busy line

Two stepping switches
are located near and all
outputs are paralleled

rh
o
m

e

Here high level on wire C means
line is busy, however, in real-world
it must be low - busy, to prevent
errors when wire C fails

roh relay coil is 48 volts.
roh and r1 must not clobber and
be triggered together by one phone
current. roh current needs to be small

+12

voice gnd voice
-60

48v

voice
-60This is single relay

with two 24V coils
on one anchor

r3r4 relay becomes slower when
r4 coil is shorted to gnd. It ignores
ring current, but still detects off-hook

See also: International Journal of Proof of Concept or GTFO issue 0x21, long article about phones -> pagedout.institute <- issue #3 2020

41

21:09 An ELF Palindrome for AMD64
by Netspooky

The first Binary Golf Grand Prix was a challenge
issued on Twitter to create a small binary that ex-
ecuted the same forwards as it did backwards. In-
cluded were certain rules, such as ensuring execu-
tion past the halfway point in the binary, and that
scores would be based on the ratio of overall number
of bytes executed to total bytes in the file.

The binary I chose to target was a 64-bit ELF
binary, due to my familiarity with creating weird
ELFs. I began investigating strategies for creating a
palindromic binary in this format because there are
quite a few sensitive areas that must remain intact
for a binary to run at all.

Initial Efforts

I had already established a baseline of a barebones
golf’d 64-bit ELF, and my previous attempts to pro-
duce the smallest 64-bit ELF yielded a binary that
was 84 bytes in size. I chose this as my starting
point.

Since I used nasm to create ELF files, I began
by first flipping the entire source code backwards
after the end of my existing source code, and metic-
ulously placing bytes in the correct order. After I
finished, I used a Perl one-liner to flip the binary
backwards, then executed both binaries and com-
pared their hashes to validate my work.

The next stop was to create a payload that would
be both valid, and easy to work with in both direc-
tions. My first idea was to use alphanumeric shell-
code, as outlined in Phrack 57:15,19 to have a series
of single byte instructions that would also display
a palindrome in the hex dump output. The issue
with this approach is that alphanumeric shellcode is
based on 32-bit x86, which wouldn’t work to run on
64-bit Linux.

I also wanted my palindrome to be readable, and
since palindromes tend to rely on the ambiguity of
punctuation to work, my palindrome would have to
use words that could be read if presented as a single
string of alphanumeric characters. I decided to go
with the phrase “PULLUPIFIPULLUP,” because it was
readable. Testing this in a disassembler showed that
certain characters would not be valid machine code.

I tested all of the alphanumeric characters in a
disassembler and realized that even fewer charac-
ters are usable than in 32-bit mode. This is due
to prefix instructions taking the place of references
to smaller registers, and certain encodings changing.
These were the characters that were safest to use:

Op Instruction Char
50 push rax P
51 push rcx Q
52 push rdx R
53 push rbx S
54 push rsp T
55 push rbp U
56 push rsi V
57 push rdi W
58 pop rax X
59 pop rcx Y
5a pop rdx Z

19unzip pocorgtfo21.pdf phrack5715.txt

42

Luckily, there are vowel sounds that can be used
to find some words and write my own palindrome.
An online Scrabble word finder came in handy for
this. After searching for words to use, I ended up
with the phrase “PUPPY SPY, PSY P. PUP”.

The nice thing about these particular instruc-
tions is that they are push and pop instructions, so
you don’t have to worry too much about messing up
data that might be in these registers, and just have
to track where values might end up if you use them
at all.

Mirroring

The template 64-bit ELF source only executes seven
bytes to perform the exit syscall:

1 0 : b0 3c mov al , 0 x3c
2 : 48 31 f f xor rd i , r d i

3 5 : 0 f 05 s y s c a l l

What was particularly interesting was that when
reversed, the bytes are actual usable instructions.

1 0 : 05 0 f f f 31 48 add eax , 0 x4831 f f 0 f
5 : 3c b0 cmp al , 0 xb0

This was a very lucky discovery, and I started
thinking even more about interpreting instructions
backwards. One of the challenges in something like
this is that x86 has variable length instructions, and
using bigger registers with smaller values gives a lot
of null bytes to contend with. This means that care-
fully planning certain instructions of the basic oper-
ations I wanted to do was next on my list.

There is quite a lot of variance in both assem-
blers and disassemblers in generating and reading
code, so ensuring that the source is assembled prop-
erly is of utmost importance. I ended up only using
nasm and ndisasm to verify that instructions were
what I wanted them to be.

Now that I had some ideas, I started padding
out the remaining sections that might contain code
with nops, so that at the very least, I had some wig-
gle room when calculating things like jumps. Since
the code began at offset 0x4 in the header, padding
with five nops filled the rest of the space to offset
0xF.

Getting an idea of how to use jumps was the next
thing to sort out. I figured that jmp instructions
could be accounted for in one of two ways: either a
pairing of jmps that jump over each other, or a jmp
that is interpreted as something else backward.

I wrote a small script to generate all of the pos-
sible opcode combinations for short jumps and what
they disassemble to when interpreted backwards.
Even though it’s only two bytes, EB and the one byte
jmp distance, there are a lot of incompatible instruc-
tions, such as references to EBP and other registers
that aren’t easily usable in x64.

import sys
2 import subproces s

4 # python3 op i t e r . py opcode
Wil l i t e r through one by te in f r on t o f the

6 # opcode you put in there . I t ’ s h e l l a
bespoke , f e e l f r e e to change heh

8
exp = sys . argv [1]

10
for i in range (0 ,255) :

12 opp = format (i , ’ 02x ’)
i n f = ’ " ’+opp+’ ’+exp+’ " ’

14 print (opp+" "+exp+" | " , end=" ")
proce s s = subproces s . run (

16 [’ / usr / bin /rasm2 −a x86 −b 64 −d ’+i n f] ,
s h e l l=True , check=True ,

18 stdout=subproces s . PIPE ,
un ive r sa l_newl ine s=True)

20 output = proce s s . s tdout
i f ’ i n v a l i d ’ in output :

22 print ("−−")
else :

24 print (output , end="")

This is the output from the jmp bruteforce table
with invalid opcodes ignored:
00 eb add bl, ch 2c eb sub al, 0xeb
01 eb add ebx, ebp 30 eb xor bl, ch
02 eb add ch, bl 31 eb xor ebx, ebp
03 eb add ebp, ebx 32 eb xor ch, bl
04 eb add al, 0xeb 33 eb xor ebp, ebx
08 eb or bl, ch 34 eb xor al, 0xeb
09 eb or ebx, ebp 38 eb cmp bl, ch
0a eb or ch, bl 39 eb cmp ebx, ebp
0b eb or ebp, ebx 3a eb cmp ch, bl
0c eb or al, 0xeb 3b eb cmp ebp, ebx
10 eb adc bl, ch 3c eb cmp al, 0xeb
11 eb adc ebx, ebp 63 eb movsxd rbp, ebx
12 eb adc ch, bl 6a eb push 0xffffffffffffffeb
13 eb adc ebp, ebx 70 eb jo 0xffffffffffffffed
14 eb adc al, 0xeb 71 eb jno 0xffffffffffffffed
18 eb sbb bl, ch 72 eb jb 0xffffffffffffffed
19 eb sbb ebx, ebp 73 eb jae 0xffffffffffffffed
1a eb sbb ch, bl 74 eb je 0xffffffffffffffed
1b eb sbb ebp, ebx 75 eb jne 0xffffffffffffffed
1c eb sbb al, 0xeb 76 eb jbe 0xffffffffffffffed
20 eb and bl, ch 77 eb ja 0xffffffffffffffed
21 eb and ebx, ebp 78 eb js 0xffffffffffffffed
22 eb and ch, bl 79 eb jns 0xffffffffffffffed
23 eb and ebp, ebx 7a eb jp 0xffffffffffffffed
24 eb and al, 0xeb 7b eb jnp 0xffffffffffffffed
28 eb sub bl, ch 7c eb jl 0xffffffffffffffed
29 eb sub ebx, ebp 7d eb jge 0xffffffffffffffed
2a eb sub ch, bl 7e eb jle 0xffffffffffffffed
2b eb sub ebp, ebx 7f eb jg 0xffffffffffffffed

43

After generating all of these instructions, I real-
ized that the distance between the code at 0xF and
the corresponding code on the other half of the bi-
nary was too great for a short jump. I moved on
to the next phase, working out some sort of code to
jump to within the main binary. There was another
example of tiny code I had used in previous work,
a stream covering approach to assembly code opti-
mization called i2ao.20 This code was simple and
portable enough to reuse for this application. The
code simply printed out a string and exited.

Now, we have a palindrome that works as both
code and printable text, all of the possible short
jumps, and some basic code to print the string, it
was time to put it all together.

Putting it all together

Throughout this, you can refer to both the finished
assembly code, and the diagram featuring the full
labeled binary. If you are unfamiliar with the ELF
format, check out Ange Albertini’s Corkami ELF file
explanations on Github!

The primary concern with all of this was to make
sure that the registers we need are cleared prior to
making a syscall, lest we segfault. In this case, there
are two calls to make: write and exit.

The registers required for a write syscall are
RAX, RDX, RDI, and RSI. Since the first instructions
executed add values to RAX, an explicit mov rax, 1
is needed, rather than any clever tricks to populate
RAX. If we wanted to use something like xor rax,
rax; inc rax, it would add an extra byte. Some
other space saving measures are also used in the
write syscall code, which you can refer to in the
i2ao writeups or video.

The next step is to reference the string within
the code that is immediately after the write syscall.
There are a few ways of making references to the
current offset, but none of them made much sense
other than simply knowing where in the binary the
string is, and moving that value into the sil regis-
ter. This can be achieved by assembling your binary,
and opening in a debugger before executing, to get
the exact values needed.

After the write syscall code was sorted, it was
time to start mirroring the entire executable section.
Since the bounds of the headers have already been
established, you can safely do this without messing
up your binary. Jumps from the main code sec-

tion back into the reverse header will be determined
later.

The write syscall code doesn’t really have too
many instructions that you can safely execute back-
wards without entirely rewriting it. So instead of
that, another approach is to simply jump over what-
ever wasn’t executable. The alphanumeric machine
code was placed before the write code, so that it
could be used as a sled and have a known location.
Since this is executable and won’t interfere with the
flow of the program, a jmp can be placed between
that and the backwards code for the write syscall.

The size of the write code, along with the short
jmp, produces jmp 0x17, which turns into eb15 in
machine code. This unfortunately doesn’t translate
to anything usable backwards. Referring to the jmp
table, there is a usable instruction sbb bl, ch, that
can be achieved by padding with three nops to bring
the opcode to 18eb when backward, eb18 forward.
This would create a nice way to both jump over junk
code, and still maintain executability in the code.

All of this jmp encoding was done mainly to pre-
vent generating even more junk bytes to account
for. Another solution would be to just encode a
jmp instruction backwards, 02eb, after the jmp to
the write syscall label, which would do a small hop
over the jmp 0x17 that we can’t execute backwards.
This approach felt cleaner in the end.

Now all we have to do is just execute our string,
clear RAX, and jump back into the headers. This
operation just adds a small, five byte block that we
have to account for when we jump out of the headers
the first time and into the main code section.

A space saving trick used here was to completely
overwrite the p_align section in the ELF’s program
header, saving 16 bytes in total (eight on each side)
within the code section.

20unzip pocorgtfo21.pdf i2ao.zip

44

Final Optimizations

Due to the jump from the header to the main code
area, there was junk code from 0x4 to 0x10, where
the binary begins and ends execution. So, a final
step was tried to utilize all the space here.

Previous fuzzing of the various headers deter-
mined that there is writable space at both 0x3C and
0x44 in the program header. They must be exactly
the same or the binary will not execute. Each of
these spots has four bytes of space to work with,
which is perfect to do something simple like a short
jmp.

A short jmp from the top of the ELF header at
0x0E to 0x44, produces some bytes that are usable
backwards! This is eb34, which backwards, 34eb de-
codes to xor al, 0xeb. Since it’s only messing with
AL, the lowest byte of RAX, this operation doesn’t
matter because the value is explicitly assigned af-
terwards. Chef’s kiss!

This ensures that when we jump from the main
code section, we will be able to use all of the bytes at
the end of the binary before the exit syscall. Addi-
tionally, this increased the total number of executed
bytes by four, bringing the grand total to 90 bytes
executed out of 245 total.

The final code is shown on page 47.

Confirming Functionality
This was tested and built on Ubuntu 20.04 with ker-
nel 5.4.0-42-generic. Here is a small script you can
use to build and test the ASM file, and execution is
shown on page 46.
#! / bin /bash

2
nasm −f bin ns . bggp . asm −o ns . bggp

4 chmod +x ns . bggp
echo "Executing i n i t i a l b inary . . . "

6 . / ns . bggp
echo ""

8 xxd ns . bggp
echo ""

10 echo "Revers ing . . . "
p e r l −0777pe ’$_=rev e r s e $_ ’ ns . bggp > ns .R

12 chmod +x ns .R
echo "Executing binary in r e v e r s e . . . "

14 . / ns .R
echo ""

16 xxd ns .R
echo ""

18 echo "Comparing hashes . . . "
sha1sum ns . bggp

20 sha1sum ns .R

Final Thoughts
I might’ve shrunk the write syscall code down even
more to try and save 1 byte to produce a short jmp of
0xeb12->0x12eb (adc ch, bl). Since I was cod-
ing not just for size, but for percentage of bytes exe-
cuted as well, it made more sense just to leave things
as they were.

It will be exciting to do another challenge like
this next time around, and hopefully expand on the
competition as a whole. If you’d participate, or
have any questions / comments, you can email me
at u@n0.lol or talk to me on Twitter @netspooky.

A special thank you goes to everyone who com-
peted in the first Binary Golf Grand Prix, 0xdade,
ThugCrowd and Hermit. :}

45

$. / bu i ld . sh
2 Executing i n i t i a l b inary . . .

PUPPYSPYPSYPPUP
4 00000000: 7 f45 4 c46 050 f f f 3 1 483 c b090 9090 eb34 .ELF . . . 1H< 4

00000010: 0200 3e00 0100 0000 0400 0000 0100 0000 . . >
6 00000020: 1 c00 0000 0000 0000 0000 0000 0000 0000

00000030: 0100 0000 4000 3800 0100 0200 eb0b 0000 @ . 8
8 00000040: 0000 0000 eb0b 0000 0000 0000 3ceb c031 < . . 1

00000050: 4850 5550 5059 5350 5950 5359 5050 5550 HPUPPYSPYPSYPPUP
10 00000060: eb18 9090 9090 9005 0 f95 b640 20 e6 c148 @ . .H

00000070: c689 0 fb2 c789 0000 0001 b801 0000 0089
12 00000080: c7b2 0 f89 c648 c1e6 2040 b695 0 f05 9090 H . . @

00000090: 9090 9018 eb50 5550 5059 5350 5950 5359 PUPPYSPYPSY
14 000000 a0 : 5050 5550 4831 c0eb 3c00 0000 0000 000b PPUPH1 . . <

000000b0 : eb00 0000 0000 000b eb00 0200 0100 3800 8 .
16 000000 c0 : 4000 0000 0100 0000 0000 0000 0000 0000 @

000000d0 : 0000 0000 1c00 0000 0100 0000 0400 0000
18 000000 e0 : 0100 3e00 0234 eb90 9090 b03c 4831 f f 0 f . . > . . 4 <H1 . .

000000 f0 : 0546 4c45 7 f .FLE.
20

Revers ing . . .
22 Executing binary in r e v e r s e . . .

PUPPYSPYPSYPPUP
24 00000000: 7 f45 4 c46 050 f f f 3 1 483 c b090 9090 eb34 .ELF . . . 1H< 4

00000010: 0200 3e00 0100 0000 0400 0000 0100 0000 . . >
26 00000020: 1 c00 0000 0000 0000 0000 0000 0000 0000

00000030: 0100 0000 4000 3800 0100 0200 eb0b 0000 @ . 8
28 00000040: 0000 0000 eb0b 0000 0000 0000 3ceb c031 < . . 1

00000050: 4850 5550 5059 5350 5950 5359 5050 5550 HPUPPYSPYPSYPPUP
30 00000060: eb18 9090 9090 9005 0 f95 b640 20 e6 c148 @ . .H

00000070: c689 0 fb2 c789 0000 0001 b801 0000 0089
32 00000080: c7b2 0 f89 c648 c1e6 2040 b695 0 f05 9090 H . . @

00000090: 9090 9018 eb50 5550 5059 5350 5950 5359 PUPPYSPYPSY
34 000000 a0 : 5050 5550 4831 c0eb 3c00 0000 0000 000b PPUPH1 . . <

000000b0 : eb00 0000 0000 000b eb00 0200 0100 3800 8 .
36 000000 c0 : 4000 0000 0100 0000 0000 0000 0000 0000 @

000000d0 : 0000 0000 1c00 0000 0100 0000 0400 0000
38 000000 e0 : 0100 3e00 0234 eb90 9090 b03c 4831 f f 0 f . . > . . 4 <H1 . .

000000 f0 : 0546 4c45 7 f .FLE.
40

Comparing hashes . . .
42 c082d226c96b7251649c48526dd9766071fa5e59 ns . bggp

c082d226c96b7251649c48526dd9766071fa5e59 ns . bggp .R

Figure 11: Executing the palindrome backward and forward.

46

1 BITS 64
org 0x100000000 ; Where to load t h i s in to memory

3 ;−−−−−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−
; ELF Header s t r u c t | OFFS | ELFHDR | PHDR | ASSEMBLY OUTPUT

5 ;−−−−−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−
db 0x7F , "ELF" ; 0x00 | e_ident | | 7 f 45 4c 46

7 _start : ; | | |
add eax , 0 x 4831 f f 0 f ; 0x4 | | | 05 0 f f f 31 48

9 cmp al , 0 xb0 ; 0x9 | | | 3c b0
nop ; 0xB | | | 90

11 nop ; 0xC | | | 90
nop ; 0xD | | | 90

13 jmp hjmp ; 0xE | | | eb 34
;−−−−−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−

15 ; ELF Header s t r u c t c t . | OFFS | ELFHDR | PHDR | ASSEMBLY OUTPUT
;−−−−−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−

17 dw 2 ; 0x10 | e_type | | 02 00
dw 0x3e ; 0x12 | e_machine | | 3e 00

19 dd 1 ; 0x14 | e_version | | 01 00 00 00
dd _start − $$; 0x18 | e_entry | | 04 00 00 00

21 ;−−−−−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−
; Program Header Begin | OFFS | ELFHDR | PHDR | ASSEMBLY OUTPUT

23 ;−−−−−−−−−−−−−−−−−−−−−−+−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−
phdr : ; | | |

25 dd 1 ; 0x1C | . . . | p_type | 01 00 00 00
dd phdr − $$; 0x20 | e_phoff | p_f lags | 1c 00 00 00

27 dd 0 ; 0x24 | . . . | p_of f s e t | 00 00 00 00
dd 0 ; 0x28 | e_shof f | . . . | 00 00 00 00

29 dq $$; 0x2C | . . . | p_vaddr | 00 00 00 00
; 0x30 | e_f lags | . . . | 01 00 00 00

31 dw 0x40 ; 0x34 | e_shsize | p_addr | 40 00
dw 0x38 ; 0x36 | e_phents ize | . . . | 38 00

33 dw 1 ; 0x38 | e_phnum | . . . | 01 00
dw 2 ; 0x3A | e_shents i ze | . . . | 02 00

35 ; dq 2 ; 0x3C | e_shnum | p_ f i l e s z | 02 00 00 00 00 00 00 00
dw 0x0beb ; eb 0b ; Overwri tes e_shnum and p_ f i l e s z

37 dw 0
dd 0

39 hjmp :
; dq 2 ; 0x44 | | p_memsz | 02 00 00 00 00 00 00 00

41 jmp sec0 ; eb 0b ; Overwri tes p_memsz
dw 0

43 dd 0
; dq 2 ; 0x4C | | p_align | 02 00 00 00 00 00 00 00

45 ;−−− Outer bounds o f e x e cu t a b l e por t ion
cmp al , 0xeb ; 3c eb ; Overwri tes p_align

47 db 0xc0 ; c0
db 0x31 ; 31

49 db 0x48 ; 48
sec0 :

51 push rax ; 50
push rbp ; 55

53 push rax ; 50
push rax ; 50

55 pop rcx ; 59
push rbx ; 53

57 push rax ; 50
pop rcx ; 59

59 push rax ; 50
push rbx ; 53

61 pop rcx ; 59
push rax ; 50

63 push rax ; 50
push rbp ; 55

47

65 push rax ; 50
jmp sec1 ; eb 18

67 nop ; 90
nop ; 90

69 nop ; 90
nop ; 90

71 nop ; 90
add eax , 0 x40b6950f ; 05 0 f 95 b6 40 ; Third by te i s s t r o f f s e t

73 and dh ,ah ; 20 e6
ror DWORD [rax−0x3a] , 0 x89 ; c1 48 c6 89

75 dd 0 x89c7b20f ; 0 f b2 c7 89
add BYTE [rax] , al ; 00 00

77 add BYTE [rcx] , al ; 00 01
;−−− s p l i t − the f i r s t by t e i s shared with the mov rax ,1

79 sec1 :
mov rax , 1 ; b8 01 00 00 00

81 mov edi , eax ; 89 c7
mov dl , 15 ; b2 0 f

83 mov esi , eax ; 89 c6
shl r s i , 0x20 ; 48 c1 e6 20

85 mov s i l , 0x95 ; 40 b6 95
s y s c a l l ; 0 f 05

87 nop ; 90
nop ; 90

89 nop ; 90
nop ; 90

91 nop ; 90
sbb bl , ch ; 18 eb

93 sec2 :
push rax ; 50

95 push rbp ; 55
push rax ; 50

97 push rax ; 50
pop rcx ; 59

99 push rbx ; 53
push rax ; 50

101 pop rcx ; 59
push rax ; 50

103 push rbx ; 53
pop rcx ; 59

105 push rax ; 50
push rax ; 50

107 push rbp ; 55
push rax ; 50

109 xor rax , rax ; 48 31 c0
jmp r s t a r t ; eb 3c

111 ;−−− Header Mirror ; o ld o f f s e t |
dd 0

113 dw 0
dw 0xeb0b ; 0x44 | | p_memsz | 02 00 00 00 00 00 00 00

115 dd 0 ;
dw 0 ;

117 dw 0xeb0b ; 0x3C | e_shnum | p_ f i l e s z | 02 00 00 00 00 00 00 00
db 0 ;

119 db 2 ; 0x3A | e_shents i ze | . . . | 02 00
db 0 ;

121 db 1 ; 0x38 | e_phnum | . . . | 01 00
db 0 ;

123 db 0x38 ; 0x36 | e_phents ize | . . . | 38 00
db 0 ;

125 db 0x40 ; 0x34 | e_shsize | p_addr | 40 00
dw 0 ;

127 db 0 ;
db 1 ; 0x30 | e_f lags | . . . | 01 00 00 00

129 dd 0 ; 0x2C | . . . | p_vaddr | 00 00 00 00

48

dd 0 ; 0x28 | e_shof f | . . . | 00 00 00 00
131 dd 0 ; 0x24 | . . . | p_of f s e t | 00 00 00 00

dw 0 ;
133 db 0 ;

db 0x1c ; 0x20 | e_phoff | p_f lags | 1c 00 00 00
135 dw 0 ;

db 0 ;
137 db 1 ; 0x1C | . . . | p_type | 01 00 00 00

dw 0 ;
139 db 0 ;

db 4 ; 0x18 | e_entry | | 04 00 00 00
141 dw 0 ;

db 0 ;
143 db 1 ; 0x14 | e_version | | 01 00 00 00

db 0 ;
145 db 0x3e ; 0x12 | e_machine | | 3e 00

db 0 ;
147 db 2 ; 0x10 | e_type | | 02 00

r s t a r t :
149 xor al , 0xeb ; 34 EB ; Jmp in reve r s e

nop ; 90
151 nop ; 90

nop ; 90
153 mov al , 0x3c ; b0 3c

xor rd i , r d i ; 48 31 f f
155 s y s c a l l ; 0 f 05

db "F"
157 db "L"

db "E"
159 db 0x7F ; 0x00 | e_ident | | 7 f 45 4c 46

49

21:10 BootNoodle: A Palindromic Bootloader for BGGP
by Harvey Phillips

Recently @netspooky announced the first annual Bi-
nary Golf Grand Prix on Twitter. The objective was
to create a binary of any sort that is the same for-
wards as it is byte-reversed, but with an emphasis on
creating as small a binary as possible, hence golfing.

This was one of those challenges where I thought
that I had no chance of creating a qualifying submis-
sion, where it might be better to just wait for the
results and admire the work of others. However, it
wasn’t long until I found myself thinking about how
it would even be possible to create such a binary.
Clearly, executables that are just pure x86 instruc-
tions (like COM files) wouldn’t count; otherwise, I
could’ve just submitted 0x90 and been done!

I decided that if I was going to attempt some-
thing like this, I’d have to first settle on a file for-
mat. In the end, I think I took the easy option
and chose to create an x86 bootloader palindrome.
The main reasons for this were that bootloaders are
essentially formatless: the only requirement for a
valid bootloader is that bytes at offset 511 and 512
are 0x55 and 0xAA respectively. The rest can be just
raw x86 instructions.

That brings us to the second reason: technically
(as far as I am aware) the absolute minimum size of
an x86 bootloader is 512 bytes. This felt like a bit of
a double-edged sword, just enough space to do some-
thing interesting, but still fairly limited. Especially
since it has to read the same backward!

Workflow

I knew that the first thing I had to get right was gen-
erating a palindromic file, whether or not anything
really executed. The bootloader itself was going to
be written in NASM, so I could then just use dd to
snip off the first 256 bytes, reverse it with a bit of
Perl from StackOverflow and cat the two halves to-
gether. I stuck all this into a shell script and started
to get to work.

Once this is complete, we can run the bootloader
with qemu-system-x86_64 bootnoodle.bin.

1 nasm −f bin −o bootnoodle . bin bootnoodle . asm
dd i f=bootnoodle . bin o f=tmp . bin \

3 bs=1 count=256
rm bootnoodle . bin

5 p e r l −0777pe ’$_=rev e r s e $_ ’ \
tmp . bin >tmp2 . bin

7 cat tmp . bin tmp2 . bin >bootnoodle . bin
rm tmp∗

x86 Bootloaders

Creating an x86 bootloader is a surprising easy task.
After fighting with a few different ideas for what to
do, I settled on printing a nice bit of “BGGP” ASCII
art and a link to my blog, where this write-up first
appeared.21

You might wonder how on Earth you might fit
a printing function into just 256 bytes. It turns
out that a huge amount of functionality, from print-
ing characters to graphics primitives, are built into
the BIOS. In our specific case, we’ll be targeting
the SeaBIOS that ships with QEMU. We call these
built-in functions by selecting the byte we place into
the AH register before invoking a particular inter-
rupt.

For example, we can call the Teletype Output
routine to print a character by placing 0x0E into AH,
the ASCII character we want to print into AL and
calling interrupt 0x10. There are couple of extra op-
tions to this function, like a page number and fore-
ground colour, that we can put in to the BX register
as well. In general, this is the flow of a bootloader;
load registers, interrupt, load registers, interrupt,
etc. We can find an exhaustive list of all these dif-

21http://xcellerator.github.io
22http://www.ctyme.com/intr/int.htm

50

ferent routines and which registers are used at the
infinitely useful x86 Interrupt Table.22

The rough flow of execution of my bootloader is
as follows:

• Clear the screen with the “scroll up window”
routine (Int 10/AH=06h).

• Set the cursor to the position we want to start
printing from with the “set cursor position”
routine (Int 10/AH=02h).

• Load the memory address of our null-
terminated string into the SI register.

• Call the string printing routine.

• Halt

The reason we have to clear the screen is that
otherwise we’d have fragments of information about
the BIOS cluttering the screen up. In QEMU’s case,
you get the SeaBIOS copyright string stuck at the
top of the screen, so for the sake of a few extra bytes,
its nicer to clear that out. Also, one of the extra op-
tions we get with “scroll up window” is that we can
change the background/foreground colour by setting
BH. I opted for 0x03, which keeps the background
black but makes the foreground cyan.

The only thing left as far as the actual program-
ming goes is the printString function. The BIOS
provides us with only a character printing function,
so we have to handle the looping logic and checking
for a null byte ourselves. This is all pretty standard
stuff if you’ve done x86 assembly programming be-
fore.

p r i n tS t r i n g :
2 pusha

. l o op :
4 lodsb

test al , al
6 jz . end

ca l l printChar
8 ca l l delay

jmp . l o op
10 .end :

popa
12 ret

First, we push all the registers onto the stack
with pusha. Entering the loop, we use lodsb which
loads a single byte from the SI register into AL, and
increments SI. We check for a NULL byte with test
al, al, and if found, jump to .end where we restore
the saved registers with popa and return. If we don’t
have a NULL byte in AL, then we call the print-
Char and delay routines. These are less interesting
and very similar to the clearScreen and setCursor
routines: set some registers, interrupt.

The last thing worth mentioning is why we have
the call to delay, which uses the “wait” routine.23
The reason is simple: introducing a 20ms delay be-
tween printing each character results in a poor man’s
animation effect!

There is still one thing that we’re forgetting.
Earlier, I mentioned that a bootloader, while be-
ing exactly 512 bytes long, must finish with bytes
0x55 0xAA. Because we’re creating a palindrome,
this means that our binary must start with 0xAA
0x55. Execution starts at offset 0, so we cannot
avoid executing these two bytes as the first instruc-
tions.

aa ; s t o s b es : d i
2 55 ; push bp

The stosb instruction is similar to lodsb; it
stores whatever is in AL in DI, ignoring segment
registers as they aren’t really relevant to this dis-
cussion. We don’t care about this because, (1) we
aren’t using DI and (2) we’re about to load AL with
the address of our string, so whatever happens to
be loaded in AL beforehand is irrelevant to us. (It’s
probably just a null byte, but that might vary from
BIOS to BIOS.)

Clearly, push bp also doesn’t matter to us. In
theory, we should clean up the stack later by poping
bp, but seeing as we’re halting into infinite loop with
the jmp $ instruction after printing our string, it re-
ally doesn’t matter either.

So, thankfully we don’t need to worry about
these two extra instructions. Merely starting the
source file with db 0xaa, 0x55 before going straight
into the _start entrypoint is enough to get us out
of trouble.

23AH=86h, CX:DX = interval in microseconds.
24https://n0.lol/bggp

51

Palindrome Time

So far, we’ve only used up 0xf5 bytes of the 0x1ff
available to us. This means that when we run our
build script, we end up with a 512-byte binary that’s
reflected about the 256-byte boundary, with a patch
of 20 NULL bytes positioned neatly in the middle.
While we technically have a palindrome, Netspooky
is way ahead of us, as can be seen by the stipulation
in the rules on the contest page.24

An easy solution would be to just have
the binary end, and append the binary
backwards at the end of the original file.
Because of this, in order to qualify for
entry, your binary must at a minimum
execute > 50% of the bytes in your bi-
nary, and must execute past the halfway
mark in your binary as well.

So far, we just about meet the 50%+ byte execu-
tion mark thanks to the 0xAA 0x55 bytes at the very
beginning. Unfortunately, we don’t yet execute past
the halfway mark, so we’ve got to do some thinking.

We’ve still got to do something a little more in-
teresting than just producing a bootloader in under
256 bytes and flipping it back on itself. There’s not
a huge amount we can do about the data part of the
binary (which makes up about 63% of all the bytes)
unless the text itself is symmetric, which it isn’t.
Besides, the rule above specifically mentions that
execution has to pass the 50% mark. That leaves us
to look at what can be done with the code.

My idea was to purposefully reverse portions of
the code in the upper half, so that they are re-
reversed in the lower half. This means that I also
need to fix the call offsets manually because NASM
won’t be able to calculate them for me.

I used Ghidra as a disassembler, but you might
want to use objdump as a slimmer alternative.25
Ghidra makes it easy to compare the NASM source
with the disassembled bytes. Because my routines
are all quite short, I just wrote in the bytes next to
the functions that I wanted to reverse. These were
chosen alternately so the execution jumps around as
much as possible, and lives up to it’s noodly name.
For example, clearScreen looks like this.

c l e a rS c r e en :
2 pusha ; 60

mov ah , 0x06 ; b4 06
4 xor al , al ; 30 c0

mov bh , 0x03 ; b7 03
6 xor cx , cx ; 31 c9

mov dx , 0 x184f ; ba 4 f 18
8 int 0x10 ; cd 10

popa ; 61
10 ret ; c3

We could have worked this out without Ghidra
and just used a hex editor, but hey, Ghidra is faster
and takes out the guesswork. We can replace this
with the raw bytes, but in reverse order:

c l e a rS c r e en db 0xc3 , 0x61 , 0x10 , 0xcd , 0x18 ,
2 0x4f , 0xba , 0xc9 , 0x31 , 0x03 ,

0xb7 , 0xc0 , 0x30 , 0x06 , 0xb4 ,
4 0x60

But we also have to take a look at the _start en-
trypoint where we call clearScreen by name. This
clearly will no longer work once we comment out
clearScreen in favour of the reversed bytes above.
You can try running the build script but NASM will
exit out with a load of errors.

The solution here is that we need to replace call
clearScreen with a raw short call. As explained
on Felix Cloutier’s x86 instruction reference, a short
(or “near”) call is a call to a memory address rela-
tive to the next instruction, where a ret is expected
to be encountered eventually.26 This means that
we can replace the line call clearScreen with a
simple db 0xe8, 0x00, 0x00. This won’t work yet
because we haven’t specified an offset, but it will let
us assemble the binary and look at some bytes.

After building, we get a binary that we can dis-
assemble again. Even after picking “x86 Real Mode”
from the list of languages in Ghidra, we’re left with-
out very much. Clicking on the first byte 0xaa and
pressing D kicks off the disassembly.

After the two bogus instructions caused by the
reversed 0x55 0xaa signature, we immediately get
two calls. These are to clearScreen and set-
Cursor which appear at the top of the source file!
In particular, note that the first call is to 0x00
0x00; this is what we need to change.

25objdump -D -b binary -mi386 -M intel,addr16 bootnoodle.bin
26https://www.felixcloutier.com/x86/call

52

In order to know which offset to set this to,
we need the address of the instruction after this
call, which is the call to setCursor at 0x5, and
the address of the re-reversed clearScreen routine.
Scrolling through the disassembly, once we cross the
half-way point, Ghidra doesn’t know what it’s look-
ing at. Keep going, and eventually, towards the end,
you’ll find another bit of disassembled code. Check-
ing it carefully, you’ll see that it matches perfectly
with the disassembly of clearScreen above! The
address of this routine is 0x1e0. Subtracting 0x5
from this gives 0x1db, the relative offset that we
need to set our hand-made call instruction to!

Going back to the source file, we change db
0xe8, 0x00, 0x00 to db 0xe8, 0xdb, 0x01. (Re-
member that x86 is little-endian!) Rebuilding gives
us a working bootloader.

I repeated this trick for the printChar routine
using the exact same steps as for clearScreen:
reverse the bytes by hand, replace any calls to
printChar with e8 00 00, fire up Ghidra to cal-
culate the correct relative memory address, and fix
the call by hand again.

For fun I reversed the data in the binary, too.
This meant that I had to fix the line in _start that
loads the address of the data into SI. This was done
by reversing the data and rebuilding. (It builds fine
because the code is unaffected; running it will just
print the string backwards.) Then, using a hex ed-

itor, I looked for the start of the re-reversed string,
and found it at 0x10a.

The instruction for moving into SI is 0xbe fol-
lowed by a memory location or register, as described
back in the x86 Instruction Reference.27 However,
there is one caveat and it involves the very first line
of the source file. Here, I’ve put org 0x7c00, which
tells NASM that we are expecting our bootloader to
be loaded to memory address 0x7c00 before being
executed.

The reason for this seemingly arcane choice
of load address is that 1024 bytes after 0x7c00
is 0x8000, which is where the kernel is normally
loaded. The usual purpose of a bootloader is to sim-
ply load the kernel from a hard disk (or other storage
device) into memory address 0x8000 and then jmp
to it. Seeing as a bootloader has to be 512 bytes in
size, it makes sense to always load it in the memory
region immediately prior to where the kernel will be
copied to.

For a nicely commented example of loading the
kernel into memory and passing execution to it,
check out my ThugBoot project.28 If you’ve been
following this article, then you shouldn’t have any
issue reading the NASM source there. For a more in-
depth read, @0xax’s incredible book Linux Insides,
which goes into infinitely more detail.29

Anyway, all this means for us is that we have
to add 0x7c00 to the address within the file of the
re-reversed string we want to print, so we end up
with a final address of 0x7d0a, and our manual mov
instruction becomes db 0xbe, 0x0a, 0x7d.

And with that, the palindromic bootloader is
done! Source code is available by github, attached
to this PDF and on page 54.30

I’d like to thank the good folks at ThugCrowd
for being so encouraging and inspirational. It was
there that I first discovered my interest in exploring
x86 bootloaders that lead to the ThugBoot project.
I’d also like to thank Netspooky in particular for
starting this competition and I highly recommend
taking part next year!

27https://www.felixcloutier.com/x86/movsx:movsxd
28https://github.com/xcellerator/thugboot
29https://0xax.gitbooks.io/linux-insides/
30git clone https://github.com/xcellerator/bootnoodle || unzip pocorgtfo21.pdf

53

; BootNoodle
2 ; A Palindromic Boot loader f o r the

; Binary Golf Grand Prix
4 ; g i thub.com/ x c e l l e r a t o r / bootnood le

6 org 0x7C00
b i t s 16

8
db 0xaa , 0x55

10
_start :

12 db 0xe8 , 0xdb , 0x1 ; c a l l c l earScreen
ca l l se tCursor

14 db 0xbe , 0x0a , 0x7d ; mov s i , msg
ca l l p r i n tS t r i n g

16 jmp $

18 ; c l earScreen :
; pusha ; 60

20 ; mov ah , 0x06 ; b4 06
; xor al , a l ; 30 c0

22 ; mov bh , 0x03 ; b7 03
; xor cx , cx ; 31 c9

24 ; mov dx , 0x184F ; ba 4 f 18
; i n t 0x10 ; cd 10

26 ; popa ; 61
; r e t ; c3

28
c l e a rS c r e en db 0xc3 , 0x61 , 0x10 , 0xcd , 0x18 ,

30 0x4f , 0xba , 0xc9 , 0x31 , 0x03 ,
0xb7 , 0xc0 , 0x30 , 0x06 , 0xb4 ,

32 0x60

34 setCursor :
pusha

36 mov ah , 0x02
mov bh , 0x00

38 mov dh , 2
mov dl , 0

40 int 0x10
popa

42 ret

44 ; printChar :
; mov ah , 0x0e ; b4 0e

46 ; mov bh , 0x0 ; b7 00
; mov b l , 0x0 ; b3 00

48 ; i n t 0x10 ; cd 10
; r e t ; c3

50
printChar db 0xc3 , 0x10 , 0xcd , 0x00 , 0xb3 ,

52 0x00 , 0xb7 , 0x0e , 0xb4

54 p r i n t S t r i n g :
pusha

56 . l o op :
lodsb

58 test al , al
jz . end

60 ; c a l l printChar
db 0xe8 , 0x8b , 0x01 ; c a l l printChar

62 ca l l delay
jmp . l o op

64 .end :
popa

66 ret

68 de lay :
pusha

70 mov ah , 0x86
mov al , 0

72 mov cx , 0
mov dx , 20

74 int 0x15
popa

76 ret

78 msg db 0x0 , ’ o i . b u h t i g . r o t a r e l l e c x ’ , 0xa ,
0xd , 0xa , 0xd , ’ /_/____\/____\/_____/ ’ ,

80 0xa , 0xd , ’ /____ / /_/ / /_/ / /_/ / ’ ,
0xa , 0xd , ’ / /_/ /__ / /__ / / __ / ’ ,

82 0xa , 0xd , ’ \ __ /____ /____ /) __ / ’ ,
0xa , 0xd , ’________________ ____ ’

84
; MBR Signature

86 t imes 510−($−$$) db 0
db 0x55

88 db 0xaa

54

21:11 Windrose Fingerprinting of Code Architecture
by EVM

Often we come across a firmware from a device
that we don’t have in hand, and don’t know any-
thing about beyond pictures or sales glossies on a
vendor website. We’d like to be able to load this
firmware into a disassembler and analyze it anyway.

ELF firmware files will happily tell you and your
disasssembler the CPU architecture, but what do
we do when analyzing a flat binary firmware file?
We need a method to determine the architecture by
comparing the file to previous samples from known
architectures.

Each processor architecture has a unique byte
histogram fingerprint, which others have described
previously. This is because in machine code
some types of opcodes are used more frequently
than others (Register/memory move, comparison,
jump/branch/call are usually the most common.)
This gives each architecture a unique balance of
bytes reflecting the designer’s choice of representa-
tion of common and uncommon opcodes.

What I’m adding to the toolbox here is the con-
cept of visualizing byte histograms as a windrose
diagram. Byte histograms can be compared using a
chi-squared test, but windrose diagrams may allow
for a more-nuanced, visual comparison.

The following diagrams were generated from
samples, mostly Linux kernels and Busybox bina-
ries, and the occasional random large firmware file.
Linux kernels and Busybox binaries work well be-
cause they are very large and contain a mix of lots
of different kinds of code.

Here is a Python script that outputs a windrose
diagram for a sample that you can compare against
the fingerprints shown. This code bins the bytes in
groups of four for more readable diagrams, and ig-
nores bytes 0x00, 0x40, 0x80 and 0xC0 (to avoid
over-representing top address bytes). Note that for
best results you need to only map the text section
of a binary, and remove any padding. Normally in a
flat firmware binary the text section appears before
the data section, and depending upon where you
make the cut, your mileage may significantly vary
on very small binaries.

As an example, Figure 12 presents windrose dia-
grams from the .text section of two 32-bit MIPS bi-
naries. These are the first two MIPS binaries in the
ALLSTAR dataset31 whose .text section is greater
than 64KB, 7kaa from Debian’s 7kaa package, and
jmdlx from Debian’s aajm package. Notice their
largest three spikes (the 0x00, 0x20, and 0x8C bins)
match the 32-bit MIPS fingerprint well. The dou-
ble spike (0x20 and 0x24 bins) appears in all three
prints. jmdlx has a shorter spike at 0x00, and a
longer spike at 0x08, but we can still easily see that
its best match is 32-bit MIPS.

31https://allstar.jhuapl.edu

55

7kaa MIPS binary

0x80

0x400xC0

0x00

jmdlx MIPS binary

0x80

0x400xC0

0x00

Figure 12: Fingerprints of two sample MIPS executables.

#! /usr / bin /python
2 import sys

import s t r u c t
4

fname = sys . argv [1]
6

bytes =[]
8 e n t r i e s =[]

t o t a l=0
10

for i in xrange (0 ,256) :
12 bytes . append (0)

14 with open(fname , ’ rb ’) as f :
while True :

16 b=f . read (1)
i f b=="" :

18 break
bint = s t r u c t . unpack (’<B ’ ,b) [0]

20 bytes [b int]+=1

22 for i in xrange (0 , 256 ,4) :
entry=0

24 for j in xrange (0 , 4) :
i f (((i+j) % 0x40) != 0) :

26 entry+=int (bytes [i+j])
e n t r i e s . append (entry)

28 t o t a l+=entry

30 for i in xrange (0 ,0 x40) :
print "%f ,% f " % (100∗ e n t r i e s [i] / 1 . 0 /max(e n t r i e s) , i ∗360/1.0/0 x40)

56

x86 32−bit

0x80

0x400xC0

0x00

x86 64−bit

0x80

0x400xC0

0x00

ARM 32−bit

0x80

0x400xC0

0x00

ARM Thumb 2

0x80

0x400xC0

0x00

ARM 64−bit

0x80

0x400xC0

0x00

MIPS 32−bit

0x80

0x400xC0

0x00

MIPS 64−bit

0x80

0x400xC0

0x00

PowerPC 32−bit

0x80

0x400xC0

0x00

PowerPC 64−bit

0x80

0x400xC0

0x00

RISC−V 64−bit

0x80

0x400xC0

0x00

8051

0x80

0x400xC0

0x00

m68k

0x80

0x400xC0

0x00

57

68HC16

0x80

0x400xC0

0x00

ARC4

0x80

0x400xC0

0x00

Blackfin

0x80

0x400xC0

0x00

Coldfire

0x80

0x400xC0

0x00

DSP56800E

0x80

0x400xC0

0x00

PIC18

0x80

0x400xC0

0x00

PIC24

0x80

0x400xC0

0x00

SuperH 2

0x80

0x400xC0

0x00

SuperH 4

0x80

0x400xC0

0x00

AVR 32−bit

0x80

0x400xC0

0x00

msp430

0x80

0x400xC0

0x00

z/Architecture (S390x)

0x80

0x400xC0

0x00

58

21:12 NSA’s Backdoor of the PX1000-Cr
by Stefan Marsiske

I was supposed to be doing paid work, porting
some silly crypto protocol to browsers. This im-
plied getting dirty with JavaScript, the insanity of
fast changing and incompatible browser interfaces,
and other nasty beasts. Instead, I remembered an
exciting device from a Crypto Museum exhibition.
Behold the incredible PX 1000 Cr!

This diabolical pocket telex (an antique peer-to-
peer messaging thingy) from 1983 had a unique fea-
ture: it came with DES encryption and was mar-
keted toward small companies and journalists. Ac-
cording to some rumors, even the Dutch government
used some.

This freaked out the NSA, who sent an emissary
to buy up all the stock from the market and pres-
sured Philips to suspend sales of any such infernal
devices. In ’84, the NSA provided Philips with an
alternative encryption algorithm, which they were
happy to sell to the public. The astute reader, being
knowledgeable about the NSA’s backdooring efforts,
should immediately suspect that the new firmware
might be weird in some ways. I certainly suspected
a little mischief.

Exposition

Luckily, the fine people of the Crypto Museum have
not only dedicated a couple of pages to this device,
but they also published ROM dumps of both the
original DES-enabled device as well as the agency-
tainted device. They also published Ben Brücker’s
bachelor thesis,32 in which he reverse engineered
much of the DES variant of the device.

Although his thesis did not contain much source
code, it was enough of a head start that I could dive
directly into the encryption code.

My first steps were a mistake. I could not re-
sist the irony of using a tool from Fort Meade to
break their own backdoor, so I loaded the ROM into
Ghidra and started annotating memory addresses.
Unfortunately, Ghidra does not support this partic-
ular CPU. Luckily, IDA Pro has excellent support
for this chip.

The CPU in question is a Hitachi HD6303. It’s a
derivative of the Motorola 6800, which was a simple
but, for its time, powerful 8-bit processor. It only
has four 16 bit registers: a stack pointer, an instruc-
tion pointer, an index register to address memory,

32unzip pocorgtfo21.pdf brucker-thesis.pdf

Text Lite PX1000, Photo from the Crypto Museum

59

and an accumulator. The latter can be accessed
as a 16 bit register or as two 8-bit registers. The
instruction set is simple, but certainly capable of
doing great things. Turns out the same CPU was
also used in the venerable Psion II Personal Digital
Assistant. This means there are fans of this device
who document, for example, the instruction set.33

The fine people of the Crypto Museum also pub-
lished an undated photocopied and scanned version
of the CPU datasheet.34 It took me a few days to
progress from realizing that some pages are missing,
to realizing that only the even-numbered pages are
missing, to realizing that the even-numbered pages
start half-way into the document in decreasing or-
der. All hints that the pages have been scanned
while holding discordian principles high. Hail Eris,
indeed!

Having all this supporting information available
made it an easy effort to work my way from the bi-
nary dump to an equivalent algorithm written in C.
However, there were some weird things. For exam-
ple, the encryption function starts by decrementing
the pointer to the plaintext by one. Why? And
where does that preceding byte come from, and
will people be offended if I index a C char array
with −1? Answering these questions meant I had to
either reverse engineer other parts of the ROM that
were unrelated to the cryptographic algorithm—
which I am too lazy to do—or I had to find another
way. Turns out the Psion II fans also created an em-
ulator: SIM68xx35 by Felix Erckenbrecht and Arne
Riiber.

One of the most active contributors to this fine
piece of software is Mayer Gabor, a Hungarian
name. As I’ve lived and founded a hackerspace in
that fine country, it wasn’t hard to confirm that
this contributor is a regular in such circles. After
a friendly chat on IRC, he also became interested in
the ROM dumps, but—just like Ben Brücker—he fo-
cused on the DES version. I complained about the
plaintext array that is indexed by −1, and that it
would be easy to figure out with a proper emulator.

One day later, Gabor shared a branch of
SIM68xx that adds support for running the PX1000
firmware, given a few minor patches for compatibil-
ity.36

There it was, a working emulator with a display
and keyboard. It turned out it is possible to set
the text-width. The −1 character is indeed encod-
ing the text-width, which is limited by the size of
the display to 40. It also turned out that the plain-
text is also post-fixed with another character, 0x8d,
before encryption. Here, the most significant bit,
which is never set in ASCII, marks the end of the
string. Thus 0x8d encodes both a newline character
and the EOS.

With the working emulator I was able to verify
my C interpretation of the encryption algorithm. It
was finally time to start breaking the crypto!

Dramatis Personae

The algorithm itself can be shown in a simplified
block diagram, helpfully provided by the Crypto
Museum.

33https://www.jaapsch.net/psion/mcmnemal.htm
34unzip pocorgtfo21.pdf hd6303rp.pdf
35git clone https://github.com/dg1yfe/sim68xx || unzip pocorgtfo21.pdf sim68xx.zip
36unzip pocorgtfo21.pdf sim68xx-px1000.zip

git clone https://github.com/iddq/sim68xx.git; cd sim68xx; git checkout origin/px1000

60

The Mysterious Key
Remember, this device is a 7-bit ASCII input device.
How can someone enter an encryption key without
much hassle? The engineers came up with a nice
idea: Take an arbitrary 16 byte string, zero out the
top nibble of each byte, and only use the lower (and
slightly higher entropy) nibble, providing with a 64-
bit key, which is stronger than the measly 56 bit key
of DES.

Let’s introduce our other main characters. In the
schema, on the top left, the 16 byte block denoted L

is supposed to be a set of four linear feedback shift
registers. This is the bad guy, the end level boss.
He is elusive and changes like a chameleon.

To the right we have two blue blocks, VA and
VB , of four bytes each which contain some transfor-
mation of the encryption key. This is a supporting
character, mostly stays in the background, and has
little character development.

Right of VA we have the four byte C block, which
is a FIFO initially containing a transformation of
parts of the encryption key, but it later becomes a
cipher-feedback buffer containing the last four bytes
of ciphertext. Another supporting character, this
guy looks strange in the beginning, but later on be-
comes a familiar face we know and recognize.

The block denoted by P is really just a trans-
formation which replaces each 4-bit nybble with an-
other 4-bit nybble based on a lookup-table. This
young lady is the sister of F , but is mostly staying
predictable.

The big yellow block F in the middle is eight
non-linear transforms that converts 6 input bits into
one output bit, more on this later. This lady is an-
other trouble-maker; she’s the femme fatale of this
play, working with the evil guy, making things diffi-
cult.

And last the small block K is a transformation of
the keystream byte, that rotates the keystream byte
left by the number of byte being currently encrypted
modulo 8. Just another supporting character with-
out much depth.

Act I
It is very important to see how these blocks are
initialized—this is the part where the alarm bells
start getting louder. During initialization, one op-
eration comes up everywhere: the low nibble gets
complemented and set as the high nibble.

1 // Inve r t low nybb l e in to the high nybb l e .
uint8_t i nv e r t 2h i (uint8_t x) {

3 return ((~x) << 4) | x ;
}

In fact this is how 15 of the 16 bytes of the LFSR
are initialized: Each low nibble of the key is taken
and inflated into a byte. The last byte is set to 0xff.
As code:

for (i =0; i <15; i++) {
2 l f s r [i] = i nv e r t 2h i (key [i]) ;

}
4 l f s r [15]=0 x f f ;

Now, if you happen to somehow know the inter-
nal state of the LFSR and also know how to reverse
it, then it becomes trivial to check if any state has
the special structure of the initial state, from which
the key can be trivially recovered. I’m not sure if
that actually helps, but it’s ugly anyway.

Blocks VA , VB , and C are similarly initialized:

for (i =0; i <4; i++) {
2 V[i] = i nv e r t 2h i (key [i] ^ key [i +4]) ;

V[i +4] = i nv e r t 2h i (key [i +8] ^ key [i +12]) ;
4 C[i] = V[i] ^ V[i +4] ^ 0 xf0 ;

}

It’s not obvious at first, but if you expand V[i]
and V[i+4] when setting C[i] and do the math,
you will come to the conclusion that the values of C

can only be one of these sixteen legal values: 0x0f,
0x1e, 0x2d, 0x3c, 0x4b, 0x5a, 0x69, 0x78, 0x87,
0x96, 0xa5, 0xb4, 0xc3, 0xd2, 0xe1, or 0xf0.

My alarm bells are kinda deafening by now, how
are yours?

61

After the initialization, the stream cipher is
ready to be used. For each key-stream byte the
LFSR is mutated, then combined with the V and
C blocks, fed into the F function, and then XOR’d
into the plaintext. Let’s have a look first at the mu-
tation of the LFSR block:

1 for (round=0x1f ; round>=0; round−−) {
acc = 0 ;

3 // FAC7 in the code t h i s loop i s unro l l e d
for (i =0; i <16; i++) {

5 acc ^= l f s r [i] lookupTab [(round+i) %16];
} // FB43

7
// FB45 . .FB4A

9 acc = ((acc >> 1) ^ acc) & 0x55 ;

11 // tmp i s twice the sequence 15 . . 0
tmp=(round ^ 0 x f f) & 0 xf ;

13 l f s r [tmp] = ((l f s r [tmp]<<1)&0xAA) | acc ;
} // FB63

Doesn’t really look like a traditional LFSR to
me, or even a set of them. But if the Crypto Mu-
seum people say so, I’m going with their insights.
Nota bene: Those 16-bit hex numbers in the com-
ments mark the addresses for where in the ROM this
code can be found.

Normally an LFSR emits a bit after each ad-
vancement. In this code it is not obvious how this is
done. The following snippet shows how four bytes
are extracted from the LFSR after it has been mu-
tated:

for (i =0; i <4; i++) {
2 tmp = l f s r [i +7] ; // FB68 . .FB6C

4 // 2x ro t a t e l e f t FB6E . . FB72
tmp = (tmp << 2) | (tmp >> 6) ;

6
// FB74 . . FB7A

8 l f s r_out [i] = tmp ^ l f s r [i] ;
}

If you squint you might imagine that there are
four LFSRs but, as you will see, this doesn’t matter
much for our final attack. This concludes the left
side of the schema before being fed into the non-
linear function F .

On the right side of the schema you can see how
VA and the ciphertext FIFO are being XOR’d and
mapped through P . It looks like this in code.

1 for (i =0; i <4; i++) {
tmp = V[i] ^ Ciphe r t ex tF i f o [i] ;

3 acc = map4to4bit [i] [tmp >> 4] << 4 ;
acc |= map4to4bit [i] [tmp & 0 xf] ;

5 pbuf [i] = acc ^ V[i +4] ;
}

Looks straightforward, but if we unpack this in
the context of encrypting the very first character
(which is probably “(”, but this is irrelevant here),
then we can unpack:

tmp = V[0] ^ Ciphe r t ex tF i f o [0]

where

1 Ciphe r t ex tF i f o [0] = V[0] ^ V[4] ^ 0 xf0

which drops out V[0], and thus:

1 tmp == V[4] ^ 0 xf0

and we know that all values of V are values where
the high nibble is just the inversion of the low nib-
ble, and if we XOR that with 0xf0, we conclude that
tmp can only be one of these 16 values: 0x00, 0x11,
0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99,
0xaa, 0xbb, 0xcc, 0xdd, 0xee, or 0xff.

Strange, huh? This loop runs four times, with
similar results for each output byte. Later, when
the Ciphertext FIFO is filled with real ciphertext,
this doesn’t apply anymore, but then the contents of
this buffer are known, since it’s the ciphertext. The
mapping itself of four bits to four bits was relatively
uninteresting . . . or at least I couldn’t immediately
see anything wrong with it. And also XORing that
with VB was also much less exciting.

Now that we have the inputs to the F function,
we can analyze what happens there. The code is a
bit dense, we’ll unpack it later:

1 for (i =8, acc=0; i >0; i −−) {
// FBB9

3 for (j =1,tmp=0; j <4; j++) {
tmp = (tmp << 1) | (l f s r_out [j] >> 7) ;

5 l f s r_out [j]<<=1;
tmp = (tmp << 1) | (pbuf [j] >> 7) ;

7 pbuf [j]<<=1;
}

9 tmp=lookupTab6To1bit [tmp] ;

11 acc=(acc<<1) + ((tmp>>(i −1)) & 1) ;
} // 0 x fbd9

62

The outer loop takes care that all eight bits of
each input of the six input bytes get used in F

and that the output of F is being assembled back
into one byte. The inner loop interleaves the 6 in-
put bits from lfsr[1], pbuf[1], lfsr[2], pbuf[2],
lfsr[3] and finally pbuf[3]. The lookup table pro-
duces one bit, which in the last line is put into the
correct bit-position of the accumulator. It’s a pretty
straightforward bit-sliced 6-byte-to-1-byte mapping.
The lookup table is neat, it’s 64 bytes, which is in-
dexed by the six-bit interleaved value, and from the
resulting byte the ith bit is extracted. Very com-
pact, neat.

The next steps are unspectacular, keeping in
mind that curChar starts with −1:

acc ^= pbuf [0] ^ l f s r_out [0] ;
2

// FBDF
4 tmp = (curChar + 1) & 7 ;

// ro t a t e l e f t by tmp
6 acc = (acc << tmp) | (acc >> (8−tmp)) ;

8 c i ph e r t ex t [curChar]= p l a i n t e x t [curChar]^ acc ;

For decryption, note that only this last line needs to
swapped be around.

One last step is needed before we can loop back
to mutating the LFSR, and that is advancing the ci-
phertext FIFO, now that there is a ciphertext byte.
Again, this is pretty straightforward, and after four
ciphertext bytes, the peculiar structure noted above
of the initial four bytes in this FIFO is lost:

// FC05
2 Ciphe r t ex tF i f o [4] = c i phe r t e x t [curChar] ;

for (i =0; i <4; i++) {
4 // ro t a t e l e f t

Cipher t ex tF i f o [i] =
6 (C ipher t ex tF i f o [i +1] << 1) |

(C iphe r t ex tF i f o [i +1] >> 7) ;
8 } // FC15

A small optimization is that the array holding
the FIFO is actually five bytes, and the newest ci-
phertext byte is always added to the fifth position,
which enables this compact loop updating the four
effective items in this FIFO.

If there are more plaintext bytes to encrypt, then
the algorithm loops back to mutating the LFSR.
Otherwise, everything is done

ACT II: Climax

This all looks a bit fishy, but how does one actually
break this scheme? Well for a long time I focused on
somehow figuring out the LFSR and how it can be
decomposed in four LFSRs of 32, 31, 29, and 27 bit
lengths as indicated on the Crypto Museum schema.
Many hours were wasted into slicing and dicing the
LFSR, mutating it, slicing and dicing it again, writ-
ing bit level differs, staring at colored bits, throw-
ing Berlekamp-Massey at it, trying to write my own
32/31/29/27 bit LFSRs and seeing if I could some-
how slice-’n-dice a state from the big one into the
ones I implemented. It was a nightmare of dead
ends, failure, and despair. Boredom started to set
in, and I started to ask friends if maybe they could
figure out how this works. They said it’s easy, but
they do not have time for this now. Anyway, maybe
this is an LFSR or even four, but I was unable to
figure out how.

I also started to consult the bible of cryptanaly-
sis, Antoine Joux’s masterpiece: Algorithmic Crypt-
analysis. It has a chapter, Attacks on Stream Ci-
phers, about LFSRs hidden behind a non-linear
function F . Antoine calls these filtered generators:

The filtered generator tries to hide the
linearity of a core LFSR by using a com-
plicated non-linear output function on a
few bits. At each step, the output func-
tion takes as input t bits from the in-
ner state of the LFSR. These bits are
usually neither consecutive, nor evenly
spaced within the register.

Bingo! Exactly what I’ve been staring at for days
now: the big guy and the femme fatale. The chap-
ter mostly covers correlation attacks, but at the end
there is also mention of algebraic attacks, the latter
giving me a warm fuzzy feeling. Algebra is elemen-
tary school stuff, I can do that!

Antoine goes on:

The function f is usually described ei-
ther as a table of values or as a polyno-
mial. Note that, using the techniques of
Section 9.2, f can always be expressed
as a multivariate polynomial over F2.

The technique in section 9.2 is is called the
Möbius transform which is used to calculate the Al-
gebraic Normal Form (ANF) of a boolean function.
I tried to implement the Möbius transform as given

63

in algorithm 9.6 in Joux’ masterpiece, but the re-
sults were not providing the expected outputs as
the lookup table. After reading a bunch of papers
on algebraic normal forms, I learned that different
disciplines call this different names, such as

• ANF Transform (ANFT),

• Fast Möbius Transform,

• Zhegalkin Transform, and

• Positive Polarity Reed–Muller Transform.

Valentin Bakoev’s excellent paper Fast Bit-
wise Implementation of the Algebraic Normal Form
Transform37 went into much more detail than Joux
on this topic, and an implementation of Bakoev’s
Algorithm 1 gave the expected results.

void moebius (uint8_t ∗ f , int n) {
2 int b l o c k s i z e =1;

for (int s tep =1; step<=n ; s tep++) {
4 int source =0;

while (source < (1<<n)) {
6 int t a r g e t = source + b l o c k s i z e ;

for (int i =0; i<b l o c k s i z e ; i++) {
8 f [t a r g e t+i]^= f [source+i] ;

}
10 source+=2∗b l o c k s i z e ;

}
12 b l o c k s i z e ∗=2;

}
14 }

We can split up the original F lookup-table bit-
by-bit.
stat ic uint8_t lookupTab6To1bit [64]={ // at 0xFE9B

2 0x96 , 0x4b , 0x65 , 0x3a , 0xac , 0x6c , 0x53 , 0x74 ,
0x78 , 0xa5 , 0x47 , 0xb2 , 0x4d , 0xa6 , 0x59 , 0x5a ,

4 0x8d , 0x56 , 0x2b , 0xc3 , 0x71 , 0xd2 , 0x66 , 0x3c ,
0x1d , 0xc9 , 0x93 , 0x2e , 0xa9 , 0x72 , 0x17 , 0xb1 ,

6 0xb4 , 0xe4 , 0xa3 , 0x4e , 0x27 , 0x5c , 0x8b , 0xc5 ,
0xe8 , 0x95 , 0xe1 , 0xd1 , 0x87 , 0xb8 , 0x1e , 0xca ,

8 0x1b , 0x63 , 0xd8 , 0x2d , 0xd4 , 0x9a , 0x99 , 0x36 ,
0x8e , 0xc6 , 0x69 , 0xe2 , 0x39 , 0x35 , 0x6a , 0x9c

10 } ;

Feeding it into the moebius function, we get this.

f 0= 01100010011010101011100011101011
2 00101011011110001101001000101100

g0= 01100101000011111011011101001001
4 01011011010010010011000110001110

6 f1= 11010010001101010111011000110110
00111010000010111100010111010010

8 g1= 10111000100111101100100111001011
10010110101111010100100111111110

10
f2= 10101101011011001100001110010010

12 11011101010010100001100111000101
g2= 11000111101010110110111111101110

14 01110111010000101100000010110110

16 f3= 01011100100010111010000111011000
00010110100001111011011010101011

18 g3= 01001110101111001000001111000101
01011001010100110100111100110000

20
f4= 10010011100100110100110110100111

22 10000100010101101010111100001101
g4= 11101100000000001011001010010101

24 00010110101110001000110011100010

26 f5= 00111101110101000010101100011101
11101000101001000101000100111110

28 g5= 00101001100101110001011110110011
10111111110010001100010010000010

30
f6= 01100111101010110101111001000100

32 01010101101100010110100001110010
g6= 01100001101000000010110010111101

34 00100001001111000000010100111100

36 f7= 10001000010101001001010001101001
11100011111111010010111011010001

38 g7= 11110000101100010001101100110010
01101011101010011011101010101010

The output of the Möbius transform is just an-
other lookup table, a boolean function with exactly
the same amount of input parameters as the the
original non-linear function. Using this it is possible
to create the ANF of the non-linear function:
f(x0, . . . , xn−1) =

⊕
(a0,...,an−1)∈Fn

2

g(a0, . . . , an−1)
∏

i x
ai
i

In this equation the g(. . .) coefficient is the out-
put of the Möbius transform, and since these bits
are either 0 or 1, we can eliminate around half of all
terms.

By inputting the fx/gx pairs we obtained from
the moebius function into the following Python
beauty, we can construct the ANF.

1 ’ ^ ’ . j o i n (
’ (’+c+’) ’

3 for c in [
’& ’ . j o i n (

5 f "x [{ i }] "
for i , x in enumerate (reversed (f ’ {a :06b} ’))

7 i f x == "1")
for a in range (64) i f moebius [a]== ’ 1 ’]

9 i f c)

This can then be evaluated for all values between
0 and 63 and should produce the same result as the
corresponding fx. If the result is the exact inverse
of fx, then the ANF has an odd number of constant
1 terms, and the ANF must be fixed by prefixing it
with 1 ^.

37unzip pocorgtfo21.pdf bakoev-afn.pdf

64

For illustration, behold the ANF of f4:

1 1 ^ (x0) ^ (x1) ^ (x2) ^ (x0&x2) ^ (x4)
^ (x1&x4) ^ (x0&x1&x4) ^ (x1&x2&x4)

3 ^ (x3&x4) ^ (x0&x1&x3&x4) ^ (x0&x2&x3&x4)
^ (x0&x1&x2&x3&x4) ^ (x0&x1&x5)

5 ^ (x0&x2&x5) ^ (x1&x2&x5) ^ (x3&x5)
^ (x1&x3&x5) ^ (x0&x1&x3&x5) ^ (x2&x3&x5)

7 ^ (x4&x5) ^ (x2&x4&x5) ^ (x0&x2&x4&x5)
^ (x3&x4&x5) ^ (x0&x3&x4&x5)

9 ^ (x1&x3&x4&x5) ^ (x1&x2&x3&x4&x5)

Woohooo, look ma, I converted a lookup-table
into algebra! I mean, I defeated the evil temptress,
the femme fatale! After a few days of pondering,
I also converted the lookup table marked P in the
schema to its ANFs. Erm, I mean, I defeated the
younger sister. The path to this victory was not im-
mediately obvious, since P is a 4-bit to 4-bit table,
and the Möbius transform only applies to boolean
functions with one output bit.

The trick was to deconstruct the 4-to-4 mapping
into four times 4-to-1 mappings, one for each output
bit, while of course the input bits will be always the
same for the same nibble. Hah! Take that, NSA!
Most of your backdoor is now reduced to a bunch of
polynomials!

ACT III: The Fall

But what do we do with that big guy, the end level
boss, that pesky LFSR block? I kinda gave up on
finding the polynomial for the LFSR, but maybe
there is a different way to convert this into algebra?
I’ve always been a big fan of Angr and symbolic ex-
ecution. Maybe if I let Angr consume the loop that
mutates the LFSR, I can get some symbolic con-
straints. Symbolic constraints being nothing other
than equations. The trick was to modify the the
loop to not run in place, but to output another
16 byte LFSR. Angr can then tell me, symbolically,
how the output LFSR depends on the input LFSR.
The (much truncated) output is promising.

1 <BV128 state_19_128 [8 7 : 8 7] ^ state_19_128 [6 3 : 6 3] ^
state_19_128 [5 5 : 5 5] ^ state_19_128 [3 1 : 3 1] ^

3 state_19_128 [2 3 : 2 3] ^ state_19_128 [7 : 7] ^
state_19_128 [1 0 2 : 1 0 2] ^ state_19_128 [8 6 : 8 6] ^

5 state_19_128 [7 0 : 7 0] ^ state_19_128 [6 2 : 6 2] ^
state_19_128 [5 4 : 5 4] ^ state_19_128 [4 6 : 4 6] ^

7 state_19_128 [3 0 : 3 0] ^ state_19_128 [1 4 : 1 4] . .

Notice the trailing .. in the last line. This sig-
nals concatenation of bit vectors. In total, 128 bits
are being concatenated! The big guy finally reveals
some weakness! Angr gave me the bits I needed to

XOR together for each bit in the next state. Af-
ter running some sed magic on this output, I had
128 lists, with only the bit positions contributing to
the next state of this bit.38 Wow, this really looks
like algebra, but first lets analyze this list of lists a
bit more.

I was very interested how these bits are related.
I wrote a recursive function, taking one bit and vis-
iting recursively all bits that this bit depends on.
My goal was to figure out if there is loops or islands
in this graph. This was my recursive function:

1 def walk (bit , c) :
c . append (b i t)

3 for b in b i t s [b i t] :
i f b in c : continue

5 c=walk (b , c)
return c

I ran it for all values from 0 to 127, discarding
any duplicate results. Here are the bit indices for
which I first saw a result, its length, and the result
values themselves.

0 32 (0 , 1 , 8 , 9 , 16 , 17 , 24 , 25 , 32 , 33 , 40 , 41 , 48 ,
2 49 , 56 , 57 , 64 , 65 , 72 , 73 , 80 , 81 , 88 , 89 , 96 ,

97 , 104 , 105 , 112 , 113 , 120 , 121)
4 2 31 (2 , 3 , 10 , 11 , 18 , 19 , 26 , 27 , 34 , 35 , 42 , 43 ,

50 , 51 , 58 , 59 , 66 , 67 , 74 , 75 , 82 , 83 , 90 , 91 ,
6 98 , 99 , 106 , 107 , 114 , 115 , 122)

4 29 (4 , 5 , 12 , 13 , 20 , 21 , 28 , 29 , 36 , 37 , 44 , 45 ,
8 52 , 53 , 60 , 61 , 68 , 69 , 76 , 77 , 84 , 85 , 92 , 93 ,

100 , 101 , 108 , 116 , 124)
10 6 27 (6 , 7 , 14 , 15 , 22 , 23 , 30 , 31 , 38 , 39 , 46 , 47 ,

54 , 55 , 62 , 63 , 70 , 71 , 78 , 79 , 86 , 87 , 94 ,
12 102 , 110 , 118 , 126)

95 28 (6 , 7 , 14 , 15 , 22 , 23 , 30 , 31 , 38 , 39 , 46 , 47 ,
14 54 , 55 , 62 , 63 , 70 , 71 , 78 , 79 , 86 , 87 , 94 ,

95 , 102 , 110 , 118 , 126)
16 103 28 (6 , 7 , 14 , 15 , 22 , 23 , 30 , 31 , 38 , 39 , 46 , 47 ,

54 , 55 , 62 , 63 , 70 , 71 , 78 , 79 , 86 , 87 , 94 ,
18 102 , 103 , 110 , 118 , 126)

109 30 (4 , 5 , 12 , 13 , 20 , 21 , 28 , 29 , 36 , 37 , 44 , 45 ,
20 52 , 53 , 60 , 61 , 68 , 69 , 76 , 77 , 84 , 85 , 92 , 93 ,

100 , 101 , 108 , 109 , 116 , 124)
22 111 28 (6 , 7 , 14 , 15 , 22 , 23 , 30 , 31 , 38 , 39 , 46 , 47 ,

54 , 55 , 62 , 63 , 70 , 71 , 78 , 79 , 86 , 87 , 94 ,
24 102 , 110 , 111 , 118 , 126)

117 30 (4 , 5 , 12 , 13 , 20 , 21 , 28 , 29 , 36 , 37 , 44 , 45 ,
26 52 , 53 , 60 , 61 , 68 , 69 , 76 , 77 , 84 , 85 , 92 , 93 ,

100 , 101 , 108 , 116 , 117 , 124)
28 119 28 (6 , 7 , 14 , 15 , 22 , 23 , 30 , 31 , 38 , 39 , 46 , 47 ,

54 , 55 , 62 , 63 , 70 , 71 , 78 , 79 , 86 , 87 , 94 ,
30 102 , 110 , 118 , 119 , 126)

123 32 (2 , 3 , 10 , 11 , 18 , 19 , 26 , 27 , 34 , 35 , 42 , 43 ,
32 50 , 51 , 58 , 59 , 66 , 67 , 74 , 75 , 82 , 83 , 90 , 91 ,

98 , 99 , 106 , 107 , 114 , 115 , 122 , 123)
34 125 30 (4 , 5 , 12 , 13 , 20 , 21 , 28 , 29 , 36 , 37 , 44 , 45 ,

52 , 53 , 60 , 61 , 68 , 69 , 76 , 77 , 84 , 85 , 92 , 93 ,
36 100 , 101 , 108 , 116 , 124 , 125)

127 28 (6 , 7 , 14 , 15 , 22 , 23 , 30 , 31 , 38 , 39 , 46 , 47 ,
38 54 , 55 , 62 , 63 , 70 , 71 , 78 , 79 , 86 , 87 , 94 ,

102 , 110 , 118 , 126 , 127)

Whoa! The first four results are with lengths 32,
31, 29, and 27. That seems to be the source of the
Crypto Museum people claiming that there are four
small LFSRs hidden in there. There are also nine
positions that are not contributing to the first four
loops, but which themselves do depend on bits in
those.

38unzip pocorgtfo21.pdf px1k.zip; unzip px1k.zip lfsr-next-bits.txt

65

To make this all much clearer, I made my
script draw a handy illustration of the LFSRs.

Bytes of the char array are horizontal increasing
indexes left to right, bits vertical with increasing
indexed top-down. The homogeneous squares con-
stitute the four LFSRs, and the squares half-yellow
depend on the LFSR of their other color. Just for
reference I also framed with yellow border byte 0 and
byte 7 of each LFSR block, as these are used when
extracting bits as described above in the discussion
of the encryption algorithm.

Interestingly, some of the orphan bits are in-
cluded in extraction of entropy from the LFSR.
Just to add a bit of confusion, claripy’s bitvector
considers such char arrays as one big-endian value,
which means that bit 127 is the bottom bit of byte 0
(the bottom left-most bit) and the least significant
bit of the bitvector is bit 0 of byte 15, thus the top
right corner of the diagram.

ACT IV: Revelation
I had everything converted to polynomials and con-
straints, so I started to try to feed it all directly
into Z3, but Z3 seems to be geared more toward
non-boolean equations. Working with vectors of
booleans was quite tedious. After some long nights,
I gave up and started anew in claripy, a wrapper
around Z3 from the fine Angr people.

With claripy, everything went well, I had the
first solution! It took nearly two minutes but, alas,
it was incorrect! After a few days of debugging my
constraints, I finally had the correct solution, and it
only took 50 seconds! I defeated the beast! What a
symbolic execution!

All you need to do is feed the solver 17 bytes
of ciphertext, and the solver will either declare that
the ciphertext cannot be the output of the PX1000cr
algorithm, or it outputs the encryption key and the
decrypted 17 bytes of plaintext. The rest of the
plaintext can be recovered by decrypting the cipher-
text with the recovered key. With a little change it
is also possible to solve keys for shorter ciphertexts,
but then there will be multiple key candidates which
must be tested by the user. The number of key can-
didates in that case is 217−min(len(ciphertext),17).

Looking at my script I realized I could keep
everything symbolic, pre-computing all constraints,
and with this change a speed-run is possible. With
this, calculating the solution takes now less than
four seconds!

I invite everyone to download the emulator and
run the ROM themselves and plug the ciphertext
into the solution. With a few changes you can even
calculate things backwards, like what plaintext and
key combination generates the following ciphertext:
“(NSA backdoor fun”.

I do not know if the NSA had a SAT solver like
Z3 back in 1983, but 40 years later the fact is I can
recover a key within seconds in a single thread on
a laptop CPU. I am far from being able to do so
if DES were used. This lets me confirm that the
PX1000cr algorithm is indeed a backdoor.

Finally I would like to thank Ben, Phr3ak, the
Crypto Museum people, Jonathan, Antoine, the
Angr devs, Asciimoo and Dnet for their support!

66

21:13 Solving the Load Address; or,
Fixing Useless Firmware Disassembly

by EVM

Our Objective
In this article, I present a little trick for determining
the load address in a processor’s memory space for
a piece of embedded code when the load address is
not on a nice clean boundary. Oftentimes, the load
address is easy to figure out, but in certain cases it
might not be, such as when Flash code is copied into
RAM or when a firmware update file contains code
for multiple processors.

The concept is to load the code at 0, locate all
the absolute function calls, and sort them starting
from the lowest address. Then choose the two lowest
function addresses, f1 and f2. Calculate d = f2−f1.
Scan through the functions starting from 0, look for
the first pair of functions that are offset by d, and
call these s1 and s2. The load address is then deter-
mined by calculating f1 − s1.

The reader convinced of the need for such a tech-
nique will desire to know why this works, we’ll cover
that in a moment. First, we’ll remind other readers
how much of a pain finding a firmware load address
can be.

Motivation; or, Why Bother?
The problem we’re dealing with is determining the
load address for a piece of firmware that doesn’t load
on a round number boundary. This problem seems
to primarily arise in two situations.

The first situation is when a piece of firmware
is written to run mostly from RAM. This firmware
will generally have a small stub at the beginning
that copies the code from Flash into RAM and then
jumps to it.

The second situation is when you have a
firmware update file that is used to update multiple
processors on a system. (For example, a drone that’s
got a handful of processors but only one update pro-
cess.) So we might be able to clearly identify a blob
within the file as belonging to a particular CPU, but
we don’t know how that blob ends up loaded in the
processor’s address space.

Many times it’s pretty easy to solve the load ad-
dress by just doing a disassembly and guessing a
round number as the base address for the code. For
instance, you may try to load the image at address
0, which IDA does by default, and then realize that
all of the absolute addresses of functions begin with
0xC0. This works most of the time because sec-
tions of memory often start on a nice round number
in their address space. If we see sub_10, sub_24,
sub_3A and then absolute references to 0xC00010,
0xC00024, and 0xC0003A, it’s probably safe to as-
sume that 0xC00000 is the load address.

However, it’s not always that straightforward.
(Figure 13.) What sometimes happens in Situation
1 is that the image might get loaded at some offset
that’s not a round number. In Situation 2, what can
happen is you may not know exactly where the code
begins, so it may load on a round number but you
may not know exactly which part of the code gets
loaded on the round number.

The main symptom of loading at the wrong load
address is broken absolute calls, which results in
some form of bad disassembly. Depending on the ar-
chitecture or the size of the code, there may not be
that many absolute calls, so the failure may be sub-
tle. A secondary symptom of loading at the wrong
address is that a disassembler will fail to recognize
large sections of code as subroutines because it does
not look like any code is calling functions at those
addresses.

67

Loader Code (runs in Flash) CPU 1 Code

Main Program Code (runs in RAM)
CPU 2 Code

CPU 3 Code

Situation 1 Situation 2

Figure 13: (Left) Situation 1: a program with an initial stub that copies the rest of the code into RAM and
executes it. (Right) Situation 2: multiple pieces of code within a single firmware update file.

Our Clinical Trial
In an era where science is sometimes forgotten, it’s
helpful to look at a specific example as a study.
For our clinical trial to determine technique efficacy,
we’ll look at a SH-2 microprocessor image that is an
example of Situation 1. The code is initially run
from Flash, but then most of the code was copied
to RAM and run from there. The RAM code was
loaded at a round number, but the RAM code be-
gan several functions into the binary image, which
caused the disparity. I use IDA Pro for this exam-
ple, but any other disassembler could just as easily
be used.

Relative vs. Absolute Calls
Most processor architectures contain both absolute
and relative jump and call instructions. In most
programs, most of the jump and call instructions
are relative. Relative means that the address of the
target function is encoded within the instruction as
an offset (usually from the start of the next instruc-
tion). Relative jumps and calls are position inde-
pendent, meaning they can be moved around and
will work correctly. They will disassemble to cor-
rectly target the right offset wherever they might be
loaded.

Figure 14 shows an example of a relative call
instruction (branch to subroutine) in SH-2. The
processor makes the calculation: 0x401C32 + 4 +
2*(0x209) = 0x402048, since 0x209 is the offset in
2-byte words, and the program counter value is ac-
tually four bytes ahead of the beginning of the in-
struction. (This is because it is just past the branch
delay slot, which I’ll just skip over explaining for
now!)

However, you might notice that for SH-2, the
maximum offset for the branch-to-subroutine in-
struction is ±0x7FF. This means you cannot jump

more than 4K away from your current position,
which is a problem. As such, we need to be able
to specify the absolute address for a call. An ab-
solute call (also known as a far call or far jump)
specifies the full (in this case, 32-bit) address of the
target function. Figure 15 shows an example of an
absolute call instruction (jsr) in SH-2.

The processor makes the calculation 0x40083A +
4 + 2*(0xD) = 0x400870, and this address is then
dereferenced to get the full 32-bit address of the
function, in this case 0x409FD8.

You’ll notice that we need to look at absolute
calls for clues to where the program is loaded. From
this one absolute call example above, we can see that
the code is likely loaded somewhere in the area of
0x400000.

68

1 ROM:0401C32 B2 09 bsr sub_402048

Figure 14: An example of a relative call instruction (branch to subroutine) in SH-2.

1 ROM:0040083A D3 0D mov . l #sub_409FD8 , r3
ROM:0040083C 43 0B j s r @r3 ; sub_409FD8

3 . . .
ROM:00400870 00 40 9F D8 dword_400870 : . data . l h ’ 409FD8

Figure 15: An example of an absolute call instruction in SH-2. Note that the full 32-bit target address is
embedded as data just after the instruction.

Walkthrough: Measuring the (Social)
Distance

In this example, IDA did an initial disassembly with
the code loaded at 0. We see the following in the
Functions window:

sub_0
2 sub_2A

sub_34
4 sub_66

sub_8A
6 sub_9C

Most of the absolute calls are in the 0x400000
range and are simply broken. Rebasing the image
to 0x400000 (the obvious guess) makes those calls
point to valid addresses; however, the calls land at
seemingly random code addresses, in the middle of
functions.

So here’s the trick: we ask IDA to give us all
of the absolute calls by doing a text search for the
instruction, such as jsr for SH-2. We then sort
these by the instruction. IDA helpfully labels the
jsr instructions with their target functions, so this
sorts these instructions by target function, with the
smallest target function at the top:

j s r @r2 ; sub_400000
2 j s r @r2 ; sub_400000

j s r @r2 ; sub_400036
4 j s r @r2 ; sub_400036

. . .

I’m oversimplifying here because the compiler
will use different registers, so you may need to sort
and then look for the low addresses used for each
register. Regardless, the objective remains as locat-
ing the lowest two functions referenced by absolute
calls.

Next, we choose the two smallest target func-
tions. We calculate the difference (d) between the
two functions. We then scan starting from the small-
est function which IDA lists and look to see whether
there is a function defined at distance d. For this ex-
ample, d = 0x36. Scanning through the beginning
of the functions list, we see sub_66 and sub_9C are
0x36 apart. This means that sub_66 gets loaded at
0x400000, and consequently sub_9C gets loaded at
0x400036.

See Figure 16 for some code to help with this
if you use IDA. In this example, sub_0 was an en-
try vector in the Flash code that eventually called
sub_34, an initialization function that copied the
Flash program beginning at offset 0x66 to 0x400000
in RAM.

Using our newfound knowledge, we can do two
things. Either we can rebase the entire image to
0x3FFF9A, or instead we can reload the input file,
creating a new segment for RAM, telling IDA to
start at offset 0x66 in the file. (Rebasing to an ad-
dress beneath the section isn’t technically correct,
but it’s quick and easy.)

69

1 d e f i n e f i nd_o f f s e t_ func t i on s (de l t a) :
f = idc . get_next_func (0)

3 while (f != idc .BADADDR) :
f 2 = idc . get_next_func (f)

5 while ((f 2 != idc .BADADDR) and (f2 − f <= de l t a)) :
i f (f 2 − f == de l t a) :

7 p r i n t ("Functions %s and %s are 0x%x o f f s e t " %
(idc . get_func_name (f) , i dc . get_func_name (f2) , d e l t a))

9 f2 = idc . get_next_func (f 2)
f = idc . get_next_func (f)

Figure 16: IDA Python code to print a list of functions offset by a given amount.

With whom might we share this?
In addition to matching deltas between absolute
function calls, this process can be similarly applied
in other situations where differences between objects
in the binary can be matched to differences between
absolute addresses in the code.

This approach has been successfully employed on
a processor with separate code and data segments
to determine the load address of the data segment.
In this case, a function had been identified which
was presumed to be a debug print function, and it
took the address of a string as the first parameter.
The load address was determined by dumping all of
the first parameters in calls to the debug function,
and then dumping all string offsets in the file, and
matching the differences in those lists.

It seems possible to automate this approach by
treating the two lists of offsets as signals and run-
ning a correlation function on both of them to deter-
mine the best match. The difficulty to automation
would most likely be ensuring that disassembly is
clean and accurate, and that a majority of subrou-
tines are properly identified, even when the code is
loaded at the wrong address.

70

21:14 Counting words with a state machine.
by Robert Graham

In this paper we implement wc, the classic Unix
word count program, using an asynchronous state
machine parser. We implement this twice: first a
simplified version supporting ASCII, then a more
complete program supporting Unicode UTF-8 en-
coding. We implement this algorithm in both C and
JavaScript. Even the latter is significantly faster
than the standard versions of wc, such as the GNU
Coreutils wc that comes with Linux.

Introduction

A parser is software that translates external data
into some internal data structures.

At university, they teach you abstract and formal
parsers, often in a class that builds a compiler. How-
ever, little of that theory is used elsewhere in your
coursework. In your networking class, the code they
teach uses concrete and ad-hoc parsers, discarding
everything you learned in your parser class. While
parser theory they teach you is useful, even aca-
demics struggle to use it in practice.

In this paper, we do a mix of theory and prac-
tice. On one hand, we look at abstract theory of
state-machines and deterministic/non-deterministic
finite automata. On the other hand, we build the
state-machine by hand, banging the bytes together.

The reason this concept is important is demon-
strated by Nginx replacing Apache as the dominant
web server on the Internet. Apache parses input the
legacy way they taught you in networking class. The
newer Nginx parses input using a state-machine.
This parsing is more scalable, allowing much higher
loads on the web server.39

In this paper, we demonstrate state-machines by
re-implementing the classic Unix command-line pro-
gram wc. Over the last year, it has been popular for
proponents of various languages to re-implement wc
in order to show that their favorite language can
compete with C in performance. In this case, we do
this to demonstrate our favorite algorithm is bet-
ter than existing algorithms, implementing it in two
different languages.

These re-implementations are usually incom-
plete, only parsing ASCII. In this paper, we do a
more complete version, correctly parsing UTF-8.

The intent of this article isn’t that you should go
and parse everything with state-machines. It puts
a burden on future programmers trying to read the
code, most of whom are unfamiliar with the tech-
nique. On the other hand, when performance and
scalability are needed, state-machines are a good
choice. You probably wouldn’t want to use them for
wc in the real world, as the program doesn’t need to
be especially fast. We choose wc in this paper only
because it’s a popular benchmark target, the simple
thing that more complex endeavors are compared
against.

What is WC?

This command-line utility has been part of Unix
since time began on the first of January, 1970. As
defined in the POSIX standard, it counts the num-
ber of lines, words and characters, when the corre-
sponding flag of -l, -w, and -c is set. If no param-
eters are set, then the default is all three, -lwc.

$ echo " ba s i c input /output " | wc
2 1 2 19

We see here that the program has reported one
line, two words, and 19 characters. Words are
counted by the number of strings of non-spaces sep-
arated by spaces. Thus, this example is only two
words, not three.

Modern character encodings can use multiple
bytes per character, such as UTF-8 or various char-
acter sets for Chinese, Japanese, and Korean. In
such cases, the -m parameter replaces the -c param-
eter, counting the number of multi-byte characters
instead of the number of bytes. As we see in these
two examples, changing from -c to -m changes the
character count:
$ echo わたしは　にほんごがすこししか　はなせません | wc －lwc

1 3 67

$ echo わたしは　にほんごがすこししか　はなせません | wc －lwm
1 3 23

39This overstates the importance of just the parsing. Nginx scales better than Apache for a lot of reasons. However, these
reasons are all interconnected: if you write an asynchronous server, then state-machine parsers are a much better way of parsing
the requests.

71

How do they implement WC?

There are many versions of the program, such
as GNU’s Coreutils for Linux, BusyBox, macOS,
FreeBSD, OpenBSD, QNX and SunOS. Most im-
plementations count words by counting the number
of times a space is followed by a non-space. Think of
it as an edge-triggered condition, going from space
to non-space. As we’ll soon see, this can also be
treated as a state-machine with two states.

Parsing words is easy, the hard part is character-
sets. We could hard-code ASCII values into our pro-
gram, such as 0x20 for space and 0x0A for newline,
but this wouldn’t work for non-ASCII systems. IBM
mainframes that use the EBCDIC character-set will
represent a space using 0x40.

Thus, instead of using hard-coded values these
programs use the standard isspace() function to
test if a character is a space. Recently, many peo-
ple have re-implemented wc in their favorite lan-
guage to show that they can be just as fast as C.
In fact, most of the processing time is spent in the
isspace() function, so all they really proved is that
hard-coded constants like 0x20 in other languages
are faster than isspace() function calls in C.

The problem is worse for multi-byte character-
sets like UTF-8. The program must first parse
multiple bytes into wide characters using functions
like mbtowc() (or mbrtowc()),40 then test if they
are a space with iswspace(). Re-implementations
often do only ASCII. This paper includes two re-
implementations, the first for ASCII, the second for
UTF-8.

How do we implement it?

Our first version supporting ASCII is shown in Fig-
ure 17. In the GitHub project accompanying this
article, the program is wc2o.c, where the ‘o’ stands
for “obfuscated C version.” This program is pretty
darn opaque when trying to figure out how it counts
words. On the other hand, it exposes the idea of
state-machine parsing.

Line 5 declares the state-machine table consist-
ing of four states. Each state is a row of three tran-
sitions. (Table 1)

Line 7 declares a table that will translate bytes.
All 256 ASCII values translate into one of three pos-
sible values: word(0), space(1), and newline(2).
Specifically, the character 0x0A or ‘\n’ translates
to newline(2), and the characters ‘\b\t\m\v\f’
translate to space(1). All other values translate
to word(0). The reason we include this translation
step is that so that the state-machine on line 5 is
4× 3 states rather than 4× 256 states. In our final
version, we don’t do this translation, and just have
large state-machines instead.

Line 15 loops getting the next byte of input,
one byte at a time. Calling getchar() here for ev-
ery character is potentially expensive, but we aren’t
benchmarking this program, just showing the algo-
rithm. In our final version, we read input a buffer
at a time instead of a byte at a time.

Line 16 does the state transition, in other words,
it parses the input. We translate the byte into
one of the three column values, word(0), space(1),
or newline(2). We look up that in the current
row, then set the next row according to the tran-
sition. Thus how in the was-space(0) state, if we
receive a non-space(0) character, we transition to
new-word(2) state.

Line 17 processes what we parsed. In our case,
the processing is trivialized to just counting the
number of times we visit each state.

40The ‘r’ in mbrtowc() means “re-entrant.” If parsing at the end of a fragment, it saves state before resuming at the start of
the next fragment.

72

#include <s td i o . h>
2 int main (void)

{
4 stat ic const unsigned char t ab l e [4] [3] = {

{2 ,0 ,1} , {2 ,0 ,1} , {3 ,0 ,1} , {3 ,0 ,1}
6 } ;

stat ic const unsigned char column [2 5 6] = {
8 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 2 , 1 , 1 , 1 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 ,
10 } ;

12 int s t a t e = 0 ;
int c ;

14
while ((c = getchar ()) != EOF) {

16 s t a t e = tab l e [s t a t e] [column [c]] ;
counts [s t a t e]++;

18 }
p r i n t f ("%lu %lu %lu \n" , counts [1] , counts [2] ,

20 counts [0] + counts [1] + counts [2] + counts [3]) ;
return 0 ;

22 }

Figure 17: wc2o.c, an obfuscated word counter for ASCII.

word(0) space(1) newline(2)
was-space(0) new-word(2) was-space(0) new-line(1)
new-line(1) new-word(2) was-space(0) new-line(1)
new-word(2) was-word(3) was-space(0) new-line(1)
was-word(3) was-word(3) was-space(0) new-line(1)

Table 1: Simple word-count state machine.

73

Line 19 prints the results. The number of lines
is the number of times we visited the new-line(1)
state. The number of words is the number of times
we visited the new-word(2) state. The number of
characters is the number of times we visited all the
states combined.

Consider reading input whose only letter
is ‘x’. We start with state==was-space(0).
The ‘x’ is them translated into a column value,
word(0)==column[’x’]. The new state becomes
new-word(2) == table[was-space(0)][word(0)].

The resulting program produces the same output
as the built-in program.

$ wc < wc2o . c
2 26 74 649

4 $. / wc2o < wc2o . c
26 74 649

What about Unicode and UTF8?

This program does hard-coded ASCII, a single-byte
character set. We need something that can handle
multi-byte character-sets, like Unicode and UTF-8.

Unicode is a character-set; UTF-8 is an encod-
ing. Unicode characters, or wide characters or code
points, are integers between 0 and 0x100FFFF. Each
code point can be represented by from one to four
bytes, as shown in Table 2.

Consider the character U+1680, Ogham Space
Mark. According to the table, this is encoded as
the three-byte sequence 0xE1 0x9A 0x80.

Ogham is an alphabet from the sixth century for
writing Old Irish that survives today as roughly 400
inscriptions on monuments and gravestones. A com-
pliant version of wc must count spaces on those mon-
uments. The space mark counts as a space character
according to iswpace(0x1680). Thus, we should be
able to count words in such inscriptions.41
$ echo ᚛ᚋᚐᚊ ᚉᚓᚏᚐᚅᚔ ᚐᚃᚔ ᚐᚈᚆᚓᚉᚓᚈᚐᚔᚋᚔᚅ᚜ | wc −lwm

1 4 30

There are about thirty such Unicode space char-
acters for which iswspace() will return true. The
libraries for Windows, Linux, and macOS have slight
disagreements about this, so what some will recog-
nize as a space will not be recognized as a space on
others. However, they all agree that U+1680 is a
space.

There are many invalid UTF-8 sequences.
Among those are unnecessarily long, redundant se-
quences. The table suggests that 0x0A may also
be represented as 0xC0 0x8A and 0xE0 0x80 0x8A.
Since this can be encoded as simply 0x0A, the longer
sequences are declared to be officially invalid and
must be rejected.

Thus, a parser for Unicode must not only con-
sider the basic math as shown in the table, but also
recognize spaces and reject invalid sequences.

How do state-machine parsers work?
You are familiar with state-machines in other parts
of computer-science, such as the famous TCP/IP
state-machines. In those state-machines, some sort
of event happens that causes a transition from one
state to another. For parsers, the event is the next
byte of input. Each byte of input is read sequen-
tially, and depending up that byte’s value, a transi-
tion happens from one state to another.

There are two ways to represent these transi-
tions: either through a big lookup table as in wc2o.c
on page 73, or with a switch/case block.

Consider HTTP. A request header looks like the
following:

1 GET / index . html HTTP/1 .0
Host : www. goog l e . com

3 User−Agent : Moz i l l a (a c t ua l l y Chrome)

A state-machine that parses it might assign a
state to each field, like this.

START

method URI version

EOL
END

space1 space2 space3

name colon value

space

\n

colon

other

41If the editors have done their job right, you should be able to copy/paste this from the online PDF document and reproduce
these results. It works on macOS, Linux, and on Windows using the PowerShell Measure-Object commandlet, when the locale
is set to Unicode. —Rob

74

Scalar Unicode Value First Byte Second Third Fourth
00000000 00000000 0xxxxxxx 0xxxxxxx
00000000 00000yyy yyxxxxxx 110yyyyy 10xxxxxx
00000000 zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx
000uuuuu zzzzyyyy yyxxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

Table 2: UTF-8 Bit Distribution, Unicode 6.0

As we receive the bytes of an HTTP request,
we enter the method state the first time we receive a
non-space character. We remain in the method state
until we receive a space character, at which point we
transition to the space1 state.

In C, we might process each byte of input with
a function like the following switch/case logic:

1 int http_parse (int s ta te , unsigned char c ,
. . .) {

3 switch (s t a t e) {
. . .

5 case METHOD: /∗GET, POST, HEAD, . . . ∗/
i f (c == ’ \n ’) {

7 . . .
return EOL;

9 } else i f (i s s p a c e (c)) {
. . .

11 return SPACE1;
} else {

13 . . .
return s t a t e ; /∗ no change in s t a t e ∗/

15 }
. . .

17 }
}

Most major web servers that aren’t Apache use
this method. Nginx calls this state sw_method,
which you can see in the open-source online.42

You can test on a live network whether a web
server is parsing requests using a state-machine.
Send a request to the server consisting of GET, fol-
lowed by five billion spaces and only then the rest of
the request. If the server acts like Apache buffering
a complete header, then it’ll run out of buffer space.
If instead the server acts like Nginx and parses in-
put with a state machine, it’ll happily keep reading
spaces as long as it’s in that state. If the connection
terminates prematurely, it’ll be because of a timeout
instead of running out of buffers. (It takes a while
to send five gigabytes.)

This example uses a switch/case block of code
to handle the transitions. In our state-machines
for counting words, we use a lookup table instead.
A third choice is to use a mixture. The program
masscan, for example, does a lot of parsing of such
protocols like FTP, SMTP, X.509, and so. It uses a
mixture of switch statements and lookup tables.

42See near line 159 of ngx_http_parse.c.

75

How can we construct a state-machine
for word-counting?

Most implementations of wc effectively use a ma-
chine with two states which can be represented with
the following diagram. Note that they aren’t de-
signed explicitly as a state-machine, but that’s ef-
fectively how the code works.

was
space

was
word

space

\n

other

In the wc2o.c program, we changed this to a ma-
chine with four states. This is the table with three
types of transitions and four states:

was
space

new
line

was
word

new
word

space

\n

other

We did this in order to be overly clever in how
we were going to process the data.

Remember, there’s two things going on here.
One step is parsing the input. The next step is pro-
cessing the results. Thus, we first need to parse out
things like words, characters, and newlines. Then
we need to process this information, which for word-
counting, is done by counting each time we enter a
state. We’ve cleverly collapsed the processing into a
simple operation.

The lesson here isn’t that parsers can completely
trivialize processing as we’ve done here, but instead
that we often add artificial states to benefit later
processing.

Now let’s talk about UTF-8. Using the original
table as a guide, we might construct a state-machine
for parsing 1-byte sequences, 2-byte sequences called
a “duo,” 3-byte sequences “tri,” and 4-byte sequences
“quad.”

start1

quad2

duo2

tri3

quad3 quad4

char

tri2

illegal

However, our needs are simpler. We don’t
need to parse out the code point and test with
iswspace() but can instead include that function-
ality within the state-machine itself, where the out-
put is one of four values: word, space, newline, or
illegal.

start1

quad2

duo2

tri3

quad3 quad4

newline space word

tri2

illegal

76

There are, in fact, more states than just this. In-
stead of a simple path for 3-byte characters, we must
add additional states that recognize 3-byte charac-
ters that result in spaces. This creates a table of
roughly thirty states that’s too complex to draw
here.

Instead, here are snippets of the code that take
an existing table and adds states for characters like
U+1680 Ogham Space Mark. It clones existing states
that follow the same path, but at the end marks the
character as a space instead of a word:

/∗ c lone e x i s t i n g s t a t e s ∗/
2 memcpy(tab l e [TRI2_E1] , t ab l e [TRI2] ,

s izeof (t ab l e [0])) ;
4 memcpy(tab l e [TRI3_E1_9a] , t ab l e [TRI3] ,

s izeof (t ab l e [0])) ;
6 /∗ l i n k in new s t a t e s ∗/

t ab l e [0] [0 xE1] = TRI2_E1 ;
8 tab l e [TRI2_E1] [0 x9a] = TRI3_E1_9a ;

t ab l e [TRI3_E1_9a] [0 x80] = SPACE;

What this code is doing is exactly what generic
regex code would do. All we are doing here is cre-
ating manually what regex libraries would do based
upon expressions. What we are doing here is manual
optimization for concepts that exist abstractly.

Now let’s combine our UTF-8 state-machine
parser with our word-count state-machine parser.
There’s two ways of doing this. The obvious way
is to feed the output of one as input to the other.
The other way is to combine the two into a single
state-machine.

This is a multiplicative process. That means
replicating one state-machine for every state in the
other state-machine. Again, let’s talk regex theory.
There are two ways of representing such a thing.
One way increases computation, what we call an
NFA or non-deterministic finite automata, which is
what would happen if we fed the output of one as
the input to the next. The other way keeps compu-
tation the same but increases the size of the table.
This is a DFA or deterministic finite automata. As
you build complex regexes, you cause either com-
putation to explode or memory to explode. In this
case, we’ve chosen DFA, so memory explodes.

Thus, where one state-machine needs 35 states
and the other just four, that means the combina-
tion may needs as many as 4 × 35 = 140 states.
However, we are going to do a small trick. The
was-space and new-line states are clones of each
other, as are was-word and new-word. Thus, we

only need to double rather than quadruple the UTF-
8 state-machine. This produces something that may
be represented like:

was
space

new
line

was
word

new
word

The Final Code

The final code is in wc2.c. It’s a few hundred lines
so is not included in this article but is instead avail-
able on GitHub.43

The complicated part that takes hundreds of
lines is where it builds that state-machine table.
This results in a table roughly with 70 states (rows),
and 256 columns, where each column represents the
transition that will happen when a byte of input is
received.

Once we’ve built the table, we simply process
chunks of input analogous to the following. The ac-
tual code looks slightly different, with the inner loop
separated into a parse_chunk() function.

1 unsigned counts [MAX_STATE] ;
//Get the next chunk o f input .

3 l ength = f r ead (buf , 1 , s izeof (buf) , fp) ;
//For a l l b y t e s in t ha t chunk ,

5 for (i =0; i<length ; i++) {
//Get the next by te .

7 c = buf [i] ;
//Do the s t a t e t r a n s i t i o n .

9 s t a t e = tab l e [s t a t e] [c] ;
//Do the count ing .

11 counts [s t a t e]++;
}

13 //Report the r e s u l t s .
word_count = counts [NEW_WORD] ;

15 l ine_count = counts [LINE_COUNT] ;
char_count = counts [0] + counts [1]

17 + counts [2] + counts [3] ;

43git clone https://github.com/robertdavidgraham/wc2 || unzip pocorgtfo21.pdf wc2.zip

77

Benchmarks

For benchmarks, I started with the file pocorgtfo-
18.pdf.44 This is big (92-million bytes), but also
has the nice property of being unfriendly to parsers.

However, this turned out to be a bad choice,
or at least an awkward one. Illegal characters
cause performance problems in the mbtowc() and
iswspace() functions at the heart of existing pro-
grams. There were also big performance differ-
ences with legal text, depending upon whether it
was ASCII or Unicode, random letters/spaces, all
spaces, or all non-spaces.

To better understand the existing wc in GNU
Coreutils, I benchmarked a bunch of 92-million-byte
files. The files are:

A random sequence of UTF-8 non-spaces and
spaces, utf8.txt. A random sequence of spaces
and non-spaces in 7-bit clean ASCII, ascii.txt.
The letter x repeated 92 million times, word.txt.
The space character repeated 92 million times,
space.txt.

The command-line utility time was used, using
the userland time, in seconds.

Filename UTF-8 ASCII
pocorgtfo18.pdf 5.171 1.104
utf8.txt 2.257 0.765
ascii.txt 2.280 1.098
word.txt 0.712 0.643
space.txt 0.499 0.424

We see a roughly ten-fold performance differ-
ence of the existing GNU wc depending upon in-
put. Parsing a bunch of illegal characters as Unicode
takes 5.17 seconds, but parsing a file containing only
ASCII space characters takes 0.42 seconds.

Now for our program. We’ve written two ver-
sions, wc2.c and wc2.js, in C and JavaScript re-
spectively. Comparing our results for just the UTF-
8 mode, we see that both state machine implemen-
tations are faster than the original.

Filename GNU wc wc2.c wc2.js
pocorgtfo18.pdf 5.172 0.145 0.501
utf8.txt 2.277 0.142 0.502
word.txt 0.716 0.139 0.496
space.txt 0.498 0.142 0.501

The first property of the wc2 programs is that
they are constant time, regardless of the type of in-
put. The slight variations in time are due to inac-
curacies using time as a benchmark tool.

The second property of the programs is that they
are faster. Even at its fastest, the GNU program is
over 3 times slower than our program. At roughly
0.5 seconds, even our JavaScript program matches
the GNU program at its fastest. Given worst case
input, our program is twenty-five times as fast.

What this shows is that state-machine parsers
tend to be both fast, but also robust when given il-
legal input. When you look at what mbrtowc() and
iswspace() must do in order to guard against ma-
licious input, you’ll see that the code is quite dan-
gerous. In contrast, how the state-machine parses
malicious input is inherently safe.

Finally, just to make sure our UTF-8 parsing is
correct, we see that it produces the same results as
before, finding four words and 30 characters, given
88 bytes of input:
$ echo ᚛ᚋᚐᚊ ᚉᚓᚏᚐᚅᚔ ᚐᚃᚔ ᚐᚈᚆᚓᚉᚓᚈᚐᚔᚋᚔᚅ᚜"" | . /wc2 -lwm
1 4 30

What does asynchronous mean?
We’ve talked a lot about state machines but not
what it means for them to be asynchronous. Asyn-
chronous means that reading input is completely in-
dependent of parsing, that the parser doesn’t influ-
ence how input is read.

To understand the difference between asyn-
chronous and traditional methods, consider other
implementations of wc. They often read input using
a getword() or getline() function.45 This com-
bines some parsing with reading input. In other
words, instead of reading input in a fixed manner,
like 64k buffers, the amount read depends upon
parsing. Conversely, how the parser is constructed
depends upon how input is read. Each influences
the other.

Let’s say that we want to write a version that
can word-count thousands of files at once, simulta-
neously. Using the traditional method of combin-
ing reading with parsing, you’d have to spawn thou-
sands of threads. Using the asynchronous technique,
you can use a single thread. Using AIO APIs, the
operating system will deliver the next chunk of data
as it arrives from the disk. AIO APIs read fixed

44There are two different versions of pocorgtfo18.pdf with a SHA1 of 191b636f80d0c74164ec9d9b3544decdaa2b7df5. These
experiments describe the version with an MD5 of 84c49ffee3fffebed5875a162e43bb1d, not an MD5 of f5879ccb9570ec8def41-
c36854021b4e.

45See OpenBSD’s wc.c, near line 210.

78

sized blocks, like 64k; you can’t choose the size of
blocks depending upon the parsed contents. When
data is received, it is dispatched to the appropriate
copy of the state for parsing each file. We just need
an 8-bit integer for every file to hold all the per file
parser state.

This would be a silly thing to do with files but is
an important thing for networking services. Apache
is broken and can’t scale beyond 10,000 concurrent
TCP connections because it struggles with 10,000
threads in the system. All its major competitors
use a single thread (or single thread per CPU core)
and handle things asynchronously.

Again, the parser can’t influence data reception.
The network stack simply receives packets from the
other side, whatever size of packets those might be.
The parser must handle the case where it receives
exactly as much data as it was expecting, or too
much data, or not enough data.

Conclusion

There have been many posts over the last year of
people implementing wc in their favorite language,
such as Haskell or Python. In this paper, instead of
a different programming language, we’ve chosen a
fundamentally different algorithm, that of an asyn-
chronous state-machine parser. We’ve implemented
the same algorithm in both C and JavaScript, to
show that the speed is property of the algorithm
instead of the language.

Instead of a simplified problem of just handling
ASCII, we’ve demonstrated the algorithm using the
difficult problem of UTF-8 encodings. Given some-
thing bizarre like Ogham text, we still produce the
same answer as compliant wc programs. While only
the UTF-8 encoding is implemented, the concept ex-
tends to any character-set, including the CJK (Chi-
nese, Japanese, Korean) multi-byte character-sets.

Such state-machine parsers are costly in terms of
code maintainability: most programmers are unfa-
miliar with them. However, they have clear advan-
tages for writing scalable, secure code for modern
Internet applications.

79

21:15 Never say ‘no’ to adventures.
from the desk of Pastor Manul Laphroaig,

Tract Association of PoC∥GTFO.

Dearest neighbor,

Our scruffy little gang started this самиздат
journal a few years back because we didn’t much like
the academic ones, but also because we wanted to
learn new tricks for reverse engineering. We wanted
to publish the methods that make exploits and poly-
glots possible, so that folks could learn from each
other. Over the years, we’ve been blessed with the
privilege of editing these tricks, of seeing them early,
and of seeing them through to print.

So today, in that spirit of exploration and won-
der, I pass around the collection plate and ask you,
neither for paper money nor pocket change, but for
nifty projects and the clever tricks that make them
possible.

Maybe share a technical story from the good old
days, such as when the Super Nintendo and Apple
IIGS both used a 16-bit 65C816 CPU, with two in-
struction sets for backward compatibility with their
6502 predecessors. Maybe share a clever trick from
the modern day, such as how to scale a disassem-
bler to terabytes of input, or how to explore all the
BARs of a PCIe card to quickly rig up a new driver.

Give me source code for the software, and give
me schematics for the hardware, but most of all
teach me how to build these things for myself. Teach
me to know the difference between those things that
are really hard, and those things that only look in-
timidating before a bit of practice and the right ad-
vice collapse the problem into something a clever
child might solve.

Give me these tricks and techniques in an ASCII
textfile, or UTF-8 if your language insists, includ-
ing high resolution figures as separate PNG or PDF
files as an email to pastor@phrack.org. My gang
and I will clean it up, typeset it in TEX, index it
and print it for the world. We’ll happily trans-
late from French, Spanish, Portuguese, German,
Russian, Hungarian, Hebrew, Serbo-Croation, and
Southern Appalachian.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, T G S B

80

