
Children’s Bible Coloring Book of PoC ‖ GTFO
Issue 0x02, an Epistle to the 30th CCC Congress in Hamburg

Composed by the Rt. Revd. Pastor Manul Laphroaig to put pwnage before politics.
pastor@phrack org

December 28, 2013

Legal Note: If you have received this book without a cover or crayons, you should be aware that your friends
are awesome! It was produced by samizdat from the freely available pocorgtfo02.pdf. Neighbor, you have our
blessing to copy this as you like. Yodel it, preach it, doodle it, and share this gospel with the whole of creation,
’cause we don’t give a shit.

1 Call to Worship
Please join me in reading this third issue of the International Journal of Proof of Concept or Get the
Fuck Out, a friendly little collection of articles for ladies and gentlemen of distinguished ability and taste
in the field of software exploitation and the worship of weird machines. If you are missing the first two
issues, we the editors suggest pirating them from the usual locations, or on paper from a neighbor who
picked up a copy of the first in Vegas or the second in São Paulo.

This edition is written to the fine neighbors of the Chaos Computer Club in honor of their thirtieth
congress, to be held this December in Hamburg. As in prior issues, you’ll find plenty of pwnage, some
neighborly preaching, and no politics.

In Section 2, Pastor Laphroaig preaches that in the tradition of Noah and of Howard Hughes, we
should build our own fucking birdfeeders.

Brother Myron Aub takes a break from his evangelical promotion of Graphitics to teach us a little
about the PGP Message format in Section 3. It turns out that RFC 4880 gives him just enough room
to encode an LZ-compression quine within a message, and the PGP interpreter is just “smart”1 enough
to keep decoding it ’till the cows come home. Perhaps other weird machines remain to be found?

Natalie Silvanovich shares in Section 4 her techniques for reliably dropping shellcode into the Tam-
agotchi’s 6502 controller from malicious plugin cartridges. Her exploit requires a number of nifty tricks,
not least of which is that the some bits of the program counter are ignored in this architecture, so her
victim executes the right code from the wrong address! It is feared that this technology might be used

1Because things marketed as “smart” usually aren’t, at least not for the buyer’s benefit. Truly, the world does occasionally
need reminding that stupid is as stupid does.

1

by the Royal Canadian Mounted Police to fuel a Cyber War of 1812 against the State of New Hampshire
and the People’s Republic of Vermont. Both American and Canadian neighbors can rest assured that
this one would have the same winner as the original, Non-Cyber War of 1812.

Travis Goodspeed shares a grab-bag of tricks for exploiting microcontrollers in Section 5. Learn how
to combine a Write and a Checksum primitive with weirder properties of Flash memory into a bitwise
Read primitive when exploiting microcontrollers, how to NOP-out instructions without erasing Flash
pages, and how to use bootloader ROMs for a return-to-libc attack.

Bx Shapiro had a nifty article in PoC‖GTFO 0:5 in which she showed out to return from ELF to libc.
That article ended with a challenge to our readers, asking you fine folks to figure out how in living hell
parameters could be passed to the function beging called. In Section 6, she rises to her own challenge,
showing you how to call putchar() from an ELF Weird Machine without having any of your own native
code.

Dave Weinstein in Section 7 explains why POKE 62975, 0 will brick a Trash 80 Model 100 until that
poor machine is put out its misery by a cold reset. Feel free to try it out in your emulator and consider that
many Automatic Exploit Generators aren’t very good at predicting the effects of a write-once-anywhere
vuln.

Ange Albertini explains the internal organization of this issue’s PDF in Section 8. Curious readers
might want to run qemu-system-i386 -fda pocorgtfo02.pdf in order to experience all the neighbor-
liness that this issue has to offer.

In PoC‖GTFO 01:02, Dan Kaminsky shared with us a 4-line RNG for Javascript, challenging our
readers to exploit it. It had no whitening, no scrambling, and no other defenses, so any weakness in the
principle ought to have been exploitable. In proper PoC‖GTFO fashion, Joernchen demonstrates such
a vulnerability in Section 9, by observing that some versions of Firefox bias toward producing bytes of
low Hamming weight.

Section 10 contains Ben Nagy’s latest masterpiece, sure to get you, dear reader, on all sorts of
watchlists. We half-heartedly apologize in advance to any of our readers at spooky agencies who have to
explain having this magazine to their employers.

Finally, in Section 11, we do what churches are best at and pass the collection plate. Please consider
giving alms of 0day and PoC to those who are poor in spirit.

Artwork in this issue was created by Ra of Tama-Zone, Stefan Bauwens, and others. The painting
featured in the museum on page 31 is in remembrance of the one first drawn by Mirromaru in red creeper
cards at the 29th Congress, then quickly censored due to controversy.

— — — —

We the editors are aware that some of the illustrations might be offensive to our more sensitive
readers, either for reasons of vulgarity or blasphemy. In both cases, we rely on the Bill Hicks Defense.

“Buddy, we’re Christians, and we don’t like what you said.”
“So forgive me!”

2

2 A Parable on the Importance of Tools; or,
Build your own fucking birdfeeder.

an epistle from the Rt. Rvd. Pastor Manul Laphroaig,
for the Beloved Congregation of the First United Church of the Weird Machines

Grace and Peace to you!
Once there was a wine-maker named Noah, the sort of fella you’d

be happy to share a beer with. He made damned good wine, but one
day he started building a boat.

“Why are you building that?” they’d ask, “Are the voices in your
head telling you that it’s gonna rain?”

“Nope,” he’d say, “Just toolin’ around.”
They showed him yacht catalogs and boating magazines. “Look,

man, you can just buy one at the store.”
“Haven’t got the money,” he’d say and then get back to building

the frame or bending boards for the hull.
“Well, you could afford to rent a boat for the weekend.”
Now Noah was a patient guy, but everyone has his limit. “I’m

building my own fucking birdfeed,” he’d say, “because they’ve got wood
at the store.”

And there was a fella named Howard Hughes, a crazy old millionaire.
Back in the thirties, he built his own air force to film a movie about
the first World War, so during the forties, when Roosevelt needed an
air force of his own, he bought Howie’s.

Howie Hughes built other birdfeeders. He made the H4 Hercules,
the world’s largest airplane and a damned big boat, out of wood. It
was five stories tall with a hundred meter wingspan. First flying in
1947, nothing approaching its size was seen for another forty years.

During the cold war, when the CIA wanted to recover a sunken
Soviet submarine, K-129, they called ol’ Howie up. “Howie,” they said,
“We’ve gotta keep this real quiet. Don’t tell anyone.”

So the next day, Howard Hughes held a press conference! “There are giant blobs of copper on the
ocean floor,” he lied, “and I’m building a big-ass boat with a big-ass crane to pick them up and drop
them on the deck. It’ll be so efficient that I’ll put the other copper mines out of business.”

So while folks were scrambling to invest in his copper company and divest from the real ones, Howie
built the Hughes Glomar Explorer. True to his word it was a big-ass boat with a big-ass crane, but
instead of picking up copper blobs it lifted that submarine off the ocean floor and dropped it on the
deck.

How could he do these things? Because he built his own fucking birdfeeders, that’s how.
So when you’re tooling around with a from-scratch tool, your own hex editor or interactive disassem-

bler, and your neighbors tell you to use 010 or to use IDA or to use this or use that, do what Noah and
Howie would do. Look ’em in the eye and say,

“I’m building my own fucking birdfeeder.”

3

Pastor Laphroaig tells us that when the streams of our computation are unclear,
it’s often because the SEO Experts are enjoying their goats upstream.

Pastor Laphroaig says to the SEO Experts,
“Not with my flock!”

4

3 A PGP Matryoshka Doll
by Brother Myron Aub

Take out your favourite matryoshka doll, neighbour. Now piece by piece,
open it until you can open it no longer. Every piece is smaller and closer
to the end of the experience, and then—it stops: you can open the smallest
piece no more.

But beware, neighbour! Not all matryoshka dolls behave like this. Some
matryoshka craftsneighbours are tempted by the devil’s lures. They see no
farther than the devil’s unholy promises of extensibility and compactness
when they craft a matryoshka doll that can compress a larger one to fit
within it! And our good neighbour Phil Zimmerman fell prey to this lure
when designing the PGP doll format.2

When you want to send a message, you must first stuff it into a literal doll.
You can then enclose that in an encrypted doll, a signed doll, or a compressed
doll. How do you assemble these together? However you please! You can
put your literal doll inside a signed doll inside an encrypted doll inside a
compressed doll. Naturally, ciphertext compresses poorly, so this would be
a stupid way to nest a PGP matryoshka doll. Normally you put your literal
doll inside a signed doll inside a compressed doll inside an encrypted doll,
but you can do it stupidly if you like.

And how do you open a PGP matryoshka doll? Since the sender could
have assembled it however they pleased, you must be ready for anything.
If you see an encrypted doll, you decrypt it and open the enclosed smaller
doll. If you see a signed doll, you verify its signature—throwing it away if it
fails to verify—and open the enclosed smaller doll. If you see a literal doll,
you’re done and you read the message.

But what if you get a compressed doll? You decompress it—and hope
there are no vulnerabilities in your system’s zlib—but unless some idiot tried
to compress ciphertext, the enclosed doll will be bigger than the doll you
just opened.

‘Surely,’ you say, ‘if someone assembled a PGP doll for me, it must have
a literal doll buried inside it!’ But no, my poor, naïve neighbour! There
is no rule that all PGP dolls be assembled like that. With the help of our
neighbourly neighbour Russ Cox,3 and with a dab of holy water to dispel
the devil’s temptations to misuse this black magic, we can craft a voodoo
PGP doll from a quine, a self-reproducing program written in the Lempel-Ziv
compression language, that bites any who naïvely try to open it up.

Our neighbour Tavis Ormandy discovered similar unholiness in IPsec.4
What other matryoshka dolls can you turn into voodoo dolls, good neigh-
bour?

2RFC 4880, ‘OpenPGP Message Format’
3Russ Cox, ‘Zip Files All the Way Down’, 2010-03-18
4Tavis Ormandy, ‘BSD derived RFC 3173 IPcomp encapsulation will expand arbitrarily nested payload’, CVE-2011-

1547, posted to full-disclosure 2011-04-01

5

Hey kids! Can you reverse engineer this shellcode from the picture?

6

4 Reliable Code Execution on a Tamagotchi
by Natalie Silvanovich

Tamagotchis are an excellent target for reverse engineering for a number of reasons: They have
a limited number of inputs and outputs, they run on a poorly documented 6502 microcontroller and
they’re, well, Tamagotchis. Recently, I discovered a technique for reliably executing foreign code on a
Tamagotchi.

Let’s begin at the beginning. Modern Tamagotchis run on a GeneralPlus GPLB52X LCD controller,
a lightweight 6502 controller that uses an internal mask ROM for all code and some data. This means
that exploitation is necessary to free the Tamagotchi from the shackles of its read-only code. Also, in
the absence of any debug outputs, code execution provides valuable insight into the internals of the
Tamagotchi and its MCU.

There are four inputs into a Tamagotchi that can be manipulated by the user. (1) The buttons, (2) the
EEPROM that saves the Tamagotchi state across resets, (3) the IR interface and (4) certain accessories
containing external SPI memory called figures. Attempts to find useful bugs in the EEPROM and IR
interface were unsuccessful, so I moved onto the figures. Eventually I found an exploitable bug in how
the Tamagotchi processes figure data.

When attached to a Tamagotchi, figures add extra functionality,
such as games or items. So attaching a figure might allow your Tam-
agotchi to play shuffleboard, purchase a vacuum cleaner or attend 30c3.
The bug I found was in the processing of game data. Game logic is not
actually included in the figure data; rather, the figure provides an in-
dex to the game logic in the Tamagotchi’s mask ROM.5 Changing this
index causes some very strange behavior. If the index is an expected
value, from 0 to about 0x20, a game will be played as expected, but for
higher indexes, the device will freeze, requiring a reset. Even stranger,
if the index is very high (0xD8 or higher), the Tamagotchi jumps to
a different, valid screen, such as feeding the Tamagotchi or giving it a
bath, and the Tamagotchi functions normally afterwards. This made
me suspect that the game index was used as an index into a jump table
and that freezing was due to jumping to an invalid location.

With no way to gain additional information about the cause of
the behavior, and about 200 possible vulnerabilities, it made sense
to to fill up as much memory as possible up with a NOP sled, try all
possible indexes, and hope that one caused a jump to the right location.
Unfortunately, the only memory controllable by the figure is the LCD
RAM, so I filled that with NOPs and shellcode. (The screen data starts
at 0x1C80 in the figure memory, and maps to 0x1000 in the Tamagotchi memory, for people trying this
at home.) After several tries and some fiddling the shellcode, index 0xD4 lead to very unreliable code
execution. This code execution allowed me to perform a complete ROM dump of the Tamagotchi, which
in turn led to the ability to better analyze the bug.

The following code contains the vulnerability. Please note that the current state (current_state_22)
is set from the game index without validation.

seg004 : 4E2E LDA byte_1A4
seg004 : 4 E31 BEQ loc_44E39
seg004 : 4 E33 LDA gameindex2
seg004 : 4 E36 JMP loc_44E3C
seg004 : 4 E39 LDA gameindex1
seg004 : 4E3C CLC
seg004 : 4E3D ADC #$27 ;
seg004 : 4E3F STA current_state_22
seg004 : 4 E41 JMP locret_44E4C

5The important index is located at address 0x18 in figure memory.

7

The main Tamagotchi execution loop checks the state based on a timer interrupt, then makes a state
transition if the state has changed. The state transition is as follows.

ROM:EFE8 LDX current_state_22
ROM:EFEA LDA $F00E ,X
ROM:EFED STA change_page
ROM:EFF0 STA current_page
ROM:EFF2 BEQ loc_F001
ROM:EFF4 LDA #0
ROM:EFF6 STA off_34
ROM:EFF8 LDA #$40 ; ’@ ’
ROM:EFFA STA off_34+1
ROM:EFFC LDA current_state_22
ROM:EFFE JMP (off_34)

In essence, the Tamagotchi looks up the page of the state in a ta-
ble at 0xF00E, then jumps to address 0x4000 in that page. Look-
ing at this code, it is clear why my first exploit was unreliable.
0xD4 + 0xF00E + 0x27 is 0xF109, which resolves to a value of 0x3c.
Since the Tamagotchi only has 19 pages, this is an invalid page number.
Testing what would happen if the MCU was provided an invalid page,
addresses 0x4000 and up resolved to 0xFF.

This means that there are two possibilities of how this exploit works.
Either the memory addresses are floating and sometimes end up with
values that, when executed, send the instruction pointer to the LCD
RAM, or the undefined instruction 0xFF, when executed, puts the
instruction pointer into the right place, sometimes. Barring bizarreness
beyond my wildest imagination, neither of these possibilities would
allow for the exploit to be made more reliable though manipulation of
the figure data.

Instead, I looked for a better index to use, which turned out to be
0xCD. 0xCD + 0xF00E + 0x27 is 0xF102, which maps to part of the
LCD segment table, which has a value of 4. Jumping to 0x4000 in page
4 immediately indexes into another page table.

seg004 :4000 LDA #$D
seg004 :4002 STA $34
seg004 :4004 LDA #$40 ; ’@ ’
seg004 :4006 STA $35
seg004 :4008 LDA $22
seg004 :400A JMP jump_into_table_D27F

This index is also out of range, and indexes into a code section:

seg004 :41F5 INC $11E

Interpreted as a pointer, however, this value is 0x1EEE. The LCD RAM range is from 0x1000 to
0x1200, but fortunately, bits 2-7 of the upper byte of addresses in the 0x1000-0x2000 range are ignored,
so reading 0x1EEE returns the value at 0x10EE. This means that playing a game with the index of 0xCD
will execute code in the LCD RAM every time!

While reading POC‖GTFO obligates you to share a copy with a neighbour, trying this on your own
Tamagotchi is only strongly recommended. Further instructions can be found by unzipping the PDF of
this issue.

8

“The ancient teachers of this science promised impossibilities and performed nothing. The modern
masters promise very little; they know that metals cannot be transmuted and that the elixir of life is a
chimera but these philosophers, whose hands seem only made to dabble in dirt, and their eyes to pore
over the microscope or crucible, have indeed performed miracles. They penetrate into the recesses of

nature and show how she works in her hiding-places. They ascend into the heavens; they have
discovered how the blood circulates, and the nature of the air we breathe. They have acquired new and
almost unlimited powers; they can command the thunders of heaven, mimic the earthquake, and even

mock the invisible world with its own shadows.” – Shelley 3:16

9

5 Some Shellcode Tips for MSP430 and Related MCUs
by Travis Goodspeed

Howdy y’all,
I’m writing this to introduce you as an exploiter of desktops and servers to some of the tricks that

I’ve used in writing shellcode for microcontrollers, with examples from the MSP430 in particular. You
can try most of these examples on a GoodFET or Facedancer board, and many of them are portable to
other embedded targets, such as AVR or the lower-end ARM devices.

5.1 Flash Patching is Weird
In Unix and Windows, you are used to processes operating within virtual memory. On a microcontroller,
they often run directly in physical memory, so the rules are rather different. It helps to take the German
approach, learning all of the rules to get away with things that ought to be illegal.

The first difference you’ll run into on the MSP430 is that code runs in-place from Flash memory. Flash
has some very different rules from RAM, because it’s a different technology and a proper programmer
knows better than to rely on layers of abstraction.

• Flash is erased to ones as segments or globally, never as bytes or words.

• Flash writes clear bits at word granularity, but can’t set them.

• Flash writes require a safety password to be written into a register.

Thus, to do a normal write to Flash, an MCU programmer is taught to first disable the Flash write
protection and configure the right special-function registers, then erase the entire page, then rewrite
the entire page. Many programmers never bother, opting for an external memory chip or relying on
battery-backed RAM.

To make smaller changes, there’s another option. After disabling Flash, a neighbor could clear
individual bits rather than rewriting the entire page. This is handy for regular developers to do what’s
called EEPROM Emulation, which emulates memory that can be written bytewise, but it’s also damned
useful when patching code in-place.

Figure 1: MSP430 Instruction Set, from the MSP430X2xx Family User’s Guide

For example, Figures 1 and 2 show that 0x3Cxx is an unconditional Jump while 0x38xx is a conditional
Jump if Less Than instruction. If we overwrite a JMP instruction with 0x3BFF, it will have the effect
of bitwise ANDing that instruction with 0x3BFF, changing the 3C opcode to a 38 while retaining the
jump offset.

10

Figure 2: MSP430 Jump Instructions, from the MSP430X2xx Family User’s Guide

Since MSP430 instructions are 16-bit word aligned, the 10-bit PC offset is multiplied by two and
then added to the program counter. 0x3FFF is an unconditional jump backward by one word, or an
unconditional infinite while loop. If you zero-out the offset by overwriting the instruction with 0x3C00,
you can turn any jump instruction into a NOP.

When attacking a poorly protected bootloader, you might find yourself with the ability to write and
to checksum, but not to read. If you can write without erasing, then writing all 1’s with a single 0 will
change the checksum if and only if that bit previously was a 1. Repeating for each bit of Flash is slow,
but it might get you a firmware dump.

5.2 Efficient Shellcode
Quite often, the first thing you’ll do with shellcode is to dump out the
state of the microcontroller being attacked. It’s worth studying ways
to make that code in as few bytes as possible, as a microcontroller
generally processes very small packets and you won’t have room for
anything fancy.

To quickly dump memory on an architecture that you don’t know
very well, it helps to have simple code that already has its environment
configured. The code should be completely oblivious to timing, and it
should access as few structures as possible. It should also be portable,
requiring neither knowledge of its position in memory nor knowledge
of the specifics of the rest of the device motherboard at compile time.

My solution is to blink the LEDs, half with a clock and half with
data, to dump all of the memory to an SPI sniffer. The LEDs that
light up with consistent brightness are the clock, while those that spo-
radically become very bright or very dim are the data. Tapping one of
each with my handy Saleae Logic analyzer gives me a firmware dump.

5.3 Mask ROMs have Useful Gadgets
In my WOOT ’09 paper with Aurélien Francillon, we toyed around with using the MSP430’s BSL
(BootStrap Loader) ROM to aid in exploiting an unknown executable.6 That paper concerns exploiting
firmware without having a copy, but I’ll recount one of its tricks here.

The MSP430 BSL has two entry points. The first is the Hard Entry Point, whose address is always
stored at 0x0C00. By twiddling the reset and test pins with proper timing, the chip will boot from this
address instead of from the RESET handler in the interrupt table.

The second entry point is called the Soft Entry Point, and it is rather poorly documented. The
original idea was that a program could return into the bootloader ROM by branching to the address
stored at 0x0C02, with some of the initialization routines skipped. One of these routines is the instruction
that initializes the register holding password protection, so by setting or clearing a bit in that register,
the calling application can enable or disable password checking.

While the soft entry point is sometimes useful to an MSP430 developer, it’s damned useful for an
attacker. On an MSP430F1612, my favorite shellcode for dumping firmware is a bit like the following,
which assembles to just six bytes of memory.

mov #0xFFFF, r11 ; ; Di sab le BSL password p ro t e c t i on .
br &0x0c02 ; ; Branch to the BSL So f t Entry Point

6Half-Blind Attacks: Mask ROM Bootloaders are Dangerous, WOOT 2011, Goodspeed and Francillon

11

5.4 Unused RAM is Not Erased at Reboot
In larger machines, memory which is not used by a process is not mapped into that process’s virtual
memory. In microcontrollers, it is still accessible, since the code is running with physical rather than
virtual memory. Rather than reset every RAM word during a reboot, most microcontrollers simply leave
it alone and let the program take care of clearing its values.

Now an MSP430 application is compiled with a view of memory that it sparingly uses. GCC, for
example, will allocate code (.text) into Flash from the lowest Flash address in its linker script.

RAM is only used by the compiler for data, never for code, unless the linker script is carefully and
intentionally hand-crafted. It is divided into two segments by the linker, .data and .bss. The .data region
is initialized by copying the data over from Flash, while the .bss region is initialized to zero through a
simple while() loop. This provides us with two nifty tricks.

The first trick is that, given a poor POKE gadget, we can slowly place a large chunk of shellcode into
upper regions of RAM. For example, an MSP430F2618 has enough RAM to fit the GoodFET firmware,
so a device using that chip could have the GoodFET firmware itself act as second-stage shellcode! Smaller
chips, such as the MSP430F2274, could have a Flash driver loaded into unused RAM, with third-stage
shellcode written into unused Flash.

5.5 Where Flash is Protected, RAM is Not
Recalling that unused RAM is never cleared by an application, let’s abuse that behavior in a second way.

Back in 2010, Texas Instruments released their
ZStack implementation of Zigbee for use with the
Smart Energy Profile. I found that the random
number generator was crap, and they patched that
bug. So how was little ol’ me supposed to get
more Zigbee Smart Energy Profile keys without a
Certicom license?

The remaining vulnerability was a combination
of the BSL ROM with the ZStack firmware. ZS-
tack relied upon the BSL ROM and the JTAG
fuses to prevent keys and firmware from being read
out of the device, but the BSL ROM was only in-
tended to keep code from being read out of the de-
vice. A second bug in that Zigbee stack was that
keys were stored in the .data segment instead of
the .text segment, so the firmware would copy the
key from Flash into RAM during startup.

As a quick recap, the bootloader requires a
password to run most commands, but some are
unprotected. Among them are the ones to supply
a password and the Mass Erase command, which
wipes all of Flash and resets the password, which
is stored in Flash, to 32 bytes of 0xFF.

So to get keys out of locked ZStack devices, I just needed to use the serial bootloader, first sending
the command to Mass Erase and then–without losing power–to supply a password of all 0xFF and then
to dump all of RAM to disk. A little bit of RAM is overwritten by the BSL’s call stack, but only the
lowest 32 bytes. Everything else is saved.

— — — —

I hope you find these tricks to be handy. If you’d like to hear more, buy me a nice India Pale Ale.
— Travis

12

Who would remember Noah if he had just bought a boat from the store?
Build your own fucking birdfeeder.

13

6 Calling putchar() from an ELF Weird Machine.
by Rebecca .Bx Shapiro

Pastor’s Exordium.7 Behold the daily miracle of the loader: it takes stored dumb bytes and makes
them into a new process or splices them into a running one. The Pharisees may dismiss it as mere
engineering, but verily I tell you, long after their textbooks are forgotten the loader and its Phrack exegesis
will shine on, for there is more wisdom gathered in its metadata structures than can be found in a dozen
OS textbooks.

Yet there is more! The binary metadata structures consumed by the loader are actually a program
for the loader. A weird machine devotee will readily recognize that these data drive all the actions behind
the loader’s miracle; they can be thought of as executable bytecode for the loader, which can be thought
of as a virtual machine. And just as assembly with all its glorious movs, adds, and calls is encoded in
opcodes and offsets, ABI metadata entries are encoded in types and addends, except that they are split
into symbols and relocation structures, residing in different sections of the binary but cross-referenced by
their entry numbers in the respective sections.

In this follow-up to earlier work, Bx shares more nifty tricks of programming the ELF loader with
relocation and symbol data as weird assembly. This work is as advanced as it is neighborly, so please read
her articles from WOOT 2013 and POC‖GTFO 00:05 to learn how to build a Turing-complete virtual
machine out of an ELF loader and how to extend that VM to call native code. In this sermon, Bx shows
us how to make system calls from ELF relocation and symbol data; full shellcode is left as an exercise to
the faithful! –PML

— — — —

Welcome back, friends. In the first edition of POC‖GTFO, I demonstrated how we can craft ELF
relocation metadata to instruct the loader to make libc calls. The method I demonstrated was fairly
limited and lacked the ability to do useful things such as control the arguments passed to the called
function. Thus I ended the article with an unsolved challenge: How can metadata control the arguments
passed to the metadata-initiated function call?

In this sermon, I will partially answer that challenge by demonstrating how to control a call to
putchar() using relocation metadata.

PUTCHAR(3) bx’s Programmer’s Manual PUTCHAR(3)

SYNOPSIS
#include <stdio.h>

int putchar(int c);

DESCRIPTION
putchar(c) writes the character c, cast to an unsigned char, to stdout.

RETURN VALUE
putchar() returns the character written as an unsigned char cast to
an int or EOF on error.

puts() and fputs() return a nonnegative number on success, or EOF on error.

One may ask “why focus on putchar()?” The answer is simple. Because putchar() is required in
order to implement a full, honest-to-manul brainfuck-to-ELF metadata compiler. You may have noticed
that putchar() requires only a single (byte-long) argument and have thought to yourself “I only have
control over one argument!? How will that help me take over the world?” Don’t worry your pretty little

7How is a sermon like a binary file? Both have prescribed parts that follow each other in a conventional order, but may
be skipped or used creatively by an extra neighborly preacher. Convention is there to help, but it’s the result that matters.
So just think of exordium as the ELF/ABI header or vice versa and bear with the Preacher as you bear with your binary
toolchain! –PML

14

nose off. I will provide insight on how you can control not one, not two, but three (ish) arguments to a
function call!

Instead of asking how one can control the first argument to a function call, one should really be
asking how can we be the last to set the RDI register (the first argument to a function as heralded by
the System V amd64 ABI gospel 3:2:3, aka amd64 calling convention8) before our metadata-driven libc
function is called.

It turns out that the loader generally processes each relocation entry within a single function, although
there are a few exceptions to this rule. This means that, generally speaking, the arguments that are
in place during any metadata-driven function call are the arguments that were passed to the currently
executing function processing the relocation entries. An exception to this “rule” occurs when relocation
entries of type R_X86_64_COPY are processed. These types of relocation entries cause the loader to
make a call to memcpy(), thus changing the values of RDI, RSI, RDX, which by convention hold the first
three arguments to a function call, and in the case of a call to memcpy(void *dest, const void *src,
size_t n) hold dest, src, and size, respectively.

Now imagine that the dynamic loader has been processing our relocation entries and now the next
dynamic symbol, pointed to by the next relocation entry r0 to be processed, looks like this:

s0 = {..., st_value = &putchar, st_size = 0x0}

(Note: We have already shown how to calculate the address of libc functions in past work and will
not cover how to do that in this sermon. See our WOOT article and POC‖GTFO 00:05 for a thorough
explanation.)

The following three relocation entries (represented here as C structs, but of course encoded in a .rel
section) will make a call to putchar(), to print the character of our choice:

r0 = {r_offset=<&r2->r_addend>, r_symbol=0, r_type=R_X86_64_64,
r_addend=0x0}

r1 = {r_offset=<char to print>, r_symbol=0, r_type=R_X86_64_COPY,
r_addend=0x0}

r2 = {r_offset=&r2, r_symbol=0, r_type=R_X86_64_IRELATIVE,
r_addend=<&putchar (filled in by r0)>}

The purpose of r0 is to write the address of putchar() into r2’s addend. The purpose of r1 is to
setup RDI (the first argument) for r2’s function call. When it is processed, memcpy() is called with the
following arguments: memcpy(<char to print>, &putchar, 0). More generally, the call to memcpy()
looks like: memcpy(r1->r_offset, s0->st_value, s0->st_size).

After r1 is processed, 0 byes are copied from &putchar to <char to print>9, and RDI=<char to
print>, RSI=&putchar, and RDX=0. r2, of type R_X86_64_IRELATIVE, instructs the loader to treat its
addend as a function pointer, making a call to it(!). How’s that for a relocation-based weird assembly
instruction? But, one problem: relocation entries of type IRELATIVE do not support functions that
require arguments (meaning that there is no conventional way to pass them). Still, the actual function
doesn’t care and will happily reach for its arguments in RDI etc.—and, luckily, we were able to set up
the arguments via our relocation-entry crafted call to memcpy() via r1! Hence r2 will cause the loader
to call putchar(), which will consult RDI to determine what character to print to stdout.

You may see the potential downfalls of manufacturing a call to memcpy() in order to put arguments
in place for the following library call. For example, if the third argument is not zero, you need to
start worrying about your first two arguments pointing to read/writable memory. However, it may be
comforting to know that the value returned by the function call is written into a spot of your choosing
(in r2->r_offset).

If you would like to further your studies of metadata-driven library calls, please refer to the elf-bf-
tools repository on github.10 May the Great Manul keep and protect you from the Weird Machine. And
let us say, amen.

8http://www.x86-64.org/documentation/abi.pdf, pages 17-21, Fig. 3.4—and don’t ask us in what world RDI, RSI, RDX
might stand for A, B, C or suchlike. This program may be brought to you by the register RDI anyhow, but let’s just say if
the Manul meets the amd64 Big Bird there might be feathers flying.

9Note, memcpy would treat it as a destination pointer, but luckily nothing gets copied here, and memcpy implementation
isn’t paranoid about checking its arguments, since a bad pointer would trap anyway.

10See syscall/putchar in https://github.com/bx/elf-bf-tools .

15

446 case R_X86_64_IRELATIVE:
447 value = map->l_addr + reloc->r_addend;
448 value = ((Elf64_Addr (*) (void)) value) ();
449 *reloc_addr = value;
450 break;

429case R_X86_64_COPY:
430 if (sym == NULL)
431 /* This can happen in trace mode if an object could not be (gdb)
432 found. */
433 break;
434 memcpy (reloc_addr_arg, (void *) value,
435 MIN (sym->st_size, refsym->st_size));
436 if (__builtin_expect (sym->st_size > refsym->st_size, 0)
437 || (__builtin_expect (sym->st_size < refsym->st_size, 0)
438 && GLRO(dl_verbose)))
439 {

440 fmt = ‘‘\
441%s: Symbol ‘%s’ has different size in shared object, consider re-linking\n’’;

(gdb)
442 goto print_err;
443 }

444 break;
445# endif

Breakpoint 6, elf_machine_rela (sym=0x601030, reloc_addr_arg=0x601241, version=<optimized out>,

reloc=0x601318, map=0x555555773228) at ../sysdeps/x86_64/dl-machine.h:434
434 memcpy (reloc_addr_arg, (void *) value,

(gdb) print/x *reloc
$6 = {r_offset = 0x601241, r_info = 0x5, r_addend = 0x0}
(gdb) print refsym->st_size
$7 = 0
(gdb) print sym->st_size
$8 = 0
(gdb)
(gdb) print/x reloc_addr_arg
$9 = 0x601241
(gdb) x/gx reloc_addr_arg

0x601241:0x0000000060103800
(gdb) x/gx value

16

0x7ffff7ce1184:0x011d8b48f8894153
(gdb) print/x $rsi
$5 = 0x7ffff7ce1184
(gdb) print $rdx
$10 = 0

(after memcpy)
(gdb) x/gx 0x601241

0x601241:0x0000000060103800
(gdb) print/x $rdi
$14 = 0x601241
(gdb) c
Continuing.

Breakpoint 5, elf_machine_rela (sym=0x601030, reloc_addr_arg=0x6012e8, version=<optimized out>,
reloc=0x601330, map=0x555555773228) at ../sysdeps/x86_64/dl-machine.h:448
448 value = ((Elf64_Addr (*) (void)) value) ();

(gdb) print/x $rdi
$15 = 0x601241
(gdb) print/x value
$16 = 0x7ffff7ce1184
(gdb) x/10i value

0x7ffff7ce1184:push %rbx
0x7ffff7ce1185:mov %edi,%r8d
0x7ffff7ce1188:mov 0x313c01(%rip),%rbx # 0x7ffff7ff4d90
0x7ffff7ce118f:mov (%rbx),%eax
0x7ffff7ce1191:test $0x80,%ah
0x7ffff7ce1194:jne 0x7ffff7ce11ea
0x7ffff7ce1196:mov %fs:0x10,%r9
0x7ffff7ce119f:mov 0x88(%rbx),%rdx
0x7ffff7ce11a6:cmp 0x8(%rdx),%r9
0x7ffff7ce11aa:je 0x7ffff7ce11df

(gdb) print/x $rsi
$4 = 0x7ffff7ce1184

17

Just as Jonah was told to preach in Nineveh,
Pastor Laphroaig was once called to preach to the harlots and tax collectors at RSA

Asked about the experience, he said that, like Jonah,
he’d rather be thrown overboard than go back

18

7 POKE of Death for the TRS 80 Model 100
by Dave Weinstein

In his Epistle on the Divinity of Languages, PoC‖GTFO 01:07, Pastor Manul Laphroig wrote of the
merits of PEEK and POKE in teaching the youth of a previous generation how to fiddle with hardware
in ways the hardware did not want to be fiddled.

And so I offer to you a short example of the wonders of POKE as applied to interrupt handlers.
In 1983, Radio Shack introduced the Model 100, a copy of the Kyocera Kyotronic 85. With its 40

character wide 8-line screen, built-in 300 baud modem, and up to 32k of RAM, it was a state of the art
laptop, capable of generating endless questions from passengers and crew on any flight.

In high memory, there is a vector at 0xF5FF, which allows a program to hook the keyboard/clock
interrupt. Every 4 ms or so, the timer interrupt fires, and the keyboard is polled. By default, the vector
is a simple RET NOP NOP.

As it happens, the very next vector in high memory is a JMP to handle the low-power situation and
shut the computer down.

0 x f 5 f f 0xc9 (RET)
0 xf600 0x00 (NOP)
0 xf601 0x00 (NOP)
0 xf602 0xc3 (JMP 0x1451)
0 xf603 0x31
0 xf604 0x14

The function at 0x1431 will turn the computer off, as the code flows to the actual shutdown sequence
at 0x1451:

0x1451 d i
0x1452 in 0xba
0x1454 o r i 0x10
0x1456 out 0xba
0x1458 h l t

Should we replace the RET at 0xF5FF (62975) with a NOP, the Model 100 will power down every time
the timer interrupt fires. The only way to restore functionality is to do a cold restart of the machine,
which, if I recall correctly, in this case requires removing the batteries, unplugging the machine, and
disabling the internal NiCad battery. All of the contents would be lost. For those who do not know what
has been done, the computer shows every sign of having simply died.

POKE 62975, 0
The only way to prevent it is to prevent access to the BASIC interpreter. Which is possible, but is a

discussion for another time.

Figure 3: POKE 62975, 0

19

Pastor Laphroaig tells us that the news is stranger than fiction,
because unlike the news, fiction requires an element of truth.

20

8 This OS is also a PDF
by Ange Albertini

A careful reader may have noticed that a bootable OS image was hidden in the last issue of PoC ‖GTFO,
as one of the files in its dual PDF/ZIP structure (if you haven’t, download and extract it now!). This
time, though, let’s hide it in plain sight. You will find by running ‘qemu-system-i386 -fda pocorgtfo02.pdf’
that the PDF file you are reading is also a bootable disk image.

8.1 Requirements
To combine two file types, we first need to list the requirements of each format and then produce a single
file that meets both sets of requirements with no conflicts.

What makes a bootable disk image? An X86 machine begins booting by copying the first 512 byte
sector, the Master Boot Record, into RAM and executing it. The requirements for a functional MBR
are simple:

• 16 bit x86 code starts at offset 00.

• It will be executing at the 0000:7c00 address in RAM.

• It must be 512 bytes long, ending with the signature 55, AA

• Labels and primary partition tables are optional, but can go within this sector.

• It must contain code that finds and loads into RAM the code for the next boot stage (such as an
OS loader).

PDF files are a mixture of text and binary fragments, which are parsed from the start of the file and
delimited by words and newlines. The requirements for a valid PDF are also simple and surprisingly
flexible:

• It is initially parsed as text.

• The signature “%%PDF-” must be present within the first 1024 bytes. It can be present there twice
or more.

• Comment lines begin with ‘%’, which is 25 in hex.

• Binary characters other than CRLF are acceptable in a comment.

• “Multi-line” binary objects or simply larger objects can also be stored in object streams, which are
declared like this:

<obj number> <rev i s i on > obj
<<>>
stream
<stream content>
endstream
endobj

8.2 Strategy
In most cases, we can freely prepend anything at the start of the file as long as the above requirements
are fulfilled. Luckily, the % comment character is 0x25, which encodes nicely as an x86 and instruction.
Thus, the head of the file can be 25FFFF: and ax, 0xffff, which also starts a PDF comment. We can
then add a jump into the next part of the code, which will be stored in a dummy object stream below,
and then finish our first line. Adding a PDF signature will prevent any potential problem in case the
stream object is too long: it can then contain anything, of any length, as long as it doesn’t contain the
‘endstream’ keyword.

21

; t h i s w i l l encode as ‘%\ x f f \ x f f \xeb\x21 ’ , a comment l i n e
and ax , −1
jmp s t a r t

%PDF−1.5

999 0 obj
<<>>
stream

code :
. . .

; put the 55AA s i gna tu r e at the end o f the 512 block
t imes 200h − 2 − ($ − $$) db 0cch

db 55h , 0aah

endstream
endobj

8.3 An Unexpected Challenge
This was almost too easy, but there is a caveat to keep in mind. I’ll mention it here to save you the
headache when reproducing these results.

This new challenge emerged as I was testing the bootable PDF files with different PDF readers.
Since we pre-pend our MBR without altering the contents of the original document, the original’s cross-
reference table XREF is no longer in sync with the actual file offsets. Technically, this makes the XREF
tables corrupted.

Corrupted XREFs are so common that they are usually transparently recovered by all PDF readers,
even picky ones such as PDF.JS. However, your pdflatex may generate a document based on the opti-
mized PDF 1.5 specification, where the XREF is stored not in cleartext as in PDF 1.4, but rather as a
separate, compressed object. This configuration choice is made for the user by the TeX distribution, so
even a freshly updated pdflatex install may generate PDF 1.4 documents.

Even when compressed, corrupted XREFs are recovered by some readers, such as GS and Sumatra.
Unfortunately, Foxit, Adobe, Firefox, Chrome, and Poppler-based readers—such as Evince and Okular—
would reject such a document. Although rejecting corrupted documents out of hand is the best strategy,
even Pastor Laphroaig would be pretty pissed if folks couldn’t read his epistles because of this.

A simple and elegant workaround that achieves 100% reader compatibility with our MBR PDF is to
make sure that, even if your pdflatex distribution generates a 1.5 format document, it doesn’t compress
the XREF. This is easily done by adding the following command to your LATEX source.

\ pd fob j compre s s l eve l=0

This command will cause pdflatex to store non-objects uncompressed while still taking advantage of
other 1.5 features such as reducing document bloat. I should add that, although the fix looks trivial,
finding the real cause and the most elegant solution was a challenge.

— — — —

Enjoy booting this PDF, and be sure to share copies—both electronic and paper—so that your
neighbors can enjoy it as well!

22

00000000 25 ff ff e9 fc 00 0a 25 50 44 46 2d 31 2e 35 0a |%......%PDF-1.5.|
00000010 39 39 39 39 20 30 20 6f 62 6a 0a 3c 3c 3e 3e 0a |9999 0 obj.<<>>.|
00000020 73 74 72 65 61 6d 0a 0a 50 6f 43 20 6f 72 20 47 |stream..PoC or G|
00000030 54 46 4f 20 49 73 73 75 65 20 30 78 30 32 0a 0d |TFO Issue 0x02..|
00000040 62 79 20 52 74 2e 20 52 76 64 2e 20 50 61 73 74 |by Rt. Rvd. Past|
00000050 6f 72 20 4d 61 6e 75 6c 20 4c 61 70 68 72 6f 61 |or Manul Laphroa|
00000060 69 67 20 61 6e 64 20 46 72 69 65 6e 64 73 0a 0a |ig and Friends..|
00000070 0d 00 59 6f 75 20 68 61 76 65 20 62 65 65 6e 20 |..You have been |
00000080 65 61 74 65 6e 20 62 79 20 61 20 67 72 75 65 2e |eaten by a grue.|
00000090 20 20 53 6f 72 72 79 2e 0a 0d 54 72 79 20 74 68 | Sorry...Try th|
000000a0 69 73 3a 20 71 65 6d 75 2d 73 79 73 74 65 6d 2d |is: qemu-system-|
000000b0 69 33 38 36 20 2d 66 64 61 20 70 6f 63 6f 72 67 |i386 -fda pocorg|
000000c0 74 66 6f 30 32 2e 70 64 66 0a 0d 00 31 29 20 52 |tfo02.pdf...1) R|
000000d0 65 61 64 69 6e 67 20 6b 65 72 6e 65 6c 20 66 72 |eading kernel fr|
000000e0 6f 6d 20 64 69 73 6b 2e 0a 0d 00 32 29 20 45 78 |om disk....2) Ex|
000000f0 65 63 75 74 69 6e 67 20 6b 65 72 6e 65 6c 2e 0a |ecuting kernel..|
00000100 0d 00 be 27 7c e8 3e 00 31 c0 8e d8 30 d2 cd 13 |...’|.>.1...0...|
00000110 0f 82 97 00 be cc 7c e8 2c 00 b8 e0 07 8e c0 31 |......|.,......1|
00000120 db b8 10 02 b5 00 b1 02 b6 00 b2 00 cd 13 72 7b |..............r{|
00000130 b8 00 7e 89 c6 e8 38 00 be eb 7c e8 08 00 ea 00 |..~...8...|.....|
00000140 00 e0 07 e8 65 00 ac 3c 00 74 06 b4 0e cd 10 eb |....e..<.t......|
00000150 f5 c3 89 c3 c1 e8 0c e8 39 00 89 d8 c1 e8 08 e8 |........9.......|
00000160 31 00 89 d8 c1 e8 04 e8 29 00 89 d8 e8 24 00 c3 |1.......)....$..|
00000170 31 c9 ad e8 dc ff e8 2c 00 83 c1 02 81 f9 00 02 |1......,........|
00000180 75 f0 c3 30 31 32 33 34 35 36 37 38 39 41 42 43 |u..0123456789ABC|
00000190 44 45 46 50 56 83 e0 0f 05 83 7d 89 c6 ac b4 0e |DEFPV.....}.....|
000001a0 cd 10 5e 58 c3 b8 20 0e cd 10 c3 be 72 7c e8 95 |..^X..r|..|
000001b0 ff eb fe ea 00 00 ff ff cc cc cc cc cc cc cc cc |................|
000001c0 cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc |................|
000001d0 cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc |................|
000001e0 cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc |................|
000001f0 cc cc cc cc cc cc cc cc cc cc cc cc cc cc 55 aa |..............U.|

Hey kids! Can you color the bytes of this MBR to indicate what’s going on?

23

CALC.EXE‖GTFO

24

9 A Vulnerability in Reduced Dakarand from PoC‖GTFO 01:02
by joernchen of Phenoelit

I’m not a math guy, so this is a poor man’s RNG analysis. Try it yourself at home!

9.1 Introduction
In PoC‖GTFO 01:02, Dan Kaminsky proposed the following code for use as a Random Number Gen-
erator, arguing that the phase difference between a fast clock and a slow clock is sufficient to produce
random bits in a high level language. This is a reduced version of his Dakarand program, with the intent
of the reduction being that if there is any vulnerability within the code, that vuln ought to be exploitable.

// These f unc t i on s form an RNG.
f unc t i on m i l l i s () {return Date . now () ; }
func t i on f l i p_co in ()

{n=0; then = m i l l i s ()+1; while (m i l l i s ()<=then) {n=!n ; } return n ; }
func t i on get_fa i r_bi t ()

{while (1) {a=f l i p_co i n () ; i f (a!= f l i p_co i n ()) {return (a) ; } }}
func t i on get_random_byte ()

{n=0; b i t s =8; while (b i t s −−){n<<=1; n|= get_fa i r_bi t () ; } return n ; }

// Use i t l i k e t h i s .
report_conso le = func t i on () {while (1){ conso l e . l og (get_random_byte ()) ; } }
report_conso le () ;

Actually the above code boils down to the function flip_coin, which takes a boolean value n=0 and
continuously flips it until the next millisecond. The outcome of this repeated flipping shall be a random
bit. We neglect the get_fair_bit function mostly in this analysis, as it just slows down the process and
adds almost no additional entropy. For gathering random bits we are just left with the clock ticking for
us.

9.2 A Naive Analysis
In order to analyze the output of the RNG we need some of its output,
so I simply put up a small HTML piece which would pull out 100.000
random bytes out of the above RNG and log it to the HTML document.
Then a severe 90-minute DoS on my Firefox 24 happened, after which I
managed to copy and paste one hundred thousand uint8_t results into
a text file.

After messing with several tools like ministat, sort and uniq I could
show with the following ruby script that this RNG (on my machine)
has a strong bias towards bytes with low hamming weights:

#!/ usr / b in /env ruby

f=F i l e . open (ARGV[0])

h = Hash . new
f . each_l ine do |m|

n = m. to_i
i f h [n] . ni l ?

h [n]=1
else

h [n] = h [n]+1
end

end

t = h . sort_by do | k , v | v end

25

t . each do | a |
puts "Num:\ t#{a [0] } "+

"\tCount : \ t#{a [1] } "+
"\tWeight : \ t#{a [0] . to_s (2) . s p l i t ("") . r e j e c t { | j | j=="0" } . count}"

end

The shortened output of this script on the 100k 8bit numbers is as follows. Note that the heavy
hamming weights, like 11111111 are least common and the light hamming weights, like 00000000 are
most common.

Value Count Weight
255 22 8
254 23 7
251 28 7
253 29 7
127 32 7
239 34 7
191 34 7
223 36 7
247 37 7
.
132 1173 2
64 1821 1
32 1881 1
16 1922 1
1 1934 1
8 2000 1
4 2042 1
2 2133 1

128 2145 1
0 3918 0

The table lists the Number which is the output of the RNG along with this number’s hamming weight
as well as the count of this number in total within the 100.000 random bytes. For a random distribution
of all possible bytes we could expect roughly a count of 390 for each byte. But as we see, the number 0
with the hamming weight 0 peaks out with a count of 3918, whereas 255 with the hamming weight of 8
is generated 22 times by the RNG. That’s not fair!

9.3 My fair bit is not fair!
Real statistical analysis of an RNG is hard, and I will not attempt it here.
Still, looking at a few simple distributions might give us a hint (alas, only a
hint) of what might behind the unfairness.

First, a short recap on how this RNG works:
We’ve got a 1 millisecond timeslot from t0 to t1, where at t1 the flip_coin

method will stop. The first call to get_random_byte can happen anywhere
between t0 and t1:

Let’s say it is here:

Now the algorithm happily flips the bit until t1 and hands over the result
of this flipping as a random bit (note that we’re omitting get_fair_bit here).

26

Although we cannot predict the output of a single run of flip_coin, things get a bit more predictable
when we make a lot of consecutive calls to flip_coin. Let’s say we need the time d to process and store
the result of flip_coin. So the next time we flip_coin we are at t1 + d1:

Now the RNG flips the coin until t2 in order to give us a random bit. As we are calling the RNG
more than twice in a row, the next flip_coin is at t2+d2, and so on.

The randomness and fairness of the RNG’s random bit depends on how fairly and randomly we get
odd and even values of d, since that the same amount of flips yields the same bit as we have a static start
value of 0/false.11 So it makes sense to look at the distribution of d. To visualize this and to compare
it with another browser I came up with this slight modification of the RNG that counts the flips and
records them right inside the HTML page:

f unc t i on f l i p_co i n ()
{ i =0;n=0; then=m i l l i s ()+1; while (m i l l i s ()<=then) {n=!n ; i++} return [n , i] ; }

func t i on get_fa i r_bi t ()
{while (1) {a=f l i p_co i n () ; i f (a [0] != f l i p_co i n () [0]) {return (a) ; } }}

func t i on do i t (){
var i = 10000 ;
while (i −−){

var d = document . getElementById (‘ ‘ t a r g e t ’ ’) ;
var content = document . createTextNode (get_fa i r_bi t () . t oS t r i ng () + ‘ ‘\n ’ ’) ;
d . appendChild (content) ;

}
}

Loading the page in Chromium and Firefox and throwing them into gnuplot, we get:

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10000 20000 30000 40000 50000 60000 70000

O
cc

u
rr

e
n
ce

s

Cycle Count

Firefox

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

O
cc

u
rr

e
n
ce

s

Cycle Count

Chromium

We can see that the graph for Chromium has a lot more variance in the number of coin flip within
a millisecond than that for Firefox. Although, strictly speaking, it might still be possible to get good
randomness with poor variance if the few frequent values were to alternate just so due to some underlying
scheduling magic, it seems reasonable to expect that the same magic would also increase the variance in
the flip numbers.

We can also see, with the help of simple UNIX tools, that Chromium counts do not peak out to a
certain value, unlike those of Firefox:

11The second coin flip in get_fair_bit complicates it a bit, but it cannot substantially improve the RNG’s entropy if it
lacks in the first place.

27

$ s o r t i t e r_F i r e f ox | uniq −c | s o r t −n
. . .
176 64683
181 64671
195 64673
195 64684
207 64717
217 64672
286 64718
318 64721
393 64719
405 64720

vs.

$ s o r t iter_Chromium | uniq −c | s o r t −n
. . .
15 45147
15 45282
16 44947
16 45004
16 45010
16 45076
16 45086
17 45059
17 45107
19 45092

9.4 Closing words
In conclusion we see that in Firefox under stress Dan’s RNG appears to fail at exactly the point he wanted
to use as the main source of randomness. The tiny clock differentials used to gather the entropy are
not given often enough in Firefox. There is still much room to stress this RNG implementation. Bonus
rounds would include figuring exactly what the significant difference between the Firefox and Chromium
JavaScript runtime is that causes this malfunction on Firefox. Also attacks on other JavaScript runtimes
would be interesting to see. It might even be the case that this implementation has different results
under different conditions with respect to CPU load.

A broader question occurs: The Dakarand RNG relies on what could be called a “code clock.” It may be
that in many kinds of environments stressed code clocks tend to go into phase with one another. Driven
by stress to seek comfort in each other’s rhythms, their chance encounters may grow into something more
close and intimate, grinding into periodic patterns. Which, of course, is bad for randomness. Can we
learn to tell such environments from others, where periodization with stress doesn’t happen? –PML

28

This page intentionally left blank.
Draw your own damned picture.

29

10 Juggernauty
by Ben Nagy

‘Twas UMBRA, and the STUNT WORMS
Did ZARF and CIMBRI in the SUEDE:
All GUPY were the PUZZLECUBES,
And the DIRESCALLOP AQUACADE.
“Beware the JUGGERNAUT, my son!
The RONIN bytes, the IMSI catch!
Beware the TUSKATTIRE, and shun
EGOTISTICAL GIRAFFE!”

He brought his FERRET CANNON forth:
yet SKOPE he not the RUTLEY spoor —
So browsed he to an onion,
And surfed awhile in Tor.

And, as in BOOTY Tor he surfed,
The JUGGERNAUT, with eyes of FLAME,
Leapt from the EVOLVED MUTANT BROTH,
with DISHFIRE as it came!

One, two! One, two! And through and through
The FERRET CANNON’s furred attack!
He left it dead, and with its LED
He rode his QUICK ANT back.

“And, has thou slain the JUGGERNAUT?
Come to my arms, my DANGERMOUSE!
OLYMPIC day! MESSIAH! MORAY!”
He TALKQUICK in his joy.

‘Twas UMBRA, and the STUNT WORMS
Did ZARF and CIMBRI in the SUEDE;
All GUPY were the PUZZLECUBES,
And the DIRESCALLOP AQUACADE.

30

“He that is without sin among you,
let him first cast a stone at her.”

31

11 A Call for PoC
by Rt. Revd. Pastor Manul Laphroaig

We stand, sit, or simply relax and chill on the shoulders of the giants, Phrack and Uninformed. They
pushed the state-of-the-art forward mightily with awesome, deep papers and at times even with poetry
to match. And when a single step carries you forward by a measure of academic years, it’s OK to move
slowly.

But for the rest of us dwarves, running around or lounging on those broad shoulders can be so much
fun! A hot PoC is fun to toss to a neighbor, and who knows what some neighbor will cook up with it
for the shared roast of the vuln-beast? A neighbor might think, “my PoC is unexploitable” or “it is too
simple,” but verily I tell you, one neighbor’s PoC is the missing cog for another neighbor’s 0day. How
much PoC is hoarded and lies idle while its matching piece of PoC wastes away in another hoard? Let’s
find out!

11.1 Author guidelines
Do this: Write an email telling our editors how to do reproduce *ONE* clever, technical trick from your
research.

Like an email, keep it short. Like an email, you should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—WORSE!—that we’ll be bored if you include a long
tutorial where a quick reminder would do. Don’t try to make it thorough or broad.

Do pick one quick, clever low-level trick and explain it in a few pages. Teach me how to implement
Dakarand in a 512-byte boot sector; teach me how to compose shellcode in Korean characters; or, teach
me how to patch Natalie’s Tamagotchi shellcode with nothing but MSPAINT.EXE. Don’t tell me that it’s
possible; rather, teach me how to do it myself with the absolute minimum of formality and bullshit.

Like an email, I expect informal (or faux-biblical) language and hand-sketched diagrams. Write it
in a single sitting, and leave any editing for our poor bastard of an editor to apply to later drafts.
Send this to pastor@phrack.org and hope that the neighborly Phrack folks—praise be to them!—aren’t
man-in-the-middling our submission process.

11.2 Other Departments
Editor at Large Rt. Revd. Pastor M.L.
Dept. of Bringing APT Home Cultural attaché of the 41st Directorate
Dept. of Funky File Formats Ange Albertini
Dept. of Fail FX of Phenoelit
Ethics Board The Grugq
Dept. of Busting BS pipacs
Poet Laureate Ben Nagy
Dept. of Drama Xbf
Dept. of PHY Michael Ossmann

32

