
21:12 NSA’s Backdoor of the PX1000-Cr
by Stefan Marsiske

I was supposed to be doing paid work, porting
some silly crypto protocol to browsers. This im-
plied getting dirty with JavaScript, the insanity of
fast changing and incompatible browser interfaces,
and other nasty beasts. Instead, I remembered an
exciting device from a Crypto Museum exhibition.
Behold the incredible PX 1000 Cr!

This diabolical pocket telex (an antique peer-to-
peer messaging thingy) from 1983 had a unique fea-
ture: it came with DES encryption and was mar-
keted toward small companies and journalists. Ac-
cording to some rumors, even the Dutch government
used some.

This freaked out the NSA, who sent an emissary
to buy up all the stock from the market and pres-
sured Philips to suspend sales of any such infernal
devices. In ’84, the NSA provided Philips with an
alternative encryption algorithm, which they were
happy to sell to the public. The astute reader, being
knowledgeable about the NSA’s backdooring efforts,
should immediately suspect that the new firmware
might be weird in some ways. I certainly suspected
a little mischief.

Exposition

Luckily, the fine people of the Crypto Museum have
not only dedicated a couple of pages to this device,
but they also published ROM dumps of both the
original DES-enabled device as well as the agency-
tainted device. They also published Ben Brücker’s
bachelor thesis,32 in which he reverse engineered
much of the DES variant of the device.

Although his thesis did not contain much source
code, it was enough of a head start that I could dive
directly into the encryption code.

My first steps were a mistake. I could not re-
sist the irony of using a tool from Fort Meade to
break their own backdoor, so I loaded the ROM into
Ghidra and started annotating memory addresses.
Unfortunately, Ghidra does not support this partic-
ular CPU. Luckily, IDA Pro has excellent support
for this chip.

The CPU in question is a Hitachi HD6303. It’s a
derivative of the Motorola 6800, which was a simple
but, for its time, powerful 8-bit processor. It only
has four 16 bit registers: a stack pointer, an instruc-
tion pointer, an index register to address memory,

32unzip pocorgtfo21.pdf brucker-thesis.pdf

Text Lite PX1000, Photo from the Crypto Museum
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and an accumulator. The latter can be accessed
as a 16 bit register or as two 8-bit registers. The
instruction set is simple, but certainly capable of
doing great things. Turns out the same CPU was
also used in the venerable Psion II Personal Digital
Assistant. This means there are fans of this device
who document, for example, the instruction set.33

The fine people of the Crypto Museum also pub-
lished an undated photocopied and scanned version
of the CPU datasheet.34 It took me a few days to
progress from realizing that some pages are missing,
to realizing that only the even-numbered pages are
missing, to realizing that the even-numbered pages
start half-way into the document in decreasing or-
der. All hints that the pages have been scanned
while holding discordian principles high. Hail Eris,
indeed!

Having all this supporting information available
made it an easy effort to work my way from the bi-
nary dump to an equivalent algorithm written in C.
However, there were some weird things. For exam-
ple, the encryption function starts by decrementing
the pointer to the plaintext by one. Why? And
where does that preceding byte come from, and
will people be offended if I index a C char array
with −1? Answering these questions meant I had to
either reverse engineer other parts of the ROM that
were unrelated to the cryptographic algorithm—
which I am too lazy to do—or I had to find another
way. Turns out the Psion II fans also created an em-
ulator: SIM68xx35 by Felix Erckenbrecht and Arne
Riiber.

One of the most active contributors to this fine
piece of software is Mayer Gabor, a Hungarian
name. As I’ve lived and founded a hackerspace in
that fine country, it wasn’t hard to confirm that
this contributor is a regular in such circles. After
a friendly chat on IRC, he also became interested in
the ROM dumps, but—just like Ben Brücker—he fo-
cused on the DES version. I complained about the
plaintext array that is indexed by −1, and that it
would be easy to figure out with a proper emulator.

One day later, Gabor shared a branch of
SIM68xx that adds support for running the PX1000
firmware, given a few minor patches for compatibil-
ity.36

There it was, a working emulator with a display
and keyboard. It turned out it is possible to set
the text-width. The −1 character is indeed encod-
ing the text-width, which is limited by the size of
the display to 40. It also turned out that the plain-
text is also post-fixed with another character, 0x8d,
before encryption. Here, the most significant bit,
which is never set in ASCII, marks the end of the
string. Thus 0x8d encodes both a newline character
and the EOS.

With the working emulator I was able to verify
my C interpretation of the encryption algorithm. It
was finally time to start breaking the crypto!

Dramatis Personae

The algorithm itself can be shown in a simplified
block diagram, helpfully provided by the Crypto
Museum.

33https://www.jaapsch.net/psion/mcmnemal.htm
34unzip pocorgtfo21.pdf hd6303rp.pdf
35git clone https://github.com/dg1yfe/sim68xx || unzip pocorgtfo21.pdf sim68xx.zip
36unzip pocorgtfo21.pdf sim68xx-px1000.zip

git clone https://github.com/iddq/sim68xx.git; cd sim68xx; git checkout origin/px1000
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The Mysterious Key
Remember, this device is a 7-bit ASCII input device.
How can someone enter an encryption key without
much hassle? The engineers came up with a nice
idea: Take an arbitrary 16 byte string, zero out the
top nibble of each byte, and only use the lower (and
slightly higher entropy) nibble, providing with a 64-
bit key, which is stronger than the measly 56 bit key
of DES.

Let’s introduce our other main characters. In the
schema, on the top left, the 16 byte block denoted L

is supposed to be a set of four linear feedback shift
registers. This is the bad guy, the end level boss.
He is elusive and changes like a chameleon.

To the right we have two blue blocks, VA and
VB , of four bytes each which contain some transfor-
mation of the encryption key. This is a supporting
character, mostly stays in the background, and has
little character development.

Right of VA we have the four byte C block, which
is a FIFO initially containing a transformation of
parts of the encryption key, but it later becomes a
cipher-feedback buffer containing the last four bytes
of ciphertext. Another supporting character, this
guy looks strange in the beginning, but later on be-
comes a familiar face we know and recognize.

The block denoted by P is really just a trans-
formation which replaces each 4-bit nybble with an-
other 4-bit nybble based on a lookup-table. This
young lady is the sister of F , but is mostly staying
predictable.

The big yellow block F in the middle is eight
non-linear transforms that converts 6 input bits into
one output bit, more on this later. This lady is an-
other trouble-maker; she’s the femme fatale of this
play, working with the evil guy, making things diffi-
cult.

And last the small block K is a transformation of
the keystream byte, that rotates the keystream byte
left by the number of byte being currently encrypted
modulo 8. Just another supporting character with-
out much depth.

Act I
It is very important to see how these blocks are
initialized—this is the part where the alarm bells
start getting louder. During initialization, one op-
eration comes up everywhere: the low nibble gets
complemented and set as the high nibble.

1 // Inve r t low nybb l e in to the high nybb l e .
uint8_t i nv e r t 2h i ( uint8_t x ) {

3 return ((~x ) << 4) | x ;
}

In fact this is how 15 of the 16 bytes of the LFSR
are initialized: Each low nibble of the key is taken
and inflated into a byte. The last byte is set to 0xff.
As code:

for ( i =0; i <15; i++) {
2 l f s r [ i ] = i nv e r t 2h i ( key [ i ] ) ;

}
4 l f s r [15]=0 x f f ;

Now, if you happen to somehow know the inter-
nal state of the LFSR and also know how to reverse
it, then it becomes trivial to check if any state has
the special structure of the initial state, from which
the key can be trivially recovered. I’m not sure if
that actually helps, but it’s ugly anyway.

Blocks VA , VB , and C are similarly initialized:

for ( i =0; i <4; i++) {
2 V[ i ] = i nv e r t 2h i ( key [ i ] ^ key [ i +4]) ;

V[ i +4] = i nv e r t 2h i ( key [ i +8] ^ key [ i +12]) ;
4 C[ i ] = V[ i ] ^ V[ i +4] ^ 0 xf0 ;

}

It’s not obvious at first, but if you expand V[i]
and V[i+4] when setting C[i] and do the math,
you will come to the conclusion that the values of C

can only be one of these sixteen legal values: 0x0f,
0x1e, 0x2d, 0x3c, 0x4b, 0x5a, 0x69, 0x78, 0x87,
0x96, 0xa5, 0xb4, 0xc3, 0xd2, 0xe1, or 0xf0.

My alarm bells are kinda deafening by now, how
are yours?
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After the initialization, the stream cipher is
ready to be used. For each key-stream byte the
LFSR is mutated, then combined with the V and
C blocks, fed into the F function, and then XOR’d
into the plaintext. Let’s have a look first at the mu-
tation of the LFSR block:

1 for ( round=0x1f ; round>=0; round−−) {
acc = 0 ;

3 // FAC7 in the code t h i s loop i s unro l l e d
for ( i =0; i <16; i++) {

5 acc ^= l f s r [ i ] lookupTab [ ( round+i ) %16];
} // FB43

7
// FB45 . .FB4A

9 acc = ( ( acc >> 1) ^ acc ) & 0x55 ;

11 // tmp i s twice the sequence 15 . . 0
tmp=(round ^ 0 x f f ) & 0 xf ;

13 l f s r [ tmp ] = ( ( l f s r [ tmp]<<1)&0xAA) | acc ;
} // FB63

Doesn’t really look like a traditional LFSR to
me, or even a set of them. But if the Crypto Mu-
seum people say so, I’m going with their insights.
Nota bene: Those 16-bit hex numbers in the com-
ments mark the addresses for where in the ROM this
code can be found.

Normally an LFSR emits a bit after each ad-
vancement. In this code it is not obvious how this is
done. The following snippet shows how four bytes
are extracted from the LFSR after it has been mu-
tated:

for ( i =0; i <4; i++) {
2 tmp = l f s r [ i +7] ; // FB68 . .FB6C

4 // 2x ro t a t e l e f t FB6E . . FB72
tmp = (tmp << 2) | (tmp >> 6) ;

6
// FB74 . . FB7A

8 l f s r_out [ i ] = tmp ^ l f s r [ i ] ;
}

If you squint you might imagine that there are
four LFSRs but, as you will see, this doesn’t matter
much for our final attack. This concludes the left
side of the schema before being fed into the non-
linear function F .

On the right side of the schema you can see how
VA and the ciphertext FIFO are being XOR’d and
mapped through P . It looks like this in code.

1 for ( i =0; i <4; i++) {
tmp = V[ i ] ^ Ciphe r t ex tF i f o [ i ] ;

3 acc = map4to4bit [ i ] [ tmp >> 4 ] << 4 ;
acc |= map4to4bit [ i ] [ tmp & 0 xf ] ;

5 pbuf [ i ] = acc ^ V[ i +4] ;
}

Looks straightforward, but if we unpack this in
the context of encrypting the very first character
(which is probably “(”, but this is irrelevant here),
then we can unpack:

tmp = V[ 0 ] ^ Ciphe r t ex tF i f o [ 0 ]

where

1 Ciphe r t ex tF i f o [ 0 ] = V[ 0 ] ^ V[ 4 ] ^ 0 xf0

which drops out V[0], and thus:

1 tmp == V[ 4 ] ^ 0 xf0

and we know that all values of V are values where
the high nibble is just the inversion of the low nib-
ble, and if we XOR that with 0xf0, we conclude that
tmp can only be one of these 16 values: 0x00, 0x11,
0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99,
0xaa, 0xbb, 0xcc, 0xdd, 0xee, or 0xff.

Strange, huh? This loop runs four times, with
similar results for each output byte. Later, when
the Ciphertext FIFO is filled with real ciphertext,
this doesn’t apply anymore, but then the contents of
this buffer are known, since it’s the ciphertext. The
mapping itself of four bits to four bits was relatively
uninteresting . . . or at least I couldn’t immediately
see anything wrong with it. And also XORing that
with VB was also much less exciting.

Now that we have the inputs to the F function,
we can analyze what happens there. The code is a
bit dense, we’ll unpack it later:

1 for ( i =8, acc=0; i >0; i −−) {
// FBB9

3 for ( j =1,tmp=0; j <4; j++) {
tmp = (tmp << 1) | ( l f s r_out [ j ] >> 7) ;

5 l f s r_out [ j ]<<=1;
tmp = (tmp << 1) | ( pbuf [ j ] >> 7) ;

7 pbuf [ j ]<<=1;
}

9 tmp=lookupTab6To1bit [ tmp ] ;

11 acc=(acc<<1) + ( ( tmp>>(i −1) ) & 1) ;
} // 0 x fbd9
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The outer loop takes care that all eight bits of
each input of the six input bytes get used in F

and that the output of F is being assembled back
into one byte. The inner loop interleaves the 6 in-
put bits from lfsr[1], pbuf[1], lfsr[2], pbuf[2],
lfsr[3] and finally pbuf[3]. The lookup table pro-
duces one bit, which in the last line is put into the
correct bit-position of the accumulator. It’s a pretty
straightforward bit-sliced 6-byte-to-1-byte mapping.
The lookup table is neat, it’s 64 bytes, which is in-
dexed by the six-bit interleaved value, and from the
resulting byte the ith bit is extracted. Very com-
pact, neat.

The next steps are unspectacular, keeping in
mind that curChar starts with −1:

acc ^= pbuf [ 0 ] ^ l f s r_out [ 0 ] ;
2

// FBDF
4 tmp = ( curChar + 1) & 7 ;

// ro t a t e l e f t by tmp
6 acc = ( acc << tmp) | ( acc >> (8−tmp) ) ;

8 c i ph e r t ex t [ curChar ]= p l a i n t e x t [ curChar ]^ acc ;

For decryption, note that only this last line needs to
swapped be around.

One last step is needed before we can loop back
to mutating the LFSR, and that is advancing the ci-
phertext FIFO, now that there is a ciphertext byte.
Again, this is pretty straightforward, and after four
ciphertext bytes, the peculiar structure noted above
of the initial four bytes in this FIFO is lost:

// FC05
2 Ciphe r t ex tF i f o [ 4 ] = c i phe r t e x t [ curChar ] ;

for ( i =0; i <4; i++) {
4 // ro t a t e l e f t

Cipher t ex tF i f o [ i ] =
6 ( C ipher t ex tF i f o [ i +1] << 1) |

( C iphe r t ex tF i f o [ i +1] >> 7) ;
8 } // FC15

A small optimization is that the array holding
the FIFO is actually five bytes, and the newest ci-
phertext byte is always added to the fifth position,
which enables this compact loop updating the four
effective items in this FIFO.

If there are more plaintext bytes to encrypt, then
the algorithm loops back to mutating the LFSR.
Otherwise, everything is done

ACT II: Climax

This all looks a bit fishy, but how does one actually
break this scheme? Well for a long time I focused on
somehow figuring out the LFSR and how it can be
decomposed in four LFSRs of 32, 31, 29, and 27 bit
lengths as indicated on the Crypto Museum schema.
Many hours were wasted into slicing and dicing the
LFSR, mutating it, slicing and dicing it again, writ-
ing bit level differs, staring at colored bits, throw-
ing Berlekamp-Massey at it, trying to write my own
32/31/29/27 bit LFSRs and seeing if I could some-
how slice-’n-dice a state from the big one into the
ones I implemented. It was a nightmare of dead
ends, failure, and despair. Boredom started to set
in, and I started to ask friends if maybe they could
figure out how this works. They said it’s easy, but
they do not have time for this now. Anyway, maybe
this is an LFSR or even four, but I was unable to
figure out how.

I also started to consult the bible of cryptanaly-
sis, Antoine Joux’s masterpiece: Algorithmic Crypt-
analysis. It has a chapter, Attacks on Stream Ci-
phers, about LFSRs hidden behind a non-linear
function F . Antoine calls these filtered generators:

The filtered generator tries to hide the
linearity of a core LFSR by using a com-
plicated non-linear output function on a
few bits. At each step, the output func-
tion takes as input t bits from the in-
ner state of the LFSR. These bits are
usually neither consecutive, nor evenly
spaced within the register.

Bingo! Exactly what I’ve been staring at for days
now: the big guy and the femme fatale. The chap-
ter mostly covers correlation attacks, but at the end
there is also mention of algebraic attacks, the latter
giving me a warm fuzzy feeling. Algebra is elemen-
tary school stuff, I can do that!

Antoine goes on:

The function f is usually described ei-
ther as a table of values or as a polyno-
mial. Note that, using the techniques of
Section 9.2, f can always be expressed
as a multivariate polynomial over F2.

The technique in section 9.2 is is called the
Möbius transform which is used to calculate the Al-
gebraic Normal Form (ANF) of a boolean function.
I tried to implement the Möbius transform as given
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in algorithm 9.6 in Joux’ masterpiece, but the re-
sults were not providing the expected outputs as
the lookup table. After reading a bunch of papers
on algebraic normal forms, I learned that different
disciplines call this different names, such as

• ANF Transform (ANFT),

• Fast Möbius Transform,

• Zhegalkin Transform, and

• Positive Polarity Reed–Muller Transform.

Valentin Bakoev’s excellent paper Fast Bit-
wise Implementation of the Algebraic Normal Form
Transform37 went into much more detail than Joux
on this topic, and an implementation of Bakoev’s
Algorithm 1 gave the expected results.

void moebius ( uint8_t ∗ f , int n) {
2 int b l o c k s i z e =1;

for ( int s tep =1; step<=n ; s tep++) {
4 int source =0;

while ( source < (1<<n) ) {
6 int t a r g e t = source + b l o c k s i z e ;

for ( int i =0; i<b l o c k s i z e ; i++) {
8 f [ t a r g e t+i ]^= f [ source+i ] ;

}
10 source+=2∗b l o c k s i z e ;

}
12 b l o c k s i z e ∗=2;

}
14 }

We can split up the original F lookup-table bit-
by-bit.
stat ic uint8_t lookupTab6To1bit [64]={ // at 0xFE9B

2 0x96 , 0x4b , 0x65 , 0x3a , 0xac , 0x6c , 0x53 , 0x74 ,
0x78 , 0xa5 , 0x47 , 0xb2 , 0x4d , 0xa6 , 0x59 , 0x5a ,

4 0x8d , 0x56 , 0x2b , 0xc3 , 0x71 , 0xd2 , 0x66 , 0x3c ,
0x1d , 0xc9 , 0x93 , 0x2e , 0xa9 , 0x72 , 0x17 , 0xb1 ,

6 0xb4 , 0xe4 , 0xa3 , 0x4e , 0x27 , 0x5c , 0x8b , 0xc5 ,
0xe8 , 0x95 , 0xe1 , 0xd1 , 0x87 , 0xb8 , 0x1e , 0xca ,

8 0x1b , 0x63 , 0xd8 , 0x2d , 0xd4 , 0x9a , 0x99 , 0x36 ,
0x8e , 0xc6 , 0x69 , 0xe2 , 0x39 , 0x35 , 0x6a , 0x9c

10 } ;

Feeding it into the moebius function, we get this.

f 0= 01100010011010101011100011101011
2 00101011011110001101001000101100

g0= 01100101000011111011011101001001
4 01011011010010010011000110001110

6 f1= 11010010001101010111011000110110
00111010000010111100010111010010

8 g1= 10111000100111101100100111001011
10010110101111010100100111111110

10
f2= 10101101011011001100001110010010

12 11011101010010100001100111000101
g2= 11000111101010110110111111101110

14 01110111010000101100000010110110

16 f3= 01011100100010111010000111011000
00010110100001111011011010101011

18 g3= 01001110101111001000001111000101
01011001010100110100111100110000

20
f4= 10010011100100110100110110100111

22 10000100010101101010111100001101
g4= 11101100000000001011001010010101

24 00010110101110001000110011100010

26 f5= 00111101110101000010101100011101
11101000101001000101000100111110

28 g5= 00101001100101110001011110110011
10111111110010001100010010000010

30
f6= 01100111101010110101111001000100

32 01010101101100010110100001110010
g6= 01100001101000000010110010111101

34 00100001001111000000010100111100

36 f7= 10001000010101001001010001101001
11100011111111010010111011010001

38 g7= 11110000101100010001101100110010
01101011101010011011101010101010

The output of the Möbius transform is just an-
other lookup table, a boolean function with exactly
the same amount of input parameters as the the
original non-linear function. Using this it is possible
to create the ANF of the non-linear function:
f(x0, . . . , xn−1) =

⊕
(a0,...,an−1)∈Fn

2

g(a0, . . . , an−1)
∏

i x
ai
i

In this equation the g(. . . ) coefficient is the out-
put of the Möbius transform, and since these bits
are either 0 or 1, we can eliminate around half of all
terms.

By inputting the fx/gx pairs we obtained from
the moebius function into the following Python
beauty, we can construct the ANF.

1 ’ ^ ’ . j o i n (
’ ( ’+c+’ ) ’

3 for c in [
’& ’ . j o i n (

5 f "x [ { i } ] "
for i , x in enumerate ( reversed ( f ’ {a :06b} ’ ) )

7 i f x == "1" )
for a in range (64) i f moebius [ a]== ’ 1 ’ ]

9 i f c )

This can then be evaluated for all values between
0 and 63 and should produce the same result as the
corresponding fx. If the result is the exact inverse
of fx, then the ANF has an odd number of constant
1 terms, and the ANF must be fixed by prefixing it
with 1 ^.

37unzip pocorgtfo21.pdf bakoev-afn.pdf
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For illustration, behold the ANF of f4:

1 1 ^ ( x0 ) ^ ( x1 ) ^ ( x2 ) ^ ( x0&x2 ) ^ ( x4 )
^ ( x1&x4 ) ^ ( x0&x1&x4 ) ^ ( x1&x2&x4 )

3 ^ ( x3&x4 ) ^ ( x0&x1&x3&x4 ) ^ ( x0&x2&x3&x4 )
^ ( x0&x1&x2&x3&x4 ) ^ ( x0&x1&x5 )

5 ^ ( x0&x2&x5 ) ^ ( x1&x2&x5 ) ^ ( x3&x5 )
^ ( x1&x3&x5 ) ^ ( x0&x1&x3&x5 ) ^ ( x2&x3&x5 )

7 ^ ( x4&x5 ) ^ ( x2&x4&x5 ) ^ ( x0&x2&x4&x5 )
^ ( x3&x4&x5 ) ^ ( x0&x3&x4&x5 )

9 ^ ( x1&x3&x4&x5 ) ^ ( x1&x2&x3&x4&x5 )

Woohooo, look ma, I converted a lookup-table
into algebra! I mean, I defeated the evil temptress,
the femme fatale! After a few days of pondering,
I also converted the lookup table marked P in the
schema to its ANFs. Erm, I mean, I defeated the
younger sister. The path to this victory was not im-
mediately obvious, since P is a 4-bit to 4-bit table,
and the Möbius transform only applies to boolean
functions with one output bit.

The trick was to deconstruct the 4-to-4 mapping
into four times 4-to-1 mappings, one for each output
bit, while of course the input bits will be always the
same for the same nibble. Hah! Take that, NSA!
Most of your backdoor is now reduced to a bunch of
polynomials!

ACT III: The Fall

But what do we do with that big guy, the end level
boss, that pesky LFSR block? I kinda gave up on
finding the polynomial for the LFSR, but maybe
there is a different way to convert this into algebra?
I’ve always been a big fan of Angr and symbolic ex-
ecution. Maybe if I let Angr consume the loop that
mutates the LFSR, I can get some symbolic con-
straints. Symbolic constraints being nothing other
than equations. The trick was to modify the the
loop to not run in place, but to output another
16 byte LFSR. Angr can then tell me, symbolically,
how the output LFSR depends on the input LFSR.
The (much truncated) output is promising.

1 <BV128 state_19_128 [ 8 7 : 8 7 ] ^ state_19_128 [ 6 3 : 6 3 ] ^
state_19_128 [ 5 5 : 5 5 ] ^ state_19_128 [ 3 1 : 3 1 ] ^

3 state_19_128 [ 2 3 : 2 3 ] ^ state_19_128 [ 7 : 7 ] ^
state_19_128 [ 1 0 2 : 1 0 2 ] ^ state_19_128 [ 8 6 : 8 6 ] ^

5 state_19_128 [ 7 0 : 7 0 ] ^ state_19_128 [ 6 2 : 6 2 ] ^
state_19_128 [ 5 4 : 5 4 ] ^ state_19_128 [ 4 6 : 4 6 ] ^

7 state_19_128 [ 3 0 : 3 0 ] ^ state_19_128 [ 1 4 : 1 4 ] . .

Notice the trailing .. in the last line. This sig-
nals concatenation of bit vectors. In total, 128 bits
are being concatenated! The big guy finally reveals
some weakness! Angr gave me the bits I needed to

XOR together for each bit in the next state. Af-
ter running some sed magic on this output, I had
128 lists, with only the bit positions contributing to
the next state of this bit.38 Wow, this really looks
like algebra, but first lets analyze this list of lists a
bit more.

I was very interested how these bits are related.
I wrote a recursive function, taking one bit and vis-
iting recursively all bits that this bit depends on.
My goal was to figure out if there is loops or islands
in this graph. This was my recursive function:

1 def walk ( bit , c ) :
c . append ( b i t )

3 for b in b i t s [ b i t ] :
i f b in c : continue

5 c=walk (b , c )
return c

I ran it for all values from 0 to 127, discarding
any duplicate results. Here are the bit indices for
which I first saw a result, its length, and the result
values themselves.

0 32 (0 , 1 , 8 , 9 , 16 , 17 , 24 , 25 , 32 , 33 , 40 , 41 , 48 ,
2 49 , 56 , 57 , 64 , 65 , 72 , 73 , 80 , 81 , 88 , 89 , 96 ,

97 , 104 , 105 , 112 , 113 , 120 , 121)
4 2 31 (2 , 3 , 10 , 11 , 18 , 19 , 26 , 27 , 34 , 35 , 42 , 43 ,

50 , 51 , 58 , 59 , 66 , 67 , 74 , 75 , 82 , 83 , 90 , 91 ,
6 98 , 99 , 106 , 107 , 114 , 115 , 122)

4 29 (4 , 5 , 12 , 13 , 20 , 21 , 28 , 29 , 36 , 37 , 44 , 45 ,
8 52 , 53 , 60 , 61 , 68 , 69 , 76 , 77 , 84 , 85 , 92 , 93 ,

100 , 101 , 108 , 116 , 124)
10 6 27 (6 , 7 , 14 , 15 , 22 , 23 , 30 , 31 , 38 , 39 , 46 , 47 ,

54 , 55 , 62 , 63 , 70 , 71 , 78 , 79 , 86 , 87 , 94 ,
12 102 , 110 , 118 , 126)

95 28 (6 , 7 , 14 , 15 , 22 , 23 , 30 , 31 , 38 , 39 , 46 , 47 ,
14 54 , 55 , 62 , 63 , 70 , 71 , 78 , 79 , 86 , 87 , 94 ,

95 , 102 , 110 , 118 , 126)
16 103 28 (6 , 7 , 14 , 15 , 22 , 23 , 30 , 31 , 38 , 39 , 46 , 47 ,

54 , 55 , 62 , 63 , 70 , 71 , 78 , 79 , 86 , 87 , 94 ,
18 102 , 103 , 110 , 118 , 126)

109 30 (4 , 5 , 12 , 13 , 20 , 21 , 28 , 29 , 36 , 37 , 44 , 45 ,
20 52 , 53 , 60 , 61 , 68 , 69 , 76 , 77 , 84 , 85 , 92 , 93 ,

100 , 101 , 108 , 109 , 116 , 124)
22 111 28 (6 , 7 , 14 , 15 , 22 , 23 , 30 , 31 , 38 , 39 , 46 , 47 ,

54 , 55 , 62 , 63 , 70 , 71 , 78 , 79 , 86 , 87 , 94 ,
24 102 , 110 , 111 , 118 , 126)

117 30 (4 , 5 , 12 , 13 , 20 , 21 , 28 , 29 , 36 , 37 , 44 , 45 ,
26 52 , 53 , 60 , 61 , 68 , 69 , 76 , 77 , 84 , 85 , 92 , 93 ,

100 , 101 , 108 , 116 , 117 , 124)
28 119 28 (6 , 7 , 14 , 15 , 22 , 23 , 30 , 31 , 38 , 39 , 46 , 47 ,

54 , 55 , 62 , 63 , 70 , 71 , 78 , 79 , 86 , 87 , 94 ,
30 102 , 110 , 118 , 119 , 126)

123 32 (2 , 3 , 10 , 11 , 18 , 19 , 26 , 27 , 34 , 35 , 42 , 43 ,
32 50 , 51 , 58 , 59 , 66 , 67 , 74 , 75 , 82 , 83 , 90 , 91 ,

98 , 99 , 106 , 107 , 114 , 115 , 122 , 123)
34 125 30 (4 , 5 , 12 , 13 , 20 , 21 , 28 , 29 , 36 , 37 , 44 , 45 ,

52 , 53 , 60 , 61 , 68 , 69 , 76 , 77 , 84 , 85 , 92 , 93 ,
36 100 , 101 , 108 , 116 , 124 , 125)

127 28 (6 , 7 , 14 , 15 , 22 , 23 , 30 , 31 , 38 , 39 , 46 , 47 ,
38 54 , 55 , 62 , 63 , 70 , 71 , 78 , 79 , 86 , 87 , 94 ,

102 , 110 , 118 , 126 , 127)

Whoa! The first four results are with lengths 32,
31, 29, and 27. That seems to be the source of the
Crypto Museum people claiming that there are four
small LFSRs hidden in there. There are also nine
positions that are not contributing to the first four
loops, but which themselves do depend on bits in
those.

38unzip pocorgtfo21.pdf px1k.zip; unzip px1k.zip lfsr-next-bits.txt
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To make this all much clearer, I made my
script draw a handy illustration of the LFSRs.

Bytes of the char array are horizontal increasing
indexes left to right, bits vertical with increasing
indexed top-down. The homogeneous squares con-
stitute the four LFSRs, and the squares half-yellow
depend on the LFSR of their other color. Just for
reference I also framed with yellow border byte 0 and
byte 7 of each LFSR block, as these are used when
extracting bits as described above in the discussion
of the encryption algorithm.

Interestingly, some of the orphan bits are in-
cluded in extraction of entropy from the LFSR.
Just to add a bit of confusion, claripy’s bitvector
considers such char arrays as one big-endian value,
which means that bit 127 is the bottom bit of byte 0
(the bottom left-most bit) and the least significant
bit of the bitvector is bit 0 of byte 15, thus the top
right corner of the diagram.

ACT IV: Revelation
I had everything converted to polynomials and con-
straints, so I started to try to feed it all directly
into Z3, but Z3 seems to be geared more toward
non-boolean equations. Working with vectors of
booleans was quite tedious. After some long nights,
I gave up and started anew in claripy, a wrapper
around Z3 from the fine Angr people.

With claripy, everything went well, I had the
first solution! It took nearly two minutes but, alas,
it was incorrect! After a few days of debugging my
constraints, I finally had the correct solution, and it
only took 50 seconds! I defeated the beast! What a
symbolic execution!

All you need to do is feed the solver 17 bytes
of ciphertext, and the solver will either declare that
the ciphertext cannot be the output of the PX1000cr
algorithm, or it outputs the encryption key and the
decrypted 17 bytes of plaintext. The rest of the
plaintext can be recovered by decrypting the cipher-
text with the recovered key. With a little change it
is also possible to solve keys for shorter ciphertexts,
but then there will be multiple key candidates which
must be tested by the user. The number of key can-
didates in that case is 217−min(len(ciphertext),17).

Looking at my script I realized I could keep
everything symbolic, pre-computing all constraints,
and with this change a speed-run is possible. With
this, calculating the solution takes now less than
four seconds!

I invite everyone to download the emulator and
run the ROM themselves and plug the ciphertext
into the solution. With a few changes you can even
calculate things backwards, like what plaintext and
key combination generates the following ciphertext:
“(NSA backdoor fun”.

I do not know if the NSA had a SAT solver like
Z3 back in 1983, but 40 years later the fact is I can
recover a key within seconds in a single thread on
a laptop CPU. I am far from being able to do so
if DES were used. This lets me confirm that the
PX1000cr algorithm is indeed a backdoor.

Finally I would like to thank Ben, Phr3ak, the
Crypto Museum people, Jonathan, Antoine, the
Angr devs, Asciimoo and Dnet for their support!
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