
21:07 A Tourist’s Guide to Altera NIOS
by Christopher Hewitt

Sziasztok, szomszédok!

Welcome to another installment of our series of
quick-start guides for reverse engineering embed-
ded systems. Our goal here is to get you situated
with the Nios family of embedded soft processors
as quickly as possible, with a minimum of fuss and
formality.

Those of you who have already worked with Nios
might find this to be a useful reference, while those
of you new to the architecture will find that it isn’t
really all that strange. If you’ve already reverse en-
gineered binaries for any platform, even x86, I hope
that you’ll soon feel right at home.

We’ve written this guide to broadly cover vari-
ous configurations of Nios processors. These proces-
sors are generally implemented in configuration bit-
streams for various Altera programmable logic de-
vices or system on programmable chips, but may
also be found in custom silicon. A minimalist con-
figuration of Nios might be used to execute a simple
control sequence out of ROM, while a complex de-
sign might make use of several fully-featured Nios
processors and external memory to process a com-
plex workload.8 Even though Nios was quickly su-
perseded by a complete redesign, the architecture
can still be found in the occasional embedded sys-
tem. Readers interested in the newer Nios II family
of processors may find significant differences in the
original Nios architecture and may benefit from a
different introduction.

Some Historical Context

Altera introduced Nios in June of 2000 as a recon-
figurable embedded design platform tailored to the
company’s FPGA product offerings. Building from
its commercial success, Altera was quick to develop
and release a successor, a 32-bit redesign called Nios
II, by 2003. Having vastly improved performance
and resource utilization over the original Nios plat-
form, Altera deprecated Nios and urged developers
to migrate to the new platform. After Intel acquired
Altera in 2015, it became particularly difficult to
find Nios-related design resources as Altera’s web-
site eventually went offline causing most references
to seemingly vanish. Without having encountered a
device developed during this narrow window of time
it’s easy to have missed out on ever seeing this ar-
chitecture, though there are still some traces of Nios
in the wild.

An Unexpected Rediscovery

GPS disciplined oscillators are a great way to pro-
vide a stable frequency-locked reference for test
and measurement equipment found on electron-
ics workbenches, but commercial products can be
out of reach for the hobbyist on a tight budget.
Fortunately, amateur radio operators have already
solved this problem by repurposing the TruePosi-
tion LMU300, a nifty piece of telecommunications
equipment recently decommissioned in bulk.9 These
devices were originally installed to provide caller lo-
cation to emergency services in North America in
accordance with federal E911 mandates. Each rack-
mount unit contains a separate smaller board con-
taining a GPS receiver and a disciplined 10 MHz
reference output, which can be operated indepen-
dently with some modifications.

Ordinarily, the board’s GPS function is initial-
ized by another component within the chassis send-
ing a $PROCEED command via RS-232. Without this
command, the firmware is stuck in a loop constantly
transmitting its firmware version number and device
serial number. A common workaround is to have an
external device send this command to the board au-
tomatically when powered on, but it’s preferable for

8unzip pocorgtfo21.pdf phrack6317.txt # Phrack 63:17 by Cawan
9unzip pocorgtfo21.pdf packratgps.pdf # Packrat GPS by WA2OMY and WA3YUE

24

these kinds of problems to be solved in software.
Since all logic is handled by an Altera APEX 20KE
FPGA and MAX3000A PLD sharing 1 MB external
parallel flash, that task is somewhat more challeng-
ing.

It’s often a good idea to check what’s stored in
flash memory first. Having neither the appropriate
TSOP-48 hardware programmer adapter nor the pa-
tience to wait for one to arrive in the mail presents
a ripe opportunity to explore boundary scan tech-
niques for extracting data. Simply load the relevant
Altera-provided BSDL files for the FPGA and PLDs
into UrJTAG and it’s possible to intercept control
over all I/O lines. Without access to schemat-
ics, however, it’s necessary to first probe out de-
vice interconnects in order to determine which pins
could be used to bit-bang data from the external
flash memory. Then it’s just a matter of exercising
the JTAG commands SAMPLE and PRELOAD in
proper sequence or, better yet, just use UrJTAG’s
prototype external memory bus type to automate
the process. If anything goes wrong, make sure to
check the boundary scan definitions for helpful hints
left for hardware hackers in the distant future.

−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 −− ∗ DESIGN WARNING ∗

−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4

6 a t t r i bu t e DESIGN_WARNING of EP20K160ET144 : en t i t y i s

8 "The APEX 20KE dev i c e s support IEEE 1149.1 t e s t i n g "&
" be fo r e and a f t e r dev ice c on f i gu r a t i on ; however , "&

10 " the dev i c e s do not support t h i s t e s t i n g during "&
" dev ice c on f i gu r a t i on . The e a s i e s t way to avoid "&

12 " dev ice c on f i gu r a t i on i s to hold the nCONFIG pin low "&
"during power−up and t e s t i n g . " ;

After waiting a brief eternity for data to shuf-
fle back and forth from the boundary scan regis-
ter, a complete dump of the external flash memory
is finally available for analysis. One quick obser-
vation is that there are four binary chunks, each
at evenly-spaced offsets and surrounded by empty
space. Two of the chunks are the same size and simi-
larly don’t look particularly like any kind of program
data. Since there is an FPGA on board, it’s entirely
reasonable to suspect that these are configuration
bitstreams. The other two binary chunks, however,
contain meaningful character sequences relating to
flash programming and GPS operation. Even bet-
ter, there’s a signature near the beginning of both
binaries spelling out “Nios.” Finally, something that
we can work with!

Basics of the Instruction Set
Even though Nios processors come in 16 and 32-bit
variants, the instruction set is strictly 16-bit. In-
structions are always half-word aligned, so the low-
est bit of the Program Counter (PC) is always zero.

Data and address bus size, as well as register
and ALU width, are determined by the variant used.
Most instructions are shared between both variants,
but the 32-bit instruction set includes extra reg-
ister manipulation functions and optional support
for hardware multiply. This table highlights the in-
struction differences between the two variants.

Opcode 32-bit Name 16-bit Name
011001 STS16S
011010 EXT16D ADDC
011011 MOVHI SUBC
011101101 ST16S
01111100100 SEXT16
01111101000 SWAP
01111110001 ST16D
01111110011 FILL16
01111110100 MSTEP
01111110101 MUL
10010 PFXIO

Code targeting the 32-bit variant is easy to rec-
ognize, as jumps require an extra register load.

1 ; Global so we can see i t in dumps .
. g l oba l nr_jumptostart

3
nr_jumptostart :

5 PFX %hi (_start@h) ; 0x00
MOVI %g0 ,% lo (_start@h) ; 0x02

7 . i f d e f __nios32__
PFX %xhi (_start@h) ; 0x04

9 MOVHI %g0 ,%xlo (_start@h) ; 0x06
. end i f

11 JMP %g0 ; 0x08 / 0x04 on Nios 16
NOP ; 0x0a / 0x06 on Nios 16

13 ; 0x0c / 0x08 on Nios 16 S ignature .
. byte ’N ’ , ’ i ’ , ’ o ’ , ’ s ’

Five user-defined instructions, USR0 to USR4,
facilitate accelerated data processing through addi-
tional logic placed in the hardware design. It might
take some experimentation, or at least sufficient con-
text, to determine the purpose of these types of in-
structions when no source is available.

26

Registers and Calling Convention

If you have prior experience with SPARC or other
Berkeley RISC descendants, you might enjoy seeing
a familiar register layout as well as sliding register
windows for stack cache and the use of branch delay
slots.

Inputs : %r24 − %r31 (or %i0 − %i7)
2 Loca l s : %r16 − %r23 (or %L0 − %L7)

Outputs : %r8 − %r15 (or %o0 − %o7)
4 Globals : %r0 − %r7 (or %g0 − %g7)

6 Saved return address : %r31 (or %i7)
Current re turn address : %r15 (or %o7)

8
Frame po in t e r (%fp) : %r30 (or %i6)

10 Stack po in t e r (%sp) : %r14 (or %o6)

A Nios processor’s overall register file might span
128, 256, or 512 registers, depending on configura-
tion. As the register window slides around, CWP
is compared with the WVALID register (%ctl2) to
determine if a register underflow or overflow has oc-
curred, which generates an internal exception. Un-
less specifically disabled, Nios designs include cus-
tom exception handlers which extend the register
file with extra stack memory.

Nios programs lacking any kind of register win-
dow manipulation instructions might have been
compiled with the -mflat option. This option was
intended to improve timing predictability at the ex-
pense of overall context-switching time. As a result,
only a fixed 32 registers are available to the appli-
cation and register contents must be saved to stack
memory during interrupts since register windows are
no longer available for caching.

Memory Map
A Nios processor’s memory map depends entirely
on how it was configured. Assuming an implemen-
tation hasn’t strayed too far from one of the many
original reference designs, Altera’s Embedded Pro-
cessor Portfolio10 can serve as a convenient reference
for correlating various peripherals to their base ad-
dresses or locating the exception vector table. Since
a primary selling point of Nios (and soft proces-
sors in general) is reconfigurability, it’s possible that
a complete understanding will require significantly
more time and effort than with a conventional hard
processor.

Interrupts and Exceptions
The exception vector table can reside in either RAM
or ROM at a configurable offset specified in the pro-
cessor design. The table holds up to 64 exception
handler addresses, depending on configuration, with
each entry occupying four bytes. Exceptions can be
triggered by external hardware interrupts, internal
exceptions, or software instructions. The first entry
in the table is a non-maskable interrupt with prior-
ity 0 only intended for use by an optional on-chip
instrumentation debug module.

If the exception vector table resides in RAM
and consequently generated at run-time, try track-
ing down the initialization code, which might resem-
ble the following instructions:

;−−−−−−−−−−−−−−−
2 ; Set up us the vec to r t a b l e

; to catch any spur ious i n t e r r up t
4 ; f o r g rea t j u s t i c e .

;
6 . i f __nios_catch_irqs__

. i f d e f nasys_printf_uart
8 MOVIA %o0 , r_spurious_irq_handler@h

MOVIP %o1 , nasys_vector_table
10 MOVIP %o2 ,64

_init_vector_table_loop :
12 ST [%o1] ,%o0

. i f d e f __nios32__
14 ADDI %o1 , 4

. e l s e
16 ADDI %o1 , 2

. e n d i f
18 SUBI %o2 , 1

IFRnz %o2
20 BR _init_vector_table_loop

NOP
22 . e n d i f ; nasys_print f_uart

. e n d i f ; __nios_catch_irqs__

10unzip pocorgtfo21.pdf nios-epp-mmap.txt # Memory maps of reference designs.

27

Memory and Peripheral Access
Nios has three address modes: (1) Full-width
register-indirect, (2) Partial-width register-indirect,
(3) and 5/16-bit immediate. Both of the register-
indirect modes support an optional offset.

Nios requires the use of aligned memory accesses,
so operations are performed on addresses which are
multiples of two (16-bit variant) or multiples of four
(32-bit variant). The lowest bit or two bits of the
address are always treated as 0, respectively.

Partial-width memory reads require the combi-
nation of a full-width register-indirect read instruc-
tion with an extra EXT-prefixed extraction instruc-
tion. Partial-width memory writes, however, can be
accomplished with a single dedicated ST-prefixed in-
struction. The additional FILL-prefixed instructions
are helpful for meeting alignment requirements.

Disassembly
Don’t worry if the Hex-Rays sales team stopped re-
turning your phone calls. IDA Pro and other pop-
ular commercial tools don’t currently support the
Nios architecture anyway. Fortunately, some of the
original components of the GNUPro Toolkit for Nios
by Cygnus are still currently available on Source-
forge through the CDK4NIOS project. At the very
least, its Nios target support for GNU binutils is
enough to get started with analyzing binaries.

Those familiar with Radare2 might recognize
that its plugin infrastructure is well-suited to adding
architectures already supported by binutils. Even
if you enjoy leafing through actual pages of objdump
output, consider the added value of Radare2’s visual
mode with colorized output, call graphs, integrated
hex editor, and instruction emulation.

Implementing support for a new target architec-
ture isn’t as difficult as it might sound. The exist-
ing in-tree nios2 arch support served as a conve-
nient reference and starting point for implementing
a nios arch plugin. After painstakingly modern-
izing the relevant code for contemporary compilers
from the vintage binutils release, it was a quick
process to write the required wrapper to hand off a
byte sequence for disassembly.

Although this article only covers disassembly,
complete target plugins implement an assembler,
disassembler, code analysis, and a representation of
each opcode using the Evaluable Strings Intermedi-
ate Language (ESIL) to enable emulation.

Support for uncommon architectures like Nios
tends to end up in the radare2-extras reposi-
tory,11 otherwise known as the source graveyard, but
Radare2 also includes a package manager which can
conveniently download and build the plugin from
source.

1 $ r2pm −i n io s
. . .

3 $ r2 −a n io s . / hel lo_world . out

As always, build Radare2 from Git master and
rebuild often to take advantage of the latest im-
provements. If you happen to stumble across an-
other rare or otherwise unusual architecture in the
course of your hardware adventures, please consider
taking a moment to implement your own plugin to
keep the architecture alive in all of our hearts and
minds.

I hope that you’ve enjoyed this friendly little
guide to Nios, and that you’ll keep it handy when
reverse engineering firmware from that platform.

11git clone https://github.com/radareorg/radare2-extras.git

28

25Altera Corporation News & Views May 1997

Altera News

Altera Target Applications

Altera Target Applications provide total solutions for
the application-specific needs of designers. Target
Applications use megafunctions from both the Altera
Megafunctions Partners Program (AMPP) and the
Altera MegaCore program to create integrated
solutions that deliver significant time-to-market
benefits. Target Applications provides technical
documentation to ensure a smooth transition from
design to implementation and focuses on markets such
as digital signal processing (DSP), peripheral
component interconnect (PCI), and wireless and
broadband communications.

DSP Imaging

Altera’s DSP imaging solutions provide the functional
blocks necessary for high-performance DSP-based
imaging systems. Combining megafunctions from the
AMPP and MegaCore programs, Altera provides
functional blocks for convolution, compression, and
filtering applications. See Table 1.

All DSP imaging solutions employ the latest, cutting-
edge technology. For example, compression support
involves discrete cosine transform and JPEG
megafunctions, which are ideally implemented in
FLEX 10K embedded array blocks. Filtering support
involves decimation and biorthogonal wavelet filters.

The new color space converter (RGB2YCrCb
and YCrCb2RGB) MegaCore functions, which are
available as MAX+PLUS II migration products, have
full precision outputs and are optimized for the
FLEX�10K and FLEX 8000 device architectures.

Target Applications CD-ROM & Selector Guide

For more information on Target Applications products,
contact Altera Literature Services for a copy of the
Target Applications CD-ROM and Target
Applications Selector Guide. The selector guide
provides you with a complete listing of megafunctions,
reference designs, and technical documentation. The
CD-ROM provides details about these applications,
and includes reference designs and a variety of
technical literature.

Table 1. DSP Imaging Functions

Function Source

Discrete cosine transform Integrated Silicon Systems
Image processing library Integrated Silicon Systems
JPEG decoder Integrated Silicon Systems
JPEG encoder Integrated Silicon Systems
Parameterized decimator FASTMAN
Biorthogonal wavelet filter FASTMAN
Color-space converters Altera MegaCore function
Video convolver Altera reference design

ACCESS PROGRAMTM

SCORE WITH THE ALTERA POWERPLAYSCORE WITH THE ALTERA POWERPLAYSCORE WITH THE ALTERA POWERPLAY

DAC ‘97
June 9-11, 1997

Anaheim, CA
Booth 1574

1 ;−− s t r l e n :
0 x000809fe 1778 save sp , 0 x17

3 0x00080a00 1033 mov l0 , i 0
0x00080a02 0132 mov g1 , l 0

5 0x00080a04 0098 pfx h i (0 x0)
0x00080a06 6138 and g1 , g3

7 0x00080a08 c17e skprz g1
/−< 0x00080a0a 1280 br 0x00080a30

9 | 0x00080a0c 0332 mov g3 , l 0
/−−> 0x00080a0e 02b0 ldp g2 , [l0 , 0 x0]

11 | | 0x00080a10 4130 mov g1 , g2
| | 0x00080a12 f 7 9 f pfx h i (0 x f ee0)

13 | | 0x00080a14 e437 movi g4 , 0 x1f
| | 0x00080a16 f 7 9 f pfx h i (0 x f ee0)

15 | | 0x00080a18 c46 f movhi g4 , 0 x1e
| | 0x00080a1a 8100 add g1 , g4

17 | | 0 x00080a1c 413 c andn g1 , g2
| | 0 x00080a1e 049 c pfx h i (0 x8080)

19 | | 0x00080a20 0234 movi g2 , 0 x0
| | 0x00080a22 049 c pfx h i (0 x8080)

21 | | 0x00080a24 026 c movhi g2 , 0 x0
| | 0x00080a26 4138 and g1 , g2

23 | | 0x00080a28 417 f skprnz g1
\−−< 0x00080a2a f187 br 0x00080a0e

25 | 0x00080a2c 9004 addi l0 , 0 x4
| 0x00080a2e 900 c sub i l0 , 0 x4

27 \−> 0x00080a30 04b0 ldp g4 , [l0 , 0 x0]
0x00080a32 044 e ext8d g4 , l 0

29 0x00080a34 447 f skprnz g4
/−< 0x00080a36 0980 br 0x00080a4a

31 | 0x00080a38 1832 mov i0 , l 0
| 0x00080a3a 3004 inc l 0

33 /−−> 0x00080a3c 01b0 ldp g1 , [l0 , 0 x0]
| | 0 x00080a3e 014 e ext8d g1 , l 0

35 | | 0x00080a40 c17e skprz g1
\−−< 0x00080a42 f c87 br 0x00080a3c

37 | 0x00080a44 3004 inc l 0
| 0x00080a46 300 c dec l 0

39 | 0x00080a48 1832 mov i0 , l 0
\−> 0x00080a4a 7808 sub i0 , g3

41 0x00080a4c d f 7 f r e t
0x00080a4e a07d r e s t o r e

Disassembly of strlen on Nios.

29

stat ic int d i sa s semble (RAsm ∗a , RAsmOp ∗op , const ut8 ∗buf , int l en) {
2 i f (l en < 2) {

return −1;
4 }

6 buf_global = &op−>buf_asm ;
memcpy(bytes , buf , 2) ;

8
struct di sas semble_in fo i n f o = {0} ;

10
i n f o . d i sas sembler_opt ions = "" ;

12 i n f o . mach = a−>b i t s == 16 ? MACH_NIOS16 : MACH_NIOS32;
i n f o . bu f f e r = bytes ;

14 i n f o . read_memory_func = &nios_buffer_read_memory ;
i n f o . symbol_at_address_func = &nios_symbol_at_address ;

16 i n f o . memory_error_func = &nios_memory_error ;
i n f o . print_address_func = &nios_print_address ;

18 i n f o . endian = ! a−>big_endian ;
i n f o . f p r i n t f_ func = &n i o s_ fp r i n t f ;

20 i n f o . stream = stdout ;

22 op−>s i z e = print_insn_nios ((bfd_vma) a−>pc , &i n f o) ;

24 i f (op−>s i z e == −1) {
r_strbuf_set(&op−>buf_asm , " (data) ") ;

26 }

28 return op−>s i z e ;
}

Radare2 plugin for disassembling Nios.

30

