
21:04 Anti-debugging tips and tricks for Cortex-M microcontrollers
by Balda

ARM-based microcontrollers are ubiquitous in
the so-called smart devices we all live around. If
you take the time to open these up, you will most
certainly find an accessible JTAG interface, or more
often now using SWD. As a security-aware person
you might say that these interfaces should be dis-
abled at the factory, but they most of the times are
not for multiple and often non-relevant reasons like
failure analysis and such. As a firmware developer,
this interface is also a nightmare as any curious per-
son with the right tools would be able to access the
internal secrets held inside the flash memory.

The purpose of this article is to provide fellow
firmware developers some ways to detect a debug
access from the firmware itself and react to such un-
desirable intrusion. We also will focus on ARM’s
Cortex-M family of microcontrollers.

Debugging a Cortex-M core

For nearly all of the Cortex-M cores out there,
the most used way to access the debug interface is
through the SWD port. The SWD protocol itself
is extensively described in ARM’s Debug Interface
Architecture Specification or ADI, which is freely
available from ARM’s website. From that docu-
ment, we know that the interface uses a memory
access controller which can read and write to ar-
bitrary locations called the MEM-AP. This means
that all subsequent debug operations are performed
using memory reads and writes to specific memory-
mapped registers.

One of these registers is the Debug Halting Con-
trol and Status Register, DHCSR for short. This
32-bit register is located at address 0xE000EDF0 and
is used by debuggers to control the core execution
state and contains several control bits. Two of them
are very interesting: C_HALT[1] halts the core exe-
cution, and C_DEBUGEN[0] enables core debug.

To set C_HALT and stop the core, C_DEBUGEN
must already be set to 1. This means that a de-
bugger has to perform two writes to this register in
order to stop the core. As this register can also be
read from the core itself, it is possible to detect if
a debugger is trying to connect by looking at the
C_DEBUGEN bit value.

1 uint8_t detect_debug (void) {
uint32_t ∗DHCSR=(uint32_t ∗) 0xE000EDF0 ;

3 i f (∗DHCSR&1) { // Detect C_DEBUGEN b i t
// debugger de t e c t ed

5 return 1 ;
} else {

7 return 0 ;
}

9 }

In practice, we used this simple detection
method in a CTF challenge by placing the detection
routine inside a FreeRTOS thread to clear a secret
key from RAM whenever a debug interface tries to
connect. If the action is simple enough like in this
example, it will complete before the core halts and
protect the secret key. Note that this technique can-
not be used on Cortex-M0 cores because DHCSR is
not reachable from the CPU on this architecture.

Hardware breakpoints

Like their x86 cousins, ARM cores have two kinds
of breakpoints: software and hardware. Hardware
breakpoints use a dedicated core component, called
the BreakPoint Unit (BPU) on Cortex M0 and M1,
or the Flash Patch BreakPoint Unit (FPB) on Cor-
tex M3 and later.

The BPU uses a control register BP_CTRL and
up to four comparator registers BP_COMPx. If the
PC register matches the value of one of the BP_COMP
registers and the BPU is enabled, the core will halt
the execution. By default, OpenOCD will enable
the BPU when connecting to a Cortex-M0 core, it is
therefore possible to look for this value in the same
way as with the DHCSR register above:

1 uint8_t detect_debug (void) {
uint32_t ∗BP_CTRL=(uint32_t ∗) 0xE0002000 ;

3 i f (∗BP_CTRL&1) { // de t e c t ENABLE b i t
// debugger de t e c t ed

5 return 1 ;
} else {

7 return 0 ;
}

9 }

8

The FPB replaces the BPU and has the same
functionality and conveniently uses the same address
for its control register FP_CTRL as for BP_CTRL, so
the detection and breakpoint features work the same
way. However, there is an added functionality called
the Flash Patch, which allows to redirect the execu-
tion flow to a different path based on a comparator
and a destination address. Instead of breaking when
the PC register matches the comparator, the core
will update the PC value with the value stored in a
remap table located in RAM. The remap table is a
pointer array, and if comparator x matches and is
enabled, the xth entry of the table replaces the PC
value.

In the following example, we use the FPB
remap to call the return_zero() function instead
of return_one(). This would produce a valid bi-
nary and headaches to any reverse engineer trying
to understand what the code does.

1 uint8_t return_one (void)
{ return 1 ; }

3
uint8_t return_zero (void)

5 { return 0 ; }

7 void∗ FP_REMAP_TABLE[6] = {
(void ∗)&return_zero

9 } ;

11 void setup_fpb (void) {
// Point FP_REMAP re g i s t e r to our remap t a b l e

13 uint32_t ∗ FP_REMAP = (uint32_t ∗) 0xE0002004 ;
∗FP_REMAP = (uint32_t)FP_REMAP_TABLE;

15
// Setup the compatator

17 uint32_t ∗ FP_COMP0 = (uint32_t ∗) 0xE0002008 ;
uint32_t comp_value = 0 ;

19 // Set comparison address
comp_value |= (uint32_t)&return_one ;

21 // Enable comparator
comp_value |= 1 ;

23 ∗FP_COMP0 = comp_value ;

25 // Enable FPB unit
uint32_t ∗ FP_CTRL = (uint32_t ∗) 0xE0002000 ;

27 ∗FP_CTRL |= ∗FP_CTRL | 0b11 ;
}

29
int main (void) {

31 [. . .]
setup_fpb () ;

33
while (1) {

35 i f (return_one ()) {
// This branch w i l l NEVER execute

37 } else {
// This branch w i l l ALWAYS execute

39 }
}

41 }

Another nice feature of the FPB remap for ob-
fuscation is that OpenOCD resets all FPB registers
when connecting to a target. This means that as
soon as the debugger is connected to a target run-
ning the previous example, the core will execute the
first branch instead of the second one, effectively
hiding the correct code flow from unauthorized eyes.

Software breakpoints

Software breakpoints halt execution when the CPU
executes a bkpt instruction which is really useful
when debugging your firmware. The instruction also
takes a byte-sized parameter to further help the de-
veloper manage multiple breakpoints.

An interesting property of the bkpt instruction is
that if it is executed while the core has no debug en-
abled, it will generate a HardFault. As a developer,
we can leverage this property within the firmware
and create a dedicated Hardfault handler. The plan
is to detect if the fault happened because of a bkpt
instruction, restore the registers and resume execu-
tion to the next instruction.

Looking at the ARM documentation, we can find
that a register contains information about the type
of fault that happened. On Cortex-M0, it’s the DFSR
register and on Cortex-M3 and later the register is
called the HFSR (Hard Fault Status Register). On
both of these, a bit is set when the fault occured
because of an untrapped debug event (ie. a bkpt
instruction with no debugger): the BKPT[1] and
DEBUGEVT[31] respectively.

Now that we know how to detect the debugger,
we need to resume execution. Upon entering a fault,
some registers are saved on the stack for further
analysis. This process is automatically managed by
the core, and the following registers are saved (from
top to bottom): r0, r1, r2, r3, r12, lr, pc, xPSR

When entering the fault handler, the execution
context changes to handler mode. It is possible to
get back into thread mode by linking to a special ad-
dress of 0xFFFFFFF9, which coincidently is the value
of the link register set when entering the fault han-
dler. Jumping to that address will automatically
restore the register values and resume execution.

The only thing left is to increment the saved PC
value in the stack by 2 to point to the instruction
following the bkpt instruction and resume execu-
tion. In the following example, we update a global
variable containing the detection status.

9

1 uint8_t DEBUGGER_DETECTED = 1 ;

3 void HardFault_Handler (void) {
uint32_t ∗HFSR=(uint32_t ∗) 0xE000ED2C ;

5 i f (HFSR & 0x80000000) { // DEBUGEVT b i t
// re se t de tec t ion var i ab l e

7 DEBUGGER_DETECTED = 0 ;
asm(

9 "push { r0 }\n"
" l d r r0 , [sp , #28]\n"

11 "add r0 , r0 , #2\n" // increment saved pc
" s t r r0 , [sp , #28]\n"

13 "pop { r0 }\n"
"bx l r \n" // resume execut ion

15) ;
} else {

17 while (1) {} // other f a u l t
}

19 }

21 int main (void) {
while (1) {

23 DEBUGGER_DETECTED = 1 ;
asm("bkpt 8\n") ;

25 i f (DEBUGGER_DETECTED) {
// debugger i s present

27 } else {
// debugger not present

29 }
}

31 }

Semihosting
Messing with reverse engineers and people trying to
debug your firmware isn’t enough? Let’s take a look
at another ARM debugging feature: semihosting.

Semihosting is a way for the target firmware to
access data on the debugger side by using syscall-
like operations like open, read, and write. It is
typically used to allow functions like printf to be
used in the firmware, with the output being printed
in the debugger console on the host. It uses a clever
mechanism to work. If the firmware halts on a bkpt
instruction while being debugged, the debugger will
fetch the argument to the bkpt instruction. If the
argument value is 0xAB, the debugger will fetch the
operation to be performed in r0, and the arguments
at a location pointed to by r1.

The following code implements semihosting to
perform a SYS_WRITE operation (semihosting call 5)
to the host’s stdout, file descriptor 1.

1 void pr int_semihost ing (char ∗ data , s i z e) {
/∗ use SYS_WRITE to STDOUT ∗/

3 uint32_t args [3] ;
a rgs [0] = 1 ; // FD 1 = STDOUT

5 args [1] = (uint32_t) data ;
args [2] = s i z e ;

7 asm(
"mov r0 , #5\n" // Op #5 − SYS_WRITE

9 "mov r1 , %0\n"
"bkpt 0x00AB" : : " r " (args) : " r0 " , " r1 ") ;

11 }

The same applies to the other semihosting
operations, but one in particular is interesting:
SYS_SYSTEM. As the name implies, this operation
asks the debugger to fetch a command from the tar-
get and pass it to the system() function on the host.
It is therefore possible to use any if the debugging
detection routines shown in this article to call this
function if a debugger is detected. As a mandatory
example, this function will spawn the xcalc binary
on the debugger host:

1 void spawn_calc (void) {
const char ∗ cmd = " xca l c " ;

3 uint32_t args [2] ;
a rgs [1] = (uint32_t)cmd ;

5 args [2] = 6 ;
asm(

7 "mov r0 , #18\n" // Op #18 − SYS_SYSTEM
"mov r1 , %0\n"

9 "bkpt 0x00AB" : : " r " (args) : " r0 " , " r1 ") ;
}

Many variations of this trick exist, and can easily
mess with the debugger host. Fortunately, semihost-
ing is not enabled by default in OpenOCD. The com-
mand arm semihosting enable must be entered
in OpenOCD’s console to activate semihosting sup-
port.

Conclusion

ARM microcontrollers are wonderful devices pack-
ing lots of hidden gems like the ones I briefly pre-
sented to you today. There surely are more of them
hidden deep in the documentation or in an obscure
corner of a dumped firmware. I hope that this
small introduction will trigger your curiosity and
help you find other clever ways to practice firmware
self-defence. Code is attached.6

6git clone https://github.com/Baldanos/cortex-m-antidebug || unzip pocorgtfo21.pdf cortex-m-antidebug.zip

10

