
20:04 Turtles All the Way Down
by Charles Mangin

Emulating an Apple II is a relatively straight-
forward proposition. The architecture is well-
documented; the chips and logic are all well under-
stood. It’s a solved problem. All that remains is the
choice of implementation.

The Apple II family of computers has been virtu-
alized many times over, recreated in forms as varied
as Javascript and Minecraft redstone logic. You can
even tinker with Print Shop on your smartphone or
play Wavy Navy in a web browser.

The program emulating the Apple may even be
running inside a virtual machine of its own - a Paral-
lels VM running Windows running AppleWin, itself
hosted on a Mac running macOS, all to play an Ap-
ple II game. How far you can go along this chain
is only limited by your imagination and available
hardware. That whole macOS installation may be
running in VirtualBox on a Linux host.

But can we go deeper?
Turns out, yes. Yes we can. In this PoC, I set

out to add another layer or two to the this emulation
lasagna by emulating an Altair 8800 on the Apple
II.

The original S-100 machine, the Altair, boasts
toggle switches, blinking LEDs, and not much more
beyond that. Inside its industrial steel chassis lurks
an Intel 8080 processor churning through bytecode
at two MHz. With an addressable space of 64 kilo-
bytes of memory, the 8080 contains seven eight-bit
registers, a relocatable stack, and can access up to
256 I/O devices.

That seems easy enough to emulate on modern
hardware, right? Compare those stats to the 6502
in the Apple II, however. The 6502 is also an eight-
bit processor with 64k addressable memory, only
three registers, a fixed 256-byte stack at 0x0100 and
memory-mapped I/O.

Luckily, much of the hard work was done for me
in 1979, by Dann McCreary. He created an 8080
interpreter program for the KIM-1, a single-board
6502 computer with even fewer blinking lights and
switches than the Altair. I found the binaries and
source for SIM-80 in the usual way, through Google
and the Internet Archive.

I set about cleaning up McCreary’s 40 year old
KIM-1 source code, ready to turn it to my will and
port it to the Apple II. Once again, Dann had done
the hard work for me. Apple-80 was a commercial
release of SIM-80 for the Apple II, and I found a rip
of the cassette, along with documentation, but no
source, at brutaldeluxe.fr.

With the KIM-1 SIM-80 source on one hand,
and a freshly disassembled binary of Apple-80 on
the other, I was able to reproduce the source for
Apple-80. My efforts then shifted to updating and
augmenting it, relocating the code to run at boot
from a ProDOS floppy instead of loading from cas-
sette.

14

Apple-80 emulates the 8080 processor opcode-
by-opcode, and provides a window into the inner
workings of the processor as it operates, allowing a
user to step and trace assembly code, modify regis-
ter state directly, and read and write memory - but
that’s it. A single status line. I wanted more of the
Altair experience. I wanted Blinkenlights.

The Apple II has a mixed low-resolution graph-
ics and text mode, with 40 horizontal by 40 vertical
rectangular pixels in 16 stunning colors, and four
lines of 40-column text below. I designed a low-res
screen version of the front plate of the Altair 8800
and scootched the Apple-80 status line into the “plus
four” text lines.

It was then a matter of animating the graphi-
cal front end of the newly dubbed Sim-8800.11 The
lights on the front of a real Altair reflect the sta-
tus of the memory and address lines of the 8080, as
well as other processor status bits. The switches are
used to change and step through bytes of memory. I
added hooks into the step and trace functions of the
emulator core to change the proper pixels on the low
res screen in order to simulate LEDs turning on and
off, and toggling switches in up or down positions.
Keyboard commands were then added to flip these
virtual switches and change the bits in the emulated
processor to the appropriate status.

I could now enter a program into the Sim-8800
the same way a hobbyist who had finally finished
soldering together his Altair kit in late 1970s would
have.

Byte by byte, flipping switches, and noting the
pattern of LEDs, a test program is entered and then
run. What better program to test with than the
classic “Kill the Bit,” which causes the processor to
access memory at specific addresses, triggering lights
on the front panel to rotate in a pattern.

This program and a more complex Pong-like
game worked a treat. I had emulated the Altair
out-of-the-box experience on an Apple II - almost.

Opcode Origami

Both the Apple II and virtual Altair were accessing
the same 64K of memory space, with the Apple set-
ting aside 4K of that for the Altair to play in - the
range from 0x1000 to 0x1FFF. Below that range lives
the Apple’s own zero page variables in use by ROM
routines, the 6502’s immobile stack, and the display
buffer for text and low resolution screens. Above, at
0x2000, sits the emulator program itself, an address
set by ProDOS for any program that runs at boot.

The problem, at this point, was not that the Al-
tair was limited to four virtual kilobytes, but that
they started above 0x00. The programs I entered all
had to be rewritten, relocated to run at the higher
address range, which limited me to very simple pro-
grams.

Additionally, any time the virtual 8080 stepped
outside of its strict memory bounds, unpredictable
crashes happened. If the 8080 program modified
a portion of the emulator program by mistake, or
ventured into ROM space and triggered one of the
Apple’s soft switches, all was lost.

Thus began a deep dive into the emulator core -
all my changes up to this point had been to relocate
routines or add my display functions on top of the
existing pieces. Now I was going to have to rewrite
portions of Dann McCreary’s code to dynamically
relocate everything by 0x1000 bytes. This way, an
8080 program designed to run at 0x00 could live in
a real chunk of memory at 0x1000 and not interfere
with the 6502 zero page.

Each operation of the 8080, and thus the SIM-
80 emulator, essentially does one of three things: 1)
read a chunk of memory into a register or register
pair (RP), 2) write the contents of an RP to memory,

11unzip pocorgtfo20.pdf SIM8800.zip

15

; 0000 org 0000
; 0000 21 00 00 l x i h , 0 ; i n i t i a l i z e counter
; 0003 16 80 mvi d ,080h ; s e t up i n i t i a l d i sp l ay b i t
; 0005 01 0E 00 l x i b , 0 eh ; h igher va lue = f a s t e r
; 0008 1A beg : ldax d ; d i sp l ay b i t pattern on
; 0009 1A ldax d ; . . . upper 8 address l i g h t s
; 000A 1A ldax d
; 000B 1A ldax d
; 000C 09 dad b ; increment d i sp l ay counter
; 000D D2 08 00 jnc beg
; 0010 DB FF in 0 f f h ; input data from sense sw i t che s
; 0012 AA xra d ; e x c l u s i v e or with A
; 0013 0F r r c ; r o t a t e d i sp l ay r i g h t one b i t
; 0014 57 mov d , a ;move data to d i sp l ay reg
; 0015 C3 08 00 jmp beg ; repeat sequence
; 0018 end

Kill the Bit source, published by Dean McDaniel in 1975.

16

or 3) carry out some manipulation of bytes within
the registers. There are a handful of other unique
opcodes that have different effects, but the bulk of
the opcodes fit into one of those three categories.

Any routine instructing the emulator to read
from memory or write to memory (including the pro-
gram counter [PC] that keeps up with the current
instruction address) had to be modified. I added
0x1000 to the PC for reads, then subtracted 0x1000
for execution. Writes were handled similarly, adding
0x1000 in order to write the correct real addresses.

As each edge case was found, the off-by-one er-
rors began to fall, and soon I could run rudimentary
programs again - this time, as they were originally
written. There was one binary beastie I wanted
to tackle in particular, but it would require having
some means of doing input and output. The next
goal was something slightly more complicated than
turning LEDs on and off.

Talk To Me

The first peripheral most Altair owners would add
to their machines was some sort of input and out-
put beyond the built-in LEDs and switches. A paper
tape reader and teletype printer opened up a world
of possibilities beyond Kill the Bit, and turned the
hobbyist curiosity into a truly useful home computer
- for those homes that could accommodate a clang-
ing, clacking teletype. These were connected to the
Altair with a serial board, the 88-SIO or later 88-
2SIO.

Once again diving into the Internet Archive, I
surfaced with complete documentation of the 88-
SIO board, including full assembly and installation
instructions as well as theory of operation. Most
importantly, a table of the status bits was included,
and assembly listings of programs for testing the
board. Bonus!

The internal workings of the SIO are not impor-
tant, or indeed that complicated. In order to take
in bytes from the outside world, or emit them back
out again, the SIO utilizes two of the 8080’s I/O
ports. One is used for status, both setting and read-
ing, the other for transmitting and receiving bytes.
Being the first such device available for the Altair,
those functions default to ports 0x00 and 0x01 re-
spectively.

Emulating the external teletype functions, I used
the Apple II’s built-in ROM functions. Any bytes

received from the virtual SIO are simply printed to
the screen through the “character output” or COUT
function call. This handles everything from scrolling
the text window, to wrapping text at 40 (or later,
80) characters, to linefeeds and carriage returns.
Reading the keyboard buffer at 0xC000 provides in-
put to the SIO, one byte at a time.

I added a code to the emulation routines han-
dling the OUT and IN 8080 opcodes to make them
call my virtual SIO subroutines. These subroutines
in turn set the proper status bits, indicating that
the card is either ready to receive or ready to send.
As far as the virtual Altair is concerned, it’s con-
nected to a ridiculously fast serial board that never
has to wait for a byte to buffer, and it’s always in
sync with the receiving printer.

Ya BASIC
Microsoft, at the time styled Micro-Soft, was formed
in order to sell a BASIC interpreter to MITS after
the Altair was revealed. Their initial product ran
in 4K (check) and needed only a serial connected
teletype for I/O (check).12

The program itself is much too large to enter by
hand. While I could transfer the bytes in one at a
time through the virtual paper tape machine I had
created with the emulated SIO, I took a shortcut in-
stead. I cheated and had ProDOS load BASIC into
the virtual Altair’s memory directly. When Sim-
8800 booted up, BASIC was already sitting at 0x00,
ready to run.

And run it did. The first time the prompt spat
out the bottom of the Apple II screen, asking me
how much memory the system had, I grinned like a
fool.

12http://altairbasic.org/

17

I could now create and run a program in an in-
terpreted language created by a program running on
a virtual 8080 processor, emulated by another pro-
gram running on a 6502 processor.

Then the text scrolled past the four lines at the
bottom of the mixed low res graphics screen, and I
coded up a full-screen switch.

Then the default line length turned out longer
than the 40 columns of the Apple II standard text
mode, and I knocked together a switch to set 80
column text mode.

But can we go deeper?
With 4K of virtual memory, and the optional

trigonometric and random functions turned on, BA-
SIC was left with a meager 726 bytes of memory to
run programs. This was a significant roadblock to
many ambitious Altair owners in their day as well,
and was cause for many memory upgrades.

Remediating this limitation in my emulated Al-
tair meant moving my program from 0x2000 to a
spot higher in memory. This entailed writing a small
program that would load at boot time into 0x2000,
then load Sim-8800 from disk into a higher memory
location and hand off control. The loader, its job
complete, would get clobbered by the next phase,
which loaded a more complex, 8K BASIC into mem-
ory.

But why stop there? The Apple II has 64K of
memory space, albeit in a rather hodgepodge ar-
rangement.

As outlined by Gary B. Little in Inside the Ap-
ple IIe, reproduced on page 20, the first roughly
4K of RAM is associated with zero page variables,
stack, and text/graphics buffers. On the higher end
is the ROM, the 4K at 0xC000 for memory-mapped
I/O and peripheral cards, and everything else above
0xBF00 is used by ProDOS. All this leaves about
36K of usable space on a standard 64K Apple II
system. If I could keep my program, including the
graphics for the virtual Altair front panel, at less
than 4K, I could emulate a 32K 8080 system on a
64K 6502.

And so I did. All my code and data lived at
0x9000 through 0xBF00, with plenty of room to
spare, while Sim-8800 addresses everything from
0x1000 through 0x8FFF, and pretends it’s 0x0000
to 0x07FFF.

32K felt luxurious compared to the 4K I had pre-
viously eeked out a working program in, so I was
happy with it for a while. I found a chess program
built for the 8080, and played a few moves against it.

I even worked out a way to load text files from floppy
disk into the emulated paper tape reader, meaning
I no longer needed to type in ever more complicated
BASIC programs.

And if I ever wanted to save one of those pro-
grams back out from the emulator, I could. Well.
Um. Paper tape? Oh.

Back Off - I’m A Scientist

The next obvious peripheral most Altair owners
would have sprung for in those early days of home
computing was a floppy drive. At 8” across, these
disks were truly floppy, contrasted to the compara-
bly compact 5.25” “mini” floppy disks that would
come later.

The 88-DCDD (sensing a naming convention
here?) was the 8” floppy drive of choice for those
early machines, and came, like the 88-SIO, with
a complete set of assembly instructions and tables
of I/O bytes. Credit, once again, to the Internet
Archive for the documentation.

8” Altair disks are preserved for the ages in
archived DSK files. Thankfully for me, the DSK for-
mat is a byte-for-byte image of what one would find
on the disk itself, contiguous and without preamble.
The physical format allows for 77 tracks of 32 hard-
defined sectors, each with 137 bytes of data - 128
bytes with a small lead-in and out, plus space for a
checksum - for a total of 330K of data per DSK.

The Apple II generally boots from 140K 5.25”
floppies - you may sense a problem here.

Luckily, my choice of ProDOS for booting the
Apple II allowed me to leverage its ability to boot
from hard drive volumes up to 32 MB. Today, those
volumes generally live on some sort of solid state
storage device, like a CFFA-3000. In fact, I hadn’t
touched a real floppy disk in this whole process - all
of my disk storage for the Apple II was emulated
by either a CFFA or a Floppy Emu, both of which
present solid state storage media (Compact Flash
or SD card) to the Apple as if it is a floppy disk or
spinning drive.

The storage issue resolved, I could focus on the
actual emulation. Having tackled the SIO emula-
tion, the DCDD was a relative breeze - that is, if a
scorching hurricane of sand and broken glass could
be called a “breeze.”

19

Apple IIe Memory Maps.
Reprinted from Inside the Apple IIe by Gary B. Little.

20

My decision to tie every IN and OUT opcode to
the SIO emulation came back to bite me here, and
I was forced to rip out vital chunks of code in order
to rebuild them in a new, better abstracted image.
Now, in addition to an infinitely fast serial port, the
Altair was connected to a floppy drive with near-zero
seek time spinning at roughly 3.75 million RPM.

The only easy part of the disk emulation comes
thanks to the hard sectoring of the disks. While the
actual data on disk is interleaved to give the com-
puter time to process data from sector N before being
presented with the data on sector N+1, the hardware
treats the sectors as numbered sequentially. Inter-
leaving is handled by the software, so I didn’t need
to build an interleave table. It’s also up to the pro-
gram reading the data on disk to build and decode
any checksums on the data, tasking the drive only
with reliably reading and writing bytes.

To present the Sim-8800 with bytes from a vir-
tual disk, I needed to load in data from the DSK file
on a real disk (in the way that an SD card emulating
a spinning drive is a “real” disk). To do this, Pro-
DOS can read arbitrary pieces of a file, given a start-
ing byte offset and a length. To properly emulate a
spinning disk, I load in one full 4,384 (32 x 137) byte
track at a time into memory. This is queued 1K at
a time by ProDOS into a buffer before being moved
into place. If you can tell I’m running out of bytes
to shove things into, you’re still not wrong.

When the Altair starts asking for data, there’s
no way to tell what track it’s looking for, or what
sector. The virtual DCDD simply increments the
track number and grabs 4.3K from the DSK, over-
writing the previous track’s data, when Sim8800
tells it to step the motor inward by a track. Then,
when Sim8800 reads the status byte for the drive,
the DCDD increments the sector by one. This way,
the program loading data only needs to wait a few
virtual CPU cycles for the proper sector to come by.

And then, there’s the bootstrapping problem.
Whereas the Altair knew what to do when told to
run BASIC, that was because I was loading BASIC
into virtual memory before the Altair booted. With
a program on disk, I was no longer able to cheat to
get by. I needed a bootloader. Luckily, the internet
provided again. The same site I kept coming back to
for DSK files and other information not easily found
on archive.org had a variety of boot ROMs for the
Altair - deramp.com.

I acquired a proper bootloader, which was now
loaded into memory at boot time, much like a ROM

21

board used a real Altair owner. Booting from the
ROM is easy, only requiring the computer to exam-
ine the proper place in memory - a simple incanta-
tion consisting of flipping the front panel switches,
and then telling the machine to run. The loader
relocates itself in memory away from ROM space,
modifying itself as necessary along the way, based
on the front panel switch settings, and finally runs
at its new location.

This pass accesses the disk at track zero, sec-
tor zero, and loads data from disk into memory at
0x00. After reaching the end of track zero, the
loader hands off control to the program at 0x00,
which is then responsible for loading the remainder
of the operating system from the disk.

After some additional effort to get the virtual-
ized DCDD to write data back to a DSK file, I was
able to read, run, and save BASIC programs stored
on a DSK under a Disk BASIC and Altair DOS. I
could now run an interpreted program loaded into
an operating system in 32K of virtual memory on an
emulated 2 MHz 8080 from an emulated 8” floppy
disk which was really a file inside another file on
an SD card emulating a spinning hard drive feeding
data into an Apple II with 64K of RAM and a 1MHz
6502.

Catch All That?
But, again, can we go deeper? The answer is yes,
but first, a bit of a diversion:

“If you wish to make an apple pie from scratch,
you must first invent the universe.” - Dr. Carl
Sagan, 1980

To paraphrase Dr. Sagan, in order to play a com-
puter game, you must first invent the computer.
To this end, in 1979 the authors of what would
eventually become the Infocom interactive fiction ti-
tle Zork, manifested from pure imagination and no
small amount of magic a virtual computer to run it
on. They called it the “Z-Machine.”

Much has been written about this virtual ma-
chine, its antecedents and its successors. Several
versions of the Z-Machine were created, and even
today there is a vibrant community of authors and
creators who still program for it. The fabled ma-
chine does not exist in a physical form of chips and
wires, but only in the imagination.

Imagine a computer - depending on the accuracy
and veracity of your imagination, you may come up
with something that contains a processor, memory,
storage, and some forms of input and output. Good
imagining, neighbor!

In order for this imaginary machine to function
in the real world, and run the programs, it must
be implemented in code on an actual computer. Z-
Machine interpreters, or programs that emulate a
virtual Z-Machine, have been written for nearly any
platform you can think of. An atypical, but not
unheard-of system for running Zork in its heyday
might have been an Altair 8800. Now imagine one
of those.

Actually, no need to imagine. I already had a
virtual Altair 8800. Dare I dream? Could it run
Zork?

In a word: No. Not yet.

22

Giving It All I’ve Got

In order to run Zork on an Altair, said Altair must
have some kind of text terminal (check), a floppy
disk to read and write the program files (check) and
be running the CP/M operating system (hmm...).
Digital Research’s CP/M was a contemporary of and
competitor against Micro-Soft’s DOS, and early ver-
sions exist that will barely squeak by with just 24K
of memory.

I should note here that at each point in my jour-
ney, I found and fixed numerous bugs in my code,
and limitations of the original Apple-80 emulator
core. These were flaws were revealed by the ever
expanding and complex convolutions I was forcing
upon it. 8K BASIC uncovered issues with reposi-
tioning the stack pointer; Disk BASIC had trouble
with reading from virtual disk, and Altair DOS with
writing to it. At multiple stops along the way, I was
forced to backtrack - faced with the consequences of
fixing a load-bearing bug, while wondering how this
whole thing had even worked in the first place.

Debugging my own 6502 spaghetti code is one
thing, my head was swimming trying to understand
what the emulated 8080 code was intended to do,
while also handling translation of memory addresses
from virtual to real.

Deramp.com provided a DSK of 24K CP/M, ver-
sion 1.4, which ran like a champ as I put it through
some limited testing. The distribution on the DSK
was intended to be used to make another bootable
disk, rather than used by itself, but it worked as
proof of concept that Sim-8800 could, indeed, run
CP/M.

But 32K just wasn’t going to suffice. In fact,
CP/M 1.4 wouldn’t cut it, either. According to my
research, I was going to need at least 48K minimum,
and CP/M 2.2 for the Z-Machine interpreter.

As I’ve demonstrated, on a typical 64K Apple
II system, there’s no way to load up 48K of any-
thing, let alone leave room for an emulator program
to manage it all. I would have to revise my minimum
system requirements for running Sim-8800.

Zoom and Enhance

Enter the Apple IIe. While the base system still
faces the typical 64K limitation, a common upgrade
for the IIe is an 80-column card with an additional
64K of “auxiliary” memory on board. 64 glorious
kilobytes of usable RAM, at my fingertips! Why
not just run the emulator itself in main memory,
and shuttle the virtual memory into the aux mem-
ory on the card? Because that would be too simple.

You see, in order to access that auxiliary mem-
ory outside the 64K limit on an eight-bit system, one
must perform bank switching. Chunks of memory
are turned off and others turned on in their place.
This process is handled through soft switches, mem-
ory locations in the ROM area that inform the pro-
cessor how to perform whenever they are accessed.
You can’t have access to both aux and main RAM
at the same time. My code would need to exist in
both places at once in order to continuously main-
tain control.

Add to this the fact that the Apple mirrors por-
tions of the main memory in auxiliary, so that when
banked out, the processor still has access to the pe-
ripheral ROM, zero page and stack, among other
things. The end result is about 32K of usable mem-
ory in the aux space to add to the 32K I was using
in main memory. I had my 64K. Only, like Waffle
House hash browns, it was scattered, smothered and
chunked.

I endeavored once again to dynamically remap
the 8080 virtual memory, retracing the paths I had
forged in my previous efforts. This time, in addition
to shifting all the virtual addresses up 0x1000 real
bytes (to make room for 6502 zero page, etc.) I was
bank switching any virtual address above 0x7FFF
into the auxiliary space. Once there, the address
would need to be shifted down 0x8000 bytes again,
since aux space counts up from zero. Then, every-
thing gets shifted up again another 0x1000 bytes,
since the 6502 zero page is mirrored in aux.

All of these mathematical gymnastics need to
happen any time the virtual 8080 accesses any vir-
tual address, whether it’s the PC fetching an op-
code, reading bytes, or writing bytes in memory.
Keeping this all straight in my head was nigh impos-
sible, and it led to some frustrating, if spectacular
crashes, as virtual programs that used to run per-
fectly well in 32K suddenly overran the emulator’s
bounds.

I loaded in and bootstrapped CP/M 1.4 from a
DSK intended for a 48K system. It worked!

23

With some trepidation, I pointed the emulated
disk drive at a file named ZORK.DSK and booted once
more.

Finally - after revealing yet another edge case,
and guiding me to yet another flaw in my math re-
lated to the virtual stack pointer, which took me
two days to find and fix - it worked.

I was west of a white house. I took the lamp and
the sword. I killed the troll and got lost in the maze
of twisty passages, all alike.

I was playing a game written for an imaginary
computer, which was being emulated by CP/M with
64K of contiguous virtual memory on a virtual 2
MHz 8080 CPU loading data from a 330K eight-inch
virtual floppy, itself emulated by a 1MHz 6502 Ap-
ple IIe with 128K of bank-switched memory, loading
data from a DSK file held on an SD card pretending
to be a spinning hard drive. Did I miss anything?

Oh yes. All of this was running inside the emu-
lator Virtual][on my Mac.

You see, aside from my earliest versions of Sim-
8800, the whole development process was done on
my Mac, the part of the Apple II played by Virtual
][, a most excellent emulator by Gerard Putter.

My workflow begins in BareBones’ BBEdit,
where I write the assembly code. This is assembled
into a binary by Merlin32 by Brutal Deluxe. Mer-
lin32 is a modern command line rewrite of Merlin,
an assembler that ran on Apple systems. The bi-
nary, and other files like CPM.DSK, are compiled into
a 2MG disk image by CiderPress, which only runs
on Windows, or WINE, in my case.

The 2MG is loaded into an emulated CFFA-3000
in Virtual][. Yes, it emulates the card emulating a
hard drive. This way, disk access is even faster than
simply emulating the hard drive, as Virtual][strives
for accuracy in all things, even disk access latency.

Which brings me to a note about speed - you
may have asked yourself somewhere while reading
this missive, “just how fast can a 1MHz CPU emu-
late a 2MHz one?” The answer is slowly, unusably
slowly. The only way any of the Altair software is
even remotely tolerable, from 4K BASIC all the way
up to Zork, is through the speed boost of emulation
in Virtual][. In emulation, I can choose to be cycle
accurate, pinning the emulate 6502 at a precise 1.023
MHz, or I can press a button and run the emulation
as fast as my 2.3GHz i7 can handle.

Early on, I ran a benchmark to see just how
slowly the Sim-8800 emulation really ran. I knew it
took sometimes several hundred 6502 cycles to emu-
late a single 8080 cycle, drastically more if I was up-
dating the graphics display at the same time. A sim-
ple prime number finding BASIC program, which on
a real Altair should take 80 seconds or so, instead
took 3 hours, 25 minutes without acceleration.

But can we go deeper?
Probably, but you might get eaten by a grue.

24

