
19:05 An MD5 Pileup Fit for Jake and Elwood
by Albertini and Stevens

This article is about applying known hash colli-
sions to common file formats. It is not about new
collisions—the most recent one we’ll discuss was doc-
umented in 2012—but instead focuses on the byte
patterns techniques that are exploited in the present
attacks and are likely to continue being useful for fu-
ture ones.

We’ll extensively explore existing attacks, show-
ing once again just how weak MD5 is (instant col-
lisions of any of JPG, PNG, PDF, MP4, PE, etc.),
and will also explore how the common file format
features help the attacker construct colliding files.
Indeed, the same file format tricks can be used on
several hashes, as long as the collisions follow the
same byte patterns. Compare, for instance, the
JPEG tricks from PoC‖GTFO 14:10 and the ma-
licious SHA1 collision from the SHAttered project.

Follow along and we’ll learn the moves of the
collision dance, the tricks of the trade for collid-
ing different valid files so that they share a single
hash. We’ll begin by reviewing the available colli-
sion techniques, then show how real world files can
be abused within the constraints of the available,
practical block collisions.

State of the art

There are different ways in which we may want to
construct colliding files, depending on whether we
want to control the files’ contents or the hashes
themselves. The current status of known attacks—as
of December 2018—is as follows:

Generating a file that matches a specific fixed
hash is still impractical with MD5 and everything
stronger. It is impractical even with MD2,20 but
can be done for simpler hashes such as Python’s
crypt(). The following example is thanks to Sven,
(@svblxyz).

>>> import crypt
2 >>> crypt . crypt ("5dUD&66" , "br")

’ brokenOz4KxMc ’
4 >>> crypt . crypt ("O!>’ ,%$" , "br")

’ brokenOz4KxMc ’

While we can’t yet generate a file for an arbi-
trary MD5 hash, we can generate identical prefix
collisions (FastColl, UniColl, SHAttered) and even
chosen prefix collisions (HashClash). Because both
hashed and file formats often run from beginning to
end, these prefixes can be freely reused after gen-
eration to produce two arbitrary files that obey a
specific file format (PNG, JPG, PE, etc.) with the
same hash.

As an extreme example, making two different
files with the same SHA1 took 6,500 core years, but
now that those prefixes have been computed, we can
instantly produce two different PDFs with the same
SHA1 hash that show different pictures.21

Attacks

MD5 and SHA1 both operate on blocks of 64 bytes.
If two content blocks A and B have the same hash,
then appending (we’ll write “+” for append) the
same suffix C to both will retain equality of the total
hash.

hash(A) = hash(B)⇒ hash(A+ C) = hash(B + C)

Collisions of files with fixed different prefixes
work by inserting at a block boundary some num-
ber of computed collision blocks that depend on
what came before in the file. These collision blocks
are very random-looking with some minor differ-
ences, which follow a specific pattern for each attack.
These tiny differences eventually get the hashes to
converge to the same value after these blocks.

The key thing about file formats that makes this
method work is that file formats also work top-down,
and most of them work are interpreted as byte-level
chunks. So the format requirements and the col-
lision block insertion can be aligned to make valid
format files with specific properties.

Inert comment chunks can be inserted to align
file chunks to block boundaries, to align specific
structures to collision blocks differences, to hide the
rest of the collision blocks’ randomness from the file
parsers, and to hide otherwise valid content from the
parser, so that it will see different content.

20unzip pocorgtfo19.pdf thomsenmd2.pdf
21git clone https://github.com/nneonneo/sha1collider

21

These comment chunks were typically not meant
to be actual comments. They are just used as data
containers that are ignored by the parser. For ex-
ample, PNG chunks with a lowercase-starting ID are
ancillary, not critical.

Most of the time, a difference in the collision
blocks is used to modify the length of a comment
chunk, which is typically declared just before the
data of this chunk: in the gap between the shorter
and the longer version of the chunk, another com-
ment chunk is declared to jump over some content
A. After this content A, we then simply append an-
other content B. Since file formats usually define a
terminator that make parsers stop when they reach
it, A terminates parsing, so that the appended con-
tent B is ignored.

file 2

1

2

1

2

file 1

length

content 1

content 2

1

2

common
layout

collisi
on

block
variable
length

header

comment

comment

long short

planned beforecomputation

appended aftercomputation

computationresult

Typically, at least two comments are needed: one
for block alignment, another to hide collision blocks.
A third one may be needed to hide one file’s con-
tents, for reusable collisions.

The following common properties of file formats
enable the construction of colliding files. These
properties are not typically seen as weaknesses, but
they can be detected or normalized out, making the
attacker’s task considerably harder:

• Dummy chunks that can be used as comments.

• Allowing more than one comment.

• Long comments. For example, lengths of 64b
for MP4 and 32b for PNG make for trivial col-
lisions, whereas 16b for JPG, 8b for GIF make
for no generic collision for GIF, and limited
ones for JPG.

• Storage arbitrary binary data in a comment,
rather than just text or valid data.

• Allowing arbitrary data after the terminator.

• A lack of integrity checks. For example,
CRC32 in PNGs are usually ignored, but

would prevent PNG reusable collisions other-
wise.

• Flat structure. For example, ASN.1 defines
a parent structure with the length of all the
enclosed substructures, which prevents these
constructs: you’d need to abuse the length,
but also the length of the parent. Note, how-
ever, that this feature of ASN.1 creates multi-
ple sources of truth for the parsers, and puts
the onus of checking that all these pieces of
data agree on the parser itself. This is how
you get Heartbleed.

• Allowing a comment to precede the header.
This makes generic reusable collisions possi-
ble.

Now that we have the theory down, let’s learn
some moves.

Identical Prefix Collisions

Identical prefix files look almost identical. Their
content have only a few bits of differences in the
collisions blocks. All blocks before the collision are
fixed and cannot be changed without recomputing
the collision, while all blocks of the suffix are mal-
leable and can altered so long as they stay equal to
those in the colliding file.

1. Define an arbitrary prefix. Its content and
length don’t matter.

2. Pad the prefix to the next 64-byte block.

3. Compute and append collision block(s) de-
pending on the prefix. These blocks will look
very random, with the specific differences pre-
determined by the attack.

4. After the block(s), the hash value is the same
despite the file differences.

5. Add any arbitrary identical suffix as needed.

Prefix	=	Prefix
Collision *A*	!=	Collision *B*
Suffix	=	Suffix

22

Exploitation There are two classic ways of ex-
ploiting identical prefix collisions. The first is the
data exploit: run code that checks for differences
and displays one or the other. (This is typically
trivial because differences are known in advance.)
The second is the structure exploit, which we use a
difference in the file structure, such as the length of
a comment, to hide one content or show the other.

Here are two files with this structure, collided to
show either A or B as determined by a switch in the
collision.

Prefix	=	Prefix
Collision *A*	!=	Collision *B*
A	=	~~A~~
~~B~~	=	**B**

Randomness

PREFIX

Suffix

?
File a

File B

Identical part

(under controL)

Identical part

(under controL)

FastColl The final version of FastColl is from
2009. Here is its scorecard and a quick print of
its difference mask, which describes which nybbles
of the block might change and which must remain
fixed.

Time: a few seconds of computation
Space: two blocks
Differences: no control before, no control after.
exploitation: hard

..

.. X.

.. X. .X ..

.. X.

The differences aren’t near the start or the end
of the blocks, so it’s very hard to exploit since you

don’t control any nearby bytes. A potential solu-
tion is to brute-force the surrounding bytes. See
PoC‖GTFO 14:10.
An example with an empty prefix:

MD5: fe6c446ee3a831ee010f33ac9c1b602c
SHA256: c5dd2ef7c74cd2e80a0fd16f1dd6955c

626b59def888be734219d48da6b9dbdd
00: 37 75 C1 F1-C4 A7 5A E7-9C E0 DE 7A-5B 10 80 26
10: 02 AB D9 3939-C9 6C 5F 02-12 C2 7F DA-CD 0D A3 B0
20: 8C ED FA F3-E1 A3 FD B4-EF 09 E7 FB-B1 C3C3 9999 1D
30: CD 91 C8 45-E6 6E FD 3D-C7 BB 61 5252-3E F4 E0 38
40: 49 11 85 69-EB CC 17 9C-93 4F 40 EB-33 02 AD 20
50: A4 09 2D FBFB-15 FA 20 1D-D1 DB 17 CD-DD 29 59 1E
60: 39 89 9E F6-79 46 9F E6-8B 85 C5 EF-DE 4242 4F4F 46
70: C2 78 75 9D-8B 65 F4 50-EA 21 C5 5959-18 62 FF 7B

00: 37 75 C1 F1-C4 A7 5A E7-9C E0 DE 7A-5B 10 80 26
10: 02 AB D9 B9B9-C9 6C 5F 02-12 C2 7F DA-CD 0D A3 B0
20: 8C ED FA F3-E1 A3 FD B4-EF 09 E7 FB-B1 4343 9A9A 1D
30: CD 91 C8 45-E6 6E FD 3D-C7 BB 61 D2D2-3E F4 E0 38
40: 49 11 85 69-EB CC 17 9C-93 4F 40 EB-33 02 AD 20
50: A4 09 2D 7B7B-15 FA 20 1D-D1 DB 17 CD-DD 29 59 1E
60: 39 89 9E F6-79 46 9F E6-8B 85 C5 EF-DE C2C2 4E4E 46
70: C2 78 75 9D-8B 65 F4 50-EA 21 C5 D9D9-18 62 FF 7B

MD5: fe6c446ee3a831ee010f33ac9c1b602c
SHA256: e27cf3073c704d0665da42d597d4d201

31013204eecb6372a5bd60aeddd5d670

You will find other examples, with an identical
prefix in fastcoll1.bin and fastcoll2.bin. A
variant of this is the single-block MD5 collision, but
that takes five weeks of computation!22

Unicoll This technique was documented in 2012
in Marc Stevens’ Ph.D. thesis, “Attacks on Hash
Functions and Applications.”23 The implementation
from 2017 is on Github.24

UniColl lets you control a few bytes in the col-
lision blocks, before and after the first difference.
This makes it an identical-prefix collision with some
controllable differences, the next best thing to a cho-
sen prefix collision. This is very handy, and even
better, the difference can be very predictable: in
the case of m2+= 2^8 (a.k.a. N=1 / m2 9 in Hash-
Clash poc_no.sh script), the difference is +1 on the
ninth byte. This makes it very useful in exploita-
tion, as you can reason about the collision in your
head: the ninth character of that sentence will be
replaced with the next one. 0 is replaced by 1, a is
replaced by b, and so on.

Here are its scorecard and a map of differences.
22https://marc-stevens.nl/research/md5-1block-collision/
23unzip pocorgtfo19.pdf stevensthesis.pdf
24git clone https://github.com/cr-marcstevens/hashclash && emacs hashclash/scripts/poc_no.sh

23

Time: a few minutes (depending on the number
of bytes you want to control)

Space: two blocks
Exploitation: Very easy: controlled bytes before and

after the difference, and the difference
is predictable. The only restrictions are
alignment and that you only control ten
bytes after the difference.

.. DD

.. +1

An example with N = 1 and 20 bytes of set text in
the collision blocks:

UniColl 1 00: 55 6E 69 43-6F 6C 6C 20-31 2020 70 72-65 66 69 78
Prefix 10: 20 32 30 62-F5 48 34 B9-3B 1C 01 9F-C8 6B E6 44

20: FE F6 31 3A-63 DB 99 3E-77 4D C7 5A-6E B0 A6 88
30: 04 05 FB 39-33 21 64 BF-0D A4 FE E2-A6 9D 83 36
40: 4B 14 D7 F2-47 53 84 BA-12 2D2D 4F BB-83 78 6C 70
50: C6 EB 21 F2-F6 59 9A 85-14 73 04 DD-57 5F 40 3C
60: E1 3F B0 DB-E8 B4 AA B0-D5 56 22 AF-B9 04 26 FC
70: 9F D2 0C 00-86 C8 ED DE-85 7F 03 7B-05 28 D7 0F

00: 55 6E 69 43-6F 6C 6C 20-31 2121 70 72-65 66 69 78
10: 20 32 30 62-F5 48 34 B9-3B 1C 01 9F-C8 6B E6 44
20: FE F6 31 3A-63 DB 99 3E-77 4D C7 5A-6E B0 A6 88
30: 04 05 FB 39-33 21 64 BF-0D A4 FE E2-A6 9D 83 36
40: 4B 14 D7 F2-47 53 84 BA-12 2C2C 4F BB-83 78 6C 70
50: C6 EB 21 F2-F6 59 9A 85-14 73 04 DD-57 5F 40 3C
60: E1 3F B0 DB-E8 B4 AA B0-D5 56 22 AF-B9 04 26 FC
70: 9F D2 0C 00-86 C8 ED DE-85 7F 03 7B-05 28 D7 0F

UniColl has less control than chosen prefix, but
it’s much faster especially since it takes only two
blocks.

It was used in the Google CTF of 2018, where
the frequency of a certificate serial changes and lim-
itations on the lengths prevented the use of chosen
prefix collisions.25

SHAttered (SHA1) Documented in 2013 by
Marc Stevens,26 computed in 2017.27
Time: 6500 years CPU and 110 years GPU
Space: two blocks
Exploitation: Medium. The differences are right at

the start and at the end of the collision
blocks. So no control before and after a
length in the prefix/in the suffix: PNG
stores its length before the chunk type, so
it won’t work. However, it will work with
JP2 files when they use the JFIF form
(the same as JPG), and likely MP4 and
other atom/box formats if you use long
lengths on 64bits (in this case, they’re
placed after the atom type).

Differences:

.. DD ?? ?? ?? ??
or

?? ?? ?? DD

The difference between collision blocks of each
side is this Xor mask, with the practical collision
shown in Figure 3.

0c 00 00 02 c0 00 00 10 b4 00 00 1c 3c 00 00 04
bc 00 00 1a 20 00 00 10 24 00 00 1c ec 00 00 14
0c 00 00 02 c0 00 00 10 b4 00 00 1c 2c 00 00 04
bc 00 00 18 b0 00 00 10 00 00 00 0c b8 00 00 10

pocorgtfo18.pdf uses the computed SHA1 pre-
fixes, reusing the image directly from PDFLATEX’s
source, but also checking the value of the prefixes
via JavaScript in the HTML page. The file is a
polyglot, valid as a ZIP, HTML, and PDF. (See
PoC‖GTFO 18:10.)

25https://github.com/google/google-ctf/tree/master/2018/finals/crypto-hrefin
26https://marc-stevens.nl/research/papers/EC13-S.pdf
27http://shattered.io

24

=
=

2550 4446 2d31 2e33 0a25 e2e3 cfd3 0a0a %PDF-1.3.%......
0a31 2030 206f 626a 0a3c 3c2f 5769 6474 .1 0 obj.<</Widt
6820 3220 3020 522f 4865 6967 6874 2033 h 2 0 R/Height 3
2030 2052 2f54 7970 6520 3420 3020 522f 0 R/Type 4 0 R/
5375 6274 7970 6520 3520 3020 522f 4669 Subtype 5 0 R/Fi
6c74 6572 2036 2030 2052 2f43 6f6c 6f72 lter 6 0 R/Color
5370 6163 6520 3720 3020 522f 4c65 6e67 Space 7 0 R/Leng
7468 2038 2030 2052 2f42 6974 7350 6572 th 8 0 R/BitsPer
436f 6d70 6f6e 656e 7420 383e 3e0a 7374 Component 8>>.st
7265 616d 0aff d8ff fe00 2453 4841 2d31 ream......$SHA-1
2069 7320 6465 6164 2121 2121 2185 2fec is dead!!!!!./.
0923 3975 9c39 b1a1 c63c 4c97 e1ff fe01 .#9u.9...<L.....
7f46 dc93 a6b6 7e01 3b02 9aaa 1db2 560b .F....~.;.....V.
45ca 67d6 88c7 f84b 8c4c 791f e02b 3df6 E.g....K.Ly..+=.
14f8 6db1 6909 01c5 6b45 c153 0afe dfb7 ..m.i...kE.S....
6038 e972 722f e7ad 728f 0e49 04e0 46c2 `8.rr/..r..I..F.
3057 0fe9 d413 98ab e12e f5bc 942b e335 0W...........+.5
42a4 802d 98b5 d70f 2a33 2ec3 7fac 3514 B..-....*3....5.
e74d dc0f 2cc1 a874 cd0c 7830 5a21 5664 .M..,..t..x0Z!Vd
6130 9789 606b d0bf 3f98 cda8 0446 29a1 a0..`k..?....F).

0000 fffe 012d 0000 0000 0000 0000 ffe0 -..........
0010 4a46 4946 0001 0101 0048 0048 0000 ..JFIF.....H.H..

e9d6 d667 a7b0 7e65 1299 e39d 39c0 c7ff ...g..~e....9...
d92d 2d2d 2dff e000 104a 4649 4600 0101 .----....JFIF...
0100 4800 4800 00ff db00 4300 0101 0101 ..H.H.....C.....

4b14 97f7 7f39 fcd7 f1ff d90a 656e 6473 K....9......ends
7472 6561 6d0a 656e 646f 626a 0a0a 3220 tream.endobj..2
3020 6f62 6a0a 380a 656e 646f 626a 0a0a 0 obj.8.endobj..

3e0a 0a73 7461 7274 7872 6566 0a31 3830 >..startxref.180
380a 2525 454f 460a 8.%%EOF.

2550 4446 2d31 2e33 0a25 e2e3 cfd3 0a0a %PDF-1.3.%......
0a31 2030 206f 626a 0a3c 3c2f 5769 6474 .1 0 obj.<</Widt
6820 3220 3020 522f 4865 6967 6874 2033 h 2 0 R/Height 3
2030 2052 2f54 7970 6520 3420 3020 522f 0 R/Type 4 0 R/
5375 6274 7970 6520 3520 3020 522f 4669 Subtype 5 0 R/Fi
6c74 6572 2036 2030 2052 2f43 6f6c 6f72 lter 6 0 R/Color
5370 6163 6520 3720 3020 522f 4c65 6e67 Space 7 0 R/Leng
7468 2038 2030 2052 2f42 6974 7350 6572 th 8 0 R/BitsPer
436f 6d70 6f6e 656e 7420 383e 3e0a 7374 Component 8>>.st
7265 616d 0aff d8ff fe00 2453 4841 2d31 ream......$SHA-1
2069 7320 6465 6164 2121 2121 2185 2fec is dead!!!!!./.
0923 3975 9c39 b1a1 c63c 4c97 e1ff fe01 .#9u.9...<L.....
7346 dc91 66b6 7e11 8f02 9ab6 21b2 560f sF..f.~.....!.V.
f9ca 67cc a8c7 f85b a84c 7903 0c2b 3de2 ..g....[.Ly..+=.
18f8 6db3 a909 01d5 df45 c14f 26fe dfb3 ..m......E.O&...
dc38 e96a c22f e7bd 728f 0e45 bce0 46d2 .8.j./..r..E..F.
3c57 0feb 1413 98bb 552e f5a0 a82b e331 <W......U....+.1
fea4 8037 b8b5 d71f 0e33 2edf 93ac 3500 ...7.....3....5.
eb4d dc0d ecc1 a864 790c 782c 7621 5660 .M.....dy.x,v!V`
dd30 9791 d06b d0af 3f98 cda4 bc46 29b1 .0...k..?....F).

0000 fffe 012d 0000 0000 0000 0000 ffe0 -..........
0010 4a46 4946 0001 0101 0048 0048 0000 ..JFIF.....H.H..

e9d6 d667 a7b0 7e65 1299 e39d 39c0 c7ff ...g..~e....9...
d92d 2d2d 2dff e000 104a 4649 4600 0101 .----....JFIF...
0100 4800 4800 00ff db00 4300 0101 0101 ..H.H.....C.....

4b14 97f7 7f39 fcd7 f1ff d90a 656e 6473 K....9......ends
7472 6561 6d0a 656e 646f 626a 0a0a 3220 tream.endobj..2
3020 6f62 6a0a 380a 656e 646f 626a 0a0a 0 obj.8.endobj..

3e0a 0a73 7461 7274 7872 6566 0a31 3830 >..startxref.180
380a 2525 454f 460a 8.%%EOF.

comments chain

PDF header

image object
declaration

image object
declaration

second image data
(ignored)
second image data
(ignored)

first image data
(ignored)

second image data

first image data

PDF footer

JPG header and
comment declaration

comments chain

File 1 File 2
Id

en
ti
ca

l
pr

efi
x

C
ol

lis
io

n
bl

oc
ks

Su
ffi

x

same hash at this point

000:
010:
020:
030:
040:
050:
060:
070:
080:
090:
0a0:
0b0:
0c0:
0d0:
0e0:
0f0:
100:
110:
120:
130:

230:
240:

3a0:
3b0:
3c0:

4e0:
4f0:
500:

840:
850:

comment length: 0x017f comment length: 0x0173

Figure 3. Shattered PoCs

Chosen-Prefix Collisions

Chosen prefix collisions allow us to collide any con-
tent, but they don’t exist for SHA1 yet.

1 | A | != | B |
| :−−−−: | : − : | :−−−−: |

3 | C o l l i s i o n ∗A∗ | != | C o l l i s i o n ∗B∗ |

The steps are to first take two arbitrary prefixes,
then to pad the shorter so that their lengths match.
Both are then padded to the next block minus twelve
bytes, and those twelve bytes are populated at ran-
dom until a birthday search reveals a collision in the
x near-collision blocks appended to the prefixes.

The fewer blocks, the longer the computation
will take. While a single block took 400 kHours,28
nine blocks took just seventy-two with HashClash.29
Chosen prefix collisions are almighty, but they can
take a very long time.

PREFIX A

?

Suffix

PREFIX B

Randomness

 under controL

identical

HashClash The final version of this technique ap-
peared in 2009.30 This collision of “yes” with “no”
that is shown in Figure 4 took three hours on twenty-
four cores. Note that this is a chosen prefix, and
that these files have nothing in common for the first
several bytes.

Attacks Summary

Hash Name Time Prefix Control

MD5
FastColl (’09) 2s Identical none
UniColl (’12) 7–40m Identical 4–10 bytes
HashClash (’09) 72h Chosen none

SHA1 Shattered (’13) 6500yr Identical Prefix & Suffix
28https://www.win.tue.nl/hashclash/SingleBlock/
29git clone https://github.com/cr-marcstevens/hashclash
30https://www.win.tue.nl/hashclash/ChosenPrefixCollisions/

25

“yes” prefix:
Prefix, padding
000: 79 65 73 0A-3D 62 84 11-01 75 D3 4D-EB 80 93 DE
010: 31 C1 D9 30-45 FB BE 1E-71 F0 0A 63-75 A8 30 AA
020: 98 17 CA E3-A2 6B 8E 3D-44 A9 8F F2-0E 67 96 48
030: 97 25 A6 FB-00 00 00 00-49 08 09 33-F0 62 C4 E8
Collision blocks start
040: D5 F1 54 CD-CA A1 42 90-7F 9D 3D 9A-67 C4 1B 0F
050: 04 9F 19 E8-92 C3 AA 19-43 31 1A DB-DA 96 01 54
060: 85 B5 9A 88-D8 A5 0E FB-CD 66 9A DA-4F 20 8A AAAA
070: BA E3 9C F0-78 31 8F D1-14 5F 3E B9-0F 9F 3E 19
080: 09 9C BB A9-45 89 BA A8-03 E6 C0 31-A0 54 D6 26
090: 3F 80 4C 06-0F C7 D9 19-09 D3 DA 14-FD CB 39 84
0A0: 1F 0D 77 5F-55 AA 7A 07-4C 24 8B 13-0A 54 A2A2 BC
0B0: C5 12 7D 4F-E0 5E F2 23-C5 07 61 E4-80 91 B2 13
0C0: E7 79 07 2A-CF 1B 66 39-8C F0 8E 7E-75 25 22 1D
0D0: A7 3B 49 4A-32 A4 3A 07-61 26 64 EA-6B 83 A2 8D
0E0: BE A3 FF BE-4E 71 AE 18-E2 D0 86 4F-20 00 30 2626
0F0: 0A 71 DE 1F-40 B4 F4 8F-9C 50 5C 78-DD CD 72 89
100: BA D1 BF F9-96 80 E3 06-96 F3 B9 7C-77 2D EB 25
110: 1E 56 70 D7-14 1F 55 4D-EC 11 58 59-92 45 E1 33
120: 3E 0E A1 6E-FF D9 90 AD-F6 A0 AD 0E-C6C6 D6 88 12
130: B8 74 F2 9E-DD 53 F7 88-19 73 85 39-AA 9B E0 8D
140: 82 BF 9C 5E-58 42 1E 3B-94 CF 5B 54-73 5F A8 4A
150: FD 5B 64 CF-59 D1 96 74-14 B3 0C AF-11 1C F9 47
160: C5 7A 2C F7-D5 24 F5 EB-BE 54 3E 12-B0B0 24 67 3F
170: 01 DD 95 76-8D 0D 58 FB-50 23 70 3A-BD ED BE AC
180: B8 32 DB AE-E8 DC 3A 83-7A C8 D5 0F-08 90 1D 99
190: 2D 7D 17 34-4E A8 21 98-61 1A 65 DA-FC 9B A4 BA
1A0: E1 42 2B 86-0C 94 2A F6-D6 A4 81 B5-2B 0B0B E9 37
1B0: 44 D2 E4 23-14 7C 16 B8-84 90 8B E0-A1 A7 BD 27
1C0: C7 7E E6 17-1A 93 C5 EE-59 70 91 26-4E 9D C7 7C
1D0: 1D 3D AB F1-B4 F4 F1 D9-86 48 75 77-6E FE 98 84
1E0: EF 3C 1C C7-16 5A 1F 83-60 EC 5C FE-CA 17 0C 7474
1F0: EB 8E 9D F6-90 A3 CD 08-65 D5 5A 4C-2E C6 BE 54

“no” prefix:
Prefix, padding
000: 6E 6F 0A E5-5F D0 83 01-9B 4D 55 06-61 AB 88 11
010: 8A FA 4D 34-B3 75 59 46-56 97 EF 6C-4A 07 90 CC
020: FE 19 D7 CF-6F 92 03 9C-91 AA A5 DA-56 92 C1 04
030: E6 4C 08 A3-00 00 00 00-8D B6 4E 47-FF AF 7A 3C
Collision blocks start
040: D5 F1 54 CD-CA A1 42 90-7F 9D 3D 9A-67 C4 1B 0F
050: 04 9F 19 E8-92 C3 AA 19-43 31 1A DB-DA 96 01 54
060: 85 B5 9A 88-D8 A5 0E FB-CD 66 9A DA-4F 20 8A A9A9
070: BA E3 9C F0-78 31 8F D1-14 5F 3E B9-0F 9F 3E 19
080: 09 9C BB A9-45 89 BA A8-03 E6 C0 31-A0 54 D6 26
090: 3F 80 4C 06-0F C7 D9 19-09 D3 DA 14-FD CB 39 84
0A0: 1F 0D 77 5F-55 AA 7A 07-4C 24 8B 13-0A 54 B2B2 BC
0B0: C5 12 7D 4F-E0 5E F2 23-C5 07 61 E4-80 91 B2 13
0C0: E7 79 07 2A-CF 1B 66 39-8C F0 8E 7E-75 25 22 1D
0D0: A7 3B 49 4A-32 A4 3A 07-61 26 64 EA-6B 83 A2 8D
0E0: BE A3 FF BE-4E 71 AE 18-E2 D0 86 4F-20 00 30 2222
0F0: 0A 71 DE 1F-40 B4 F4 8F-9C 50 5C 78-DD CD 72 89
100: BA D1 BF F9-96 80 E3 06-96 F3 B9 7C-77 2D EB 25
110: 1E 56 70 D7-14 1F 55 4D-EC 11 58 59-92 45 E1 33
120: 3E 0E A1 6E-FF D9 90 AD-F6 A0 AD 0E-CACA D6 88 12
130: B8 74 F2 9E-DD 53 F7 88-19 73 85 39-AA 9B E0 8D
140: 82 BF 9C 5E-58 42 1E 3B-94 CF 5B 54-73 5F A8 4A
150: FD 5B 64 CF-59 D1 96 74-14 B3 0C AF-11 1C F9 47
160: C5 7A 2C F7-D5 24 F5 EB-BE 54 3E 12-7070 24 67 3F
170: 01 DD 95 76-8D 0D 58 FB-50 23 70 3A-BD ED BE AC
180: B8 32 DB AE-E8 DC 3A 83-7A C8 D5 0F-08 90 1D 99
190: 2D 7D 17 34-4E A8 21 98-61 1A 65 DA-FC 9B A4 BA
1A0: E1 42 2B 86-0C 94 2A F6-D6 A4 81 B5-2B 2B2B E9 37
1B0: 44 D2 E4 23-14 7C 16 B8-84 90 8B E0-A1 A7 BD 27
1C0: C7 7E E6 17-1A 93 C5 EE-59 70 91 26-4E 9D C7 7C
1D0: 1D 3D AB F1-B4 F4 F1 D9-86 48 75 77-6E FE 98 84
1E0: EF 3C 1C C7-16 5A 1F 83-60 EC 5C FE-CA 17 0C 5454
1F0: EB 8E 9D F6-90 A3 CD 08-65 D5 5A 4C-2E C6 BE 54

Figure 4. A Chosen Prefix Collision from HashClash

26

Exploitation
Identical prefix collisions are rather limited, but for
all their versatility, chosen prefix collisions are a lot
more time consuming to create.

Another approach is to craft reusable prefixes
via either identical-prefix attack such as UniColl—
or chosen prefix to overcome some limitations—but
reuse that prefix pair in combinations with two pay-
loads like a classic identical prefix attack.

Once a good prefix pair has been computed, we
can instantly collide two source files. It’s just a mat-
ter of massaging file data so that it fits both the file
format specifications and the precomputed prefix re-
quirements.

JPEG

The Application segment should in theory follow
just after the Start of Image marker, but thankfully
this isn’t required in practice. The lets us make our
collision generic, and the only limitation is the size
of the smallest image.

A comment’s length is stored in two bytes, lim-
ited to 65,536 bytes, which would be something like
a 400 × 400 photo. To jump to another image, its
Entropy Coded Segment needs to be split to scans
which are smaller than this, either by storing the
image progressively or by using jpegtran to apply
custom scan sizes.

So an MD5 collision of two arbitrary JPGs is in-
stant, and needs no chosen-prefix collision, just Uni-
Coll. See jpg.py for a handy script to collide pho-
tographs of your two authors to collision*.jpg.

PNG with a Comment First

The biggest limitation of PNG is that it uses
CRC32 at the end of its chunks, which would pre-
vent the use of collision blocks. But as a happy co-
incidence, most parsers ignore these checksums and
we can as well!

The image meta data (dimensions, color space,
etc.) are stored in the IHDR chunk, which should be
right after the signature, before any potential com-
ment. It would mean that we can only precompute
collisions of images with the same metadata. How-
ever, that chunk can actually be located after a com-
ment block for the vast majority of readers. So we
can put the collision data before the header, which
enables to collide any pair of PNG with a single pre-
computation.

Since a PNG chunk has a length of four bytes,
there’s no need to modify the structure of either file.
We can simply jump over a whole image in one go.

We can insert as many discarded chunks as we
want, so we can add one for alignment, then one
which length will be altered by a UniColl. The
lengths will be 00 75 and 01 75.

So an MD5 collision of two arbitrary PNG im-
ages is instant, with no prerequisite—no computa-
tion, just some minor file changes—and needs no
chosen-prefix collision, just UniColl. See png.py,
which collided these two logos from competing man-
ufacturers.

27

PNG with IHDR First Most parsers of PNGs
happily accept files that start with a chunk other
than IHDR. However, some readers, notably Safari
and Preview—do you known of any others, gentle
reader?—do not tolerate it.

In this case, the image header and its properties
(dimensions, color space) must be the first, before
any collision blocks Both colliding files must then
have the same properties.

Conveniently, UniColl is up to the task, and, of
course, the computed prefix pair can be reused for
any other pair of files with the same properties. The
script pngStd.py will collide any pair of such files.
It launches UniColl if needed to compute the prefix
pair.

GIF

The GIF format is tricky for a number of reasons.
It stores its metadata in the header before any com-
ment is possible, so there can’t be a generic prefix
for all GIF files. If the file has a global palette, it is
also stored before a comment is possible. Its com-
ment chunk length is encoded by a single byte, so
that the length of any comment chunk is capped at
a maximum of 256 bytes.

However, the comment chunks follow a pe-
culiar structure: it’s a chain of “<length:1>”
“<data:length>” until a null length is defined. This
makes any non-null byte a valid “jump forward”,
which makes it suitable to be used with FastColl,
as shown in PoC‖GTFO 14:11.

So, although we can’t have a generic prefix, we
can at least collide any pair of GIF with same meta-
data (dimensions, palette), and we only need a sec-
ond of FastColl to compute its prefix.

Now the problem is that we can’t jump over a
whole image, as we would in PNG. Nor can we jump
over a big structure, as we would in JPG.

A possible workaround is to massage the com-
pressed data or to chunk the image into tiny areas—
as in the case of the GIF Hashquine—but this is not
optimal.

Yet there is another idea, which works generi-
cally with only a few limitations! It was suggested
by Marc, and it’s brilliant.

Note that the image data also follows the
“<length, data>” sequence format. We can abuse
this together with the GIF’s animation feature. If
the two GIFs we want to collide have no anima-

tions of their own, we only have to (1) normalize
the palette, (2) set the first frame’s duration to the
maximum, and (3) draft a comment that jumps to
the start of the first frame data, so that the com-
ment will sled over the image data as a comment,
and end the same way, until a null length is encoun-
tered. Then the parser will find the next frame and
display it.

So with some minor setup—only a few hundred
bytes of overhead—we can sled over any GIF image
and work around the 256 bytes limitation. Kudos
to Marc for this nifty trick!

In the end, the current GIF limitations for in-
stant MD5 collisions are that (1) it must have no
animation, (2) the images must be normalized to a
single palette,31 (3) the images must the same di-
mensions, and (4) that after eleven minutes, both
files will display the same final frame. Here are two
MD5-colliding GIFs by KidMoGraph.

Portable Executable The Portable Executable
has a peculiar structure, with a vestigial DOS header
that points to a second structure, the PE header.
This header must be at offset 0, and it has the
fixed length of a full block, ending with a PE header
pointer that is beyond UniColl’s reach, so only a
chosen prefix collision is useful in colliding PE files.

So the strategy is to move the PE header further
into the file to leave room for a colliding block after
the DOS header, then use chosen prefix collisions to
fork a DOS header that points to two different PE
offsets, with two different PE headers. These sec-
tions can follow each other, so long as you apply a
delta to the offsets of the two section tables.

31gifsicle –use-colormap web

28

This means that it’s possible to instantly collide
any pair of PE executables—even if they use differ-
ent subsystems or architectures! Although executa-
bles collisions are typically trivial via any loader,
this kind of exploitation is transparent: the code is
identical and loaded at the same address.

Attached you will find two colliding PEs: a GUI
applicaton tweakPNG.exe (as collision1.exe)
and a CLI application, fastcoll.exe (as
collision2.exe). Windows never allows these two
to meet, except in an MD5 collision! The script
pe.py generates instant collisions of Windows Exe-
cutables, sharing a hash but running different soft-
ware.

The curious case of “Runtime R6002 - float-
ing point not loaded” MSVC libraries check sec-
tions for permissions. This check can be patched
out. Patch the following to set eax to 1 instead.32

1 C1E81F shr eax ,01F
F7D0 not eax

3 83E001 and eax , 1

If you apply collisions on packed files, (such as
UPX-ed files, to prevent specific PDF keywords like
endstream from being visible in cleartext), the off-
sets will change, and this may cause the packer to
fail to restore the right attributes. So you may
want to patch out that code before UPX-ing the
executable and colliding it.

MP4 and Others The MP4 format’s container
is a sequence of “Length Type Value” chunks called
Atoms. The Length is a 32-bit big-endian and cov-
ers itself, the Type and the Value, so the minimum
Length is 0x0008, covering an empty value and a
four-byte type.

If the Length is null, then the atom takes the
rest of the file, such as jp2c atoms in JP2 files. If
it’s 1, then the Type is followed by a 64-bit length,
changing the atom to “Type Length Value”, mak-
ing it handily compatible with other collisions like
SHAttered.33

Some atoms contain other atoms: in this case,
they’re called boxes. That’s why this otherwise un-
named structure is called the “Atom/Box.”

This Atom/Box format used in MP4 is actually
a derivate of Apple’s Quicktime, and it is used by
many other formats including JP2, HEIF, and F4V.
34 The first atom’s type is usually ftyp, which en-
ables the parsers to differentiate the actual file for-
mat.

The format is quite permissive. To make a colli-
sion, just chain “free” atoms, abuse one’s length with
UniColl, then jump over the first payload.

For MP4 files, the only thing to add is to adjust
the stco (Sample Table Chunk Offsets) or the co64
(its 64-bit equivalent) tables, since they are absolute
offsets pointing to the mdat movie data. These rules
are actually enforced, too!

32See the manhunter.ru article, “Runtime error r6002 floating point not loaded.”
33This, neighbors, is the kind of format cleverness that extracts its costs in bugs, blood, and meathooks. Avoid it when you

design your own formats! —PML
34See http://www.ftyps.com/ for more.

29

The attached script mp4.py will instantly col-
lide arbitrary video. As we already mentioned,
it may be portable to other formats than MP4.
The examples can be found in collision1.mp4 and
collision2.mp4.

Note that some viewers (OS X, Safari, Firefox)
don’t allow a file that starts with an Atom that is
not ftyp. In this case, the prefix has to cover this,
and it’s not so generic. Besides that it’s the same
strategy as before, only limited to a single fixed file
type.

JPEG2000 JPEG2000 files usually start with the
Atom/Box structure like MP4, followed by the last
atom jp2c that typically ends the MP4 file (null
length), then from this point on it follows the JFIF
structure of a JPEG file (starting with FF 4F as a
segment marker).

The pure-JFIF form is also tolerated, in which
case collision is like that of JPEGs: SHAttered-
compatible, but with comments limited to 64Kb.

On the other hand, if you manipulate JPEG2000
files with the Atom/Box encoding, you don’t have
this limitation.

As mentioned before, if you’re trying to collide
this structure and if there are more restrictions—
for example, starting with a free atom is not tol-
erated by some format—then you can compute an-
other set of UniColl prefix pairs specific to this for-
mat. JPEG2000 seems to enforce a jP atom first
before the usual ftyp, but that’s the only restric-
tion. There’s no need to relocate anything.

So jp2.py is even simpler! Enjoy the collid-
ing JPEG2000 images of Oded Goldreich and Neal

Koblitz: while we are all standing on the shoul-
ders of giants, we might as well know their faces.
(collision1.jp2 and collision2.jp2)

JPEGs in a PDF, as in SHAttered Unless this
is your very first issue of this modest journal, neigh-
bors, you probably agree that as a format, PDF is
the king of polyglots, and arguably also of syntactic
malleability and ambiguity. If however this is your
first issue, then do spend a few moments looking up
what formats the previous electronic issues doubled
as besides being valid (or valid-at-the-time) PDF
files—but be warned, it may turn you into a format
syntax nerd or make you forever destroy your faith
in signature-based security if you still have any.

Yet the SHAttered attack, which produced col-
liding PDF files of different contents, was not a PDF
trick per se, but a JPG trick wrapped in a PDF. The
collision of the PDFs is enabled by both of them con-
taining a JPG-compressed object with crafted con-
tents; the PDFs need to be totally identical other-
wise.

Note that the colliding documents can be to-
tally normal, and can freely use the collision JPG
anywhere in their displayed renderings, e.g., on any
page of multi-page documents.

The original examples from the SHAttered paper
looked as follows, and are included in the examples
as shattered1.pdf and shattered2.pdf.

30

When native resolution images are required, you
can use a nifty trick to make a lossless JPEG! Just
repeat each pixel across eight columns and eight
rows in a greyscale image, as JPEG blurs across fun-
damental blocks that are 8× 8.

PDF collisions with MD5 We can do MD5 col-
lisions at the document level of PDF, with no re-
strictions at all on either file! Recall that PDF has
a very different structure compared to other file for-
mats, in that it uses object numbers and references
to define a tree of objects. The interpretation of the
whole document depends on the Root element, but
there are many syntactically different tree structures
that will be rendered identically.

root catalog#1 pages#2

pages#3 content#4 Hello World!

For example, these two valid PDF files are equiv-
alent to each other.

1 %PDF−1.
1 0 obj<</Pages 2 0 R>>endobj

3 2 0 obj<</Kids [3 0 R] / Count 1>>endobj
3 0 obj<</Parent 2 0 R>>endobj

5 t r a i l e r <</Root 1 0 R>>

1 %PDF−1.
11 0 obj<</Pages 12 0 R>>endobj

3 12 0 obj<</Kids [13 0 R]/ Count 1>>endobj
13 0 obj<</Parent 12 0 R>>endobj

5 t r a i l e r <</Root 11 0 R>>

Some tricks then immediately suggest them-
selves, as storing unused objects in a PDF is hap-
pily tolerated. We can also skip object number, and
there’s even an official way to skip numbers in the
trailing XREF table at the end of the document.

So storing two document trees in the same file
is okay. We only need to make the root objects of
the colliding documents to refer to the desired tree
at will. To do this, we just take two documents,
renumber their objects and references so that there
is no overlap, and craft a collision so that the ele-
ment number referenced as the Root object can be
changed while keeping the same hash value. This
trick is a perfect fit for UniColl with N = 1, so long
as we adjust the XREF table accordingly.

This way, we can safely collide any pair of PDFs,
no matter what their page numbers, dimensions, im-
ages, etc. might be.

trailer

catalog#1 catalog#11

pages#2

page#3

content#4

Hello World!

pages#12

page#13

content#14

Bye World!

31

PDF can store foreign data in two ways, as a
line comment or as a stream object. In a line com-
ment, the only forbidden characters are newlines (\r
and \n). This can be used inside a dictionary ob-
ject, e.g., to modify an object reference, via UniColl.
The following is a valid PDF object even though it
contains binary collision blocks—just retry until you
have no newline characters.

1 1 0 obj
<< /Type /Catalog /MD5_is /

REALLY_dead_now__ /Pages 2 0 R
3 . . . some ugly binary goes here . . .

>>
5 endobj

In a stream object, any data is possible, but since
we’re inside an object, we can’t alter the rest of the
PDF structure. So we need a Chosen Prefix colli-
sion to modify the structure outside the containing
stream object.

The first case serves to highlight the beauty
of UniColl, a collision where differences are pre-
dictable, so that you can write poetry in colliding
data—thanks to Jurph!35

Rather than modifying the structure of the doc-
ument and fooling parsers, we’ll just use collision
blocks directly to produce differing texts, with al-
ternate readings!

1 V V
Now he hash MD5, Now he hath MD5,

3 No enemy ca r e s ! No enemy dares !
Only he gave Only he have

5 the shards . the share s .
Can ’ t be owned & Can ’ t be pwned &

7 h i s t rue gold , h i s t rue hold ,
l i k e One Fra i l , l i k e One Grai l ,

9 sound as f o l d . sound as gold .
^ ^

You will find these colliding poems in
poeMD5_A.pdf and poeMD5_B.pdf, a true crypto-
graphic artistic creation!

Colliding Document Structure Whether you
use UniColl as inline comment or Chosen Prefix in a
dummy stream object, the strategy is similar: shuf-
fle objects numbers around, then make the Root ob-
ject point to different objects. Unlike SHAttered,
this means instant collision of any arbitrary pair of
PDFs, at document level.

The MuPDF suite provides a useful trick:
mutool clean output is reliably predictable, so it
can be used to normalize PDFs as input and fix your
merged PDF while keeping the important parts of
the file unmodified. MuTool doesn’t discard bogus
key/values from PDF dictionaries unless asked, and
keeps them in the same order, so using fake dictio-
nary entries such as /MD5_is /REALLY_dead_now__
is perfect for aligning things predictably with-
out needing another kind of comments. However,
mutool won’t keep comments in dictionaries, so it
won’t support inline-comment tricks.

An easy way to do the object-shuffling operation
without hassle is just to merge both PDF files via
mutool merge then split the /Pages object in two.
To make room for this object, just merge a dummy
PDF in front of the two documents.

Optionally, you can create a fake reference to a
dangling array to prevent garbage collection from
deleting the second set of pages.

The script pdf.py takes less than a second (see
pdf.log) to collide the two public PDF papers
like Spectre and Meltdown (collision1.pdf and
collision2.pdf.)

35unzip pocorgtfo19.pdf word-decrementer.zip || git clone https://github.com/Jurph/word-decrementer

32

Here’s a possible extension: chain UniColl blocks
to also keep pairs of the various non-critical objects
that can be referenced in the Root object—such as
Outlines, Names, AcroForm and Additional Actions
(AA)—in the original source files.36

The previous techniques work with any pair of
existing PDF files, but even better, you can com-
pile colliding files with PDFLATEX directly from TEX
sources. You will nee PDFTEX’s special operators
for this.37

With these operators, you can define objects
directly—including dummy key and values for
alignments—and define empty objects to reserve
some object slots by including this at the very start
of your TEX sources:

% se t PDF vers ion low to prevent stream XREF
\ pdfminorvers ion=3

\begingroup

% d i s a b l e compression to keep al ignments
\ pd fcompres s l eve l=0\relax

\immediate
\ pdfobj{<<

/Type /Catalog

% cool alignment padding
/MD5_ i s /REALLY_dead_now__

% the f i r s t re f erence number should be on o f f s e t
% 0x49 , so 2 w i l l be changed to 3 by UniColl
/Pages 2 0 R

% now padding so tha t the c o l l i s i o n b l o ck s
% (ending at 0xC0) are covered
/0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
% with an ex tra char to be rep laced by a return
/0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
0123456789ABCDEF0

>>}

% the o r i g i n a l ca ta l og of the s h i f t e d doc
\immediate\ pdfobj{<</Type/Pages/Count 1/Kids [8 0 R

]>>}

% the o r i g i n a l ca ta l og of the host doc
\immediate\ pdfobj{<</Type/Pages/Count 1/Kids [33 0 R

]>>}

% We reserve PDF Objects so tha t there i s no over lap
\newcount\ objcount

% the host s i z e (+3 for spare ob j e c t s l o t s) − 1
% put t ing a higher margin w i l l j u s t work ,
% and XREF can have huge gaps
\ objcount=25
\ loop

\message{\the\ objcount }
\advance \ objcount −1

\immediate\ pdfobj{<<>>} % ju s t an empty ob j e c t

\ifnum \objcount >0
\repeat

\endgroup

Don’t forget to normalize PDFLATEX output
with mutool. PDFLATEX has trouble generating re-
producible builds across different version and distri-
butions. You might even want to hook the time on
execution to get the exact hash, if required.

Uncommon Strategies

Collision attacks are usually about two valid files of
the same type with two different contents. However,

36See page 81 of Adobe’s PDF32000_2008.pdf.
37http://texdoc.net/texmf-dist/doc/pdftex/manual/pdftex-a.pdf

33

we need not constrain ourselves to this scenario, so
let’s explore some weirder possibilities.

MultiColls: Multiple Collisions Chain

Nothing prevents us from chaining several collision
blocks, and having more than two contents with
the same hash value. This is the technique be-
hind Hashquines, which show their own MD5 hash.
PoC‖GTFO 14 contained 609 FastColl collisions, to
do just that through two file types in the same file.

Exploiting Ideas of Validity

A different strategy would be to interfere with file
type recognition to prevent file scanners from seeing
our files as corrupted. Overwriting the file’s magic
signature may be just enough, so long as both of
our files, valid and invalid, get appended with an-
other format that doesn’t need to start at offset 0
(e.g., archives such as ZIP, RAR, etc.). The scanner
would then show another file type.

This enables polyglot collisions without using a
chosen prefix collision:

1. Use UniColl to enable or disable a magic sig-
nature, for example a PNG;

2. Append a ZIP archive.

So although both files are technically valid ZIPs,
most parsers will see different file types, since they
tend to go with the first file type found and start
scanning at offset 0.

PolyColls: Collisions of Different File Types

Assuming that whitelisting a file by its MD5 check-
sum takes precedence over other checks, we can use
a collision to slip in an executable poison pill that
collides with a whitelisted innocent file. For exam-
ple, if an innocent feelgood.jpg gets whitelisted,
we can then send an evil.exe that has the same
MD5 but will be run by some internal system seeing
it as cleared executable.

In these cases, a chosen prefix collision is re-
quired if both file formats need to start at offset 0.

Here are some examples of such PolCcoll layouts,
a PDF/JPG collision polyglot and a PE/PNG poly-
glot.

PDF
%PDF-1....

stream

endstream
[...]

xref

%%EOF

JPG
FF D8

FF FE xx

endstream
[...]

xref

%%EOF

PE
MZ

e_lfanew

<sections>

PNG
\x89PNG\r\n
...
cHUNK

<sections>

PE
...
<table>

PE/JPEG Since a PE header is usually smaller
than 0x500 bytes, it’s a perfect fit for a JPG com-
ment. We can begin with DOS/JPEG headers, then
create a JPEG comment that jumps over the follow-
ing PE header. We’ll following this with a full JPG
image, and then follow through with the rest of the
PE specification.

Once again, the collision is instant. See
jpgpe.py for a practical example that instantly
combines fastcoll.exe and marc.jpg.

34

PDF/PE Merging a PDF with a dummy file via
mutool is a good generic way to reorder objects and
then get the first two objects discardable (dummy
page and content). This is a perfect fit the trick
of using a stream object as the PDF file’s object
with id 1 0 that references its actual length later on
(after collision blocks) in the second object. Recall
that it’s perfectly legal for a stream object in a PDF
file to specify its length indirectly, as a reference to
another object that happens to contain a value of
suitable type for the length.

The only problem is that mutool will always
compute and inline the length, removing the length
reference. This has to be re-inserted into the PDF
instead of the computed value. Still, most references
to 2 0 R will be smaller than hardcoded lengths.
Thankfully, this can be fixed without altering any
object offset, so there’s no need to patch the PDF
file’s XREF table.

The script pdfpe.py can, for instance, instantly
collide a PDF viewer and a PDF document. See
pepdf.exe and pepdf.pdf, in which a PDF viewer
showing a PDF (itself showing a PDF) have the
same MD5!

PDF/PNG Similarly, it’s possible to collide an
arbitrary PDF and PNG files with no restrictions
on either side. This is instant, reusable, and generic.
Check out png-pdf.pdf and png-pdf.png.

Pileups (Multi-Collisions) But why stop at col-
liding just two files? Cryptographic collisions are
not limited to just two files! As demonstrated by the
Nostradamus experiment38 in 2008, chaining colli-
sions makes it possible to collide more than two files.
The first collisions can be either identical or chosen
prefix, but all the following ones have to be chosen
prefix collisions. You can call them multi-collisions,
I prefer to call them pileups.

PE/PNG/MP4/PDF Combining all the previ-
ously acquired knowledge, I used three chosen prefix
collisions to craft four different prefixes for differ-
ent file types: document (PDF), video (MP4), ex-
ecutable (PE), and image (PNG) to produce this
pileup.

This script is generic and instant, and it happily
generated pocorgtfo19.pdf, pocorgtfo19.png,
pocorgtfo19.mp4, and pocorgtfo19.exe.

\x89PNG...
ll ll ll ll
.c .o .l .l10

MP4PE PDFPNG
MZ
...

.. e_lfanew

ll ll ll ll
.f .r .e .e

40

8
%PDF-1.3
%ABCD

1 0 obj
<< /Length 2 0 R >>
stream30

040
34 align
0C rand

34 align
0C rand

34 align
0C rand

34 align
0C rand

080

2C0

000

9 blocks
collision

9 blocks
collision

34 align
0c rand

34 align
0c rand

9 blocks
collision

300

540
ll ll ll ll .f .r .e .e

cc cc cc cc ll ll ll ll
.c .o .l .l

PE Header
Sections table
Sections
[Appended data]

cc cc cc cc
PNG data
IEND

MP4 data

endstream
endobj

2 0 obj
<length>
endobj

PDF content
XREF
PDF Trailer

554

548

Since you may only distribute a single file and it’s
impossible to guess the other prefix values from it,
a solution is to embed all prefixes of the collision in
the JavaScript code and insert it in your PoCs, turn-
ing your files into HTML polyglots to easily share
the related colliding files. (See pocorgtfo19.html.)

38https://www.win.tue.nl/hashclash/Nostradamus/

35

Gotta Collide ’em All! Another use of instant,
reusable, and generic collisions would be to hide any
file of a given type—say, PNG—behind dummy files
or the same file every time. This is easy to do by just
concatenating it to the same prefix after stripping
the signature; you could even do that at a library
level!

From a strict parsing perspective, all your files
will show the same content, and the evil images
would be revealed as a file with the same MD5 as
previously collected.

Let’s take two files, one of which contains a pay-
load for MS 08-067, and collide them with the same
PNG.

God

the Holy
Spirit

is

is not the
Son

the
Father

is
no

tis not

isis

Trinity

0

"\t"

=
=

!=
"0"[]

!=

!=
==

==

JavaScript

They now show the same dummy image, and
they’re absolutely identical until the second image
at the file level! Their evil payload is now hidden
behind identical-looking files with identical MD5
hashes!

Incriminating Files Another evil use case for
collisions is to hide something incriminating inside
something innocent, but desirable. A forensic ev-
idence collection method that relies on comparing
weak hashes would catch the innocent file, and you
won’t be able to prove that you didn’t have the other
file that shows incriminating content and hides in-
nocent content.

Since forensic software typically focuses on quick
parsing, not on detailed file analysis, this scenario is
quite unsettlingly realistic. Here is an image show-
ing different previews under different tabs of the En-
Case forensic software:

36

Failures

Not all formats can have generic, reusable prefixes.
If some kind of data holder can’t be inserted between
the magic signature and the standard headers that
are critical and specific to each file, then generic col-
lisions are not possible.

ELF The ELF header is required at offset 0 and
contains critical information such as whether the bi-
nary is 32-bit or 64-bit, its endianness, and its ABI
version right at the beginning. This makes it im-
possible to have a universal prefix that could be fol-
lowed by crafted collision blocks before these critical
parameters that are specific to the original file.

Mach-O Mach-O doesn’t even start with the
same magic for 32 bits (0xfeedface) and 64 bits
(0xfeedfacf). Soon after, there follow the num-
ber and the size of commands such as segment def-
initions, symtab, version, etc. Like ELF, easily
reusable collisions are not possible for Mach-O files.

Java Class Files Right after the file magic and
the version (which varies just enough to be trouble-
some), a Java class file contains the constant pool
count, which is quite specific to each file. This pre-
cludes universal collisions for all files.

However, many files do share a common ver-
sion and we can pad the shortest constant pool
to the longest count. Specifically, we can first in-
sert a UTF8 literal to align information, then de-
clare another one with its length abused by the Uni-
Coll. This will require code manipulation, since all
pool indexes will need to be shifted. Instant MD5
reusable collisions of Java Class should be possible,
but they will require code analysis and modification.

TAR Tape Archives are a sequence of concate-
nated header and file contents, all aligned to 512
byte blocks. There is no central structure to the
whole file, so there is no global header or comment
of any kind to abuse.

One potential trick might be to start a dummy
file of variable length, but the length is always at
the same offset, which is not compatible with Uni-
Coll. This means that only chosen prefix collisions
are practical for collided TAR files.

ZIP There’s no generic reusable collision for ZIP
either. However, it should be possible to collide two
files in two core hours; that is, thirty-six times faster
than a chosen prefix collision.

ZIP archives are a sandwich of at least three lay-
ers. First comes the files’ content, a sequence of
Local File Header structures, one per archived file
or directory, then some index (a sequence of Cen-
tral Directory entries), then a single structure that
points to this index (the End Of Central Directory).
The order of these layers is fixed and cannot be ma-
nipulated. Because of this required order, there’s no
generic prefix that could work for any collision.

However, we can explore some non-generic ways.
Some parsers only heed the file content structure.
That is not a correct way to parse a ZIP archive,
and it can be abused.

Another approach could be to just merge the two
archives we’d like to collide, with their merged lay-
ers, and to then use UniColl but with N = 2, which
introduces a difference on the fourth byte, to kill the
magic signature of the End of Central Directory.

This means one could collide two arbitrary ZIPs
with a single UniColl and 24 bytes of a set prefix.
In particular, a typical End of Central Directory,
which is twenty-two bytes with an empty comment
field, looks like this:

00: 504b 0506 0000 0000 0000 0000 0000 0000 PK..............
10: 0000 0000 0000

If we use this as our prefix (padding the prefix
to 16 bits) for UniColl and N = 2, the difference is
on the fourth byte, killing the magic .P .K 05 06
by changing it predictably to .P .K 05 86. This is
not generic at all, but it only takes hours, far less
than the 72 of a chosen prefix collision.

00: 504b 0506 0000 0000 0000 0000 0000 0000 PK..............
10: 0000 0000 0000 2121 eb66 cf9d db01 83bb!!.f......
20: 2888 4c41 e345 7d07 1634 5d4a 3b61 89a0 (.LA.E}..4]J;a..
30: 0029 94af 4168 2517 0bbc b841 cbf2 9587 .)..Ah%....A....
40: e438 0043 6390 279d 7c9e a01e e476 4c36 .8.Cc.’.|....vL6
50: 527f b1f4 653e d866 f98d 7278 5324 0bd5 R...e>.f..rxS$..
60: b31d ef6d d5d6 1163 5a2e a8a5 21bf eab4 ...m...cZ...!...
70: c59c 028e a913 f6b7 0036 c93f 5092 a6286.?P..(

00: 504b 0586 0000 0000 0000 0000 0000 0000 PK..............
10: 0000 0000 0000 2121 eb66 cf1d db01 83bb!!.f......
20: 2888 4c41 e345 7d07 1634 5d4a 3b61 89a0 (.LA.E}..4]J;a..
30: 0029 94af 4168 251f 0bbc b841 cbf2 9587 .)..Ah%....A....
40: e438 00c3 6390 279d 7c9e a01e e476 4c36 .8..c.’.|....vL6
50: 527f b1f4 653e d866 f98d 72f8 5324 0bd5 R...e>.f..r.S$..
60: b31d ef6d d5d6 1163 5a2e a8a5 21bf eab4 ...m...cZ...!...
70: c59c 028e a913 f6af 0036 c93f 5092 a6286.?P..(

37

The problem is that some parsers still parse ZIP
files from the beginning even though they should
be parsed bottom-up. One way to make sure that
both files are properly parsed is to chain two UniColl
blocks, to enable and disable each End of Central
Directory.

To prevent ZIP parsers from complaining about
unused space, one can abuse Extra Fields, the file
comments in Central Directory, and archive com-
ments in the End of Central Directory. See zip.asm
for the structure of a dual ZIP, which can host two
different archive files.

After two UniColl computations, have two col-
liding files, collision1.zip and collision2.zip.

File Header
 Extra header

 file data

File Header
 Extra header

 file data

Central Dir
 entry
 comment
 <align>
End of CD
 comment

Central Dir
 entry
 comment

 <align>
End of CD
 comment

collision

collis
ion

Summary

We will end with some handy observations, points
which have been made earlier in this paper but
might be worth further consideration.

• JPG has some limitations on data, which can
be improved to some extent by manipulating
the scans encoding.

• PDF with JPG is the initial implementation of
the SHAttered attack, but it’s simply a pure
JPG trick in a PDF document rather than a
complex abuse of the PDF structure as such.

• Safari requires PNGs to have their IHDR chunk
in the first slot, before any collision blocks can
be added. Doing so prevents a generic prefix,
in which case the collision is limited to specific
dimensions, color space, BPP, and interlacing.

• The Atom/Box formats such as MP4 may
work with the same prefix for different sub-
formats. Some subformats like JPEG2000 or
HEIF require extra grooming, but the exploit
strategy is the same—it’s just that the colli-
sion is not possible between sub-formats, but
only with a pair of prefixes for a specific sub-
format.

• Atom/Box is SHAttered-compatible only
when using 64-bit lengths.

• For better compatibility, ZIP needs two Uni-
Colls for a complete archive, and these colli-
sions depend on both files’ contents.

Thanks to Philippe Teuwen for his extensive
feedback on file formats in general, and to Rafa l
Hirsz for his continuing help with JavaScript.

Format Generic? Fa
st

C
ol

l

U
ni

C
ol

l

S
ha

tt
er

ed

H
as

hC
la

sh

PDF Y × ×
JPG Y (1) × × (2) ×
PNG Y/N (3) × ×
MP4 Y (4) × × (5) ×
PE Y ×
GIF N × ×
ZIP N × (6) ×
ELF N ×
TAR N ×
Mach-O N ×
Class N ×

38

