
18:07 A Trivial Exploit for TetriNET; or,
Update Player TranslateMessage to Level Shellcode.

by John Laky and Kyle Hanslovan

Lo, the year was 1997 and humanity com-
pletes its greatest feat yet—nearly thirty years af-
ter NASA delivers the lunar landings, St0rmCat
releases TetriNET, a gritty multiplayer reboot of
the gaming monolith Tetris, bringing capitalists and
communists together in competitive, adrenaline-
pumping, line-annihilating, block-crushing action,
all set to a period-appropriate synthetic soundtrack
that would make Gorbachev blush. TetriNET holds
the dubious distinction of hosting one of the most hi-
larious bugs ever discovered, where sending a offset
and overwritable address in a stringified game state
update will jump to any address of our choosing.

The TetriNET protocol is largely a trusted two-
way ASCII-based message system with a special
binascii encoded handshake for login.37 Although
there is an official binary (v1.13), this protocol en-
joyed several implementations that aid in its reverse
engineering, including a Python server/client imple-
mentation.38 Authenticating to a TetriNET server
using a custom encoding scheme, a rotating xor de-
rived from the IP address of the server. One could
spend ages reversing the C++ binary for this algo-
rithm, but The Great Segfault punishes wasted time
and effort, and our brethren at Pytrinet already
have a Python implementation.

log i n s t r i n g l ook s l i k e
2 # ‘‘<nick> <vers ion> <server ip >’ ’
ex : TestUser 1.13 127 .0 . 0 . 1

4 def encode (nick , ver s ion , ip) :
dec = 2

6 s = ’ t e t r i s s t a r t %s %s ’ % (nick , v e r s i on)
h = str (54∗ ip [0] + 41∗ ip [1]

8 + 29∗ ip [2] + 17∗ ip [3])
encodeS = dec2hex (dec)

10
for i in range (len (s)) :

12 dec = ((dec + ord (s [i])) % 255)
^ ord (h [i % len (h)])

14 s2 = dec2hex (dec)
encodeS += s2

16
return encodeS

One of the many updates a TetriNET client can
send to the server is the level update, an 0xFF ter-
minated string of the form:

1 l v l <p laye r number> <l e v e l number>\x f f

The documentation states acceptable values for
the player number range 1-6, a caveat that should
pique the interest of even nascent bit-twiddlers. Pre-
dictably, sending a player number of 0x20 and a level
of 0x00AABBCC crashes the binary through a write-
anywhere bug. The only question now is which is
easier: overwriting a return address on a stack or a
stomping on a function pointer in a v-table or some-
thing. A brief search for the landing zone yields the
answer:

1 00454314: 77 f 1 e c c e 77 f1ad23 77 f 1 5 f e 0 77 f1700a 77 f1d969
00454328: 00 aabbcc 77 f27090 77 f 16 f 79 00000000 7 e429766

3 0045433 c : 7 e43ee5d 7 e41940c 7 e44 f a f 5 7 e42fbbd 7e42aeab

37unzip pocorgtfo18.pdf iTetrinet-wiki.zip
38http://pytrinet.ddmr.nl/

48

Praise the Stack! We landed inside the import
table.

1 . ida ta :00454324
; HBRUSH __stdcal l

3 ; CreateBrushInd i rec t (const LOGBRUSH ∗)
extrn __imp_CreateBrushIndirect : dword

5 ;DATA XREF: CreateBrushInd i r ec t r

7 . ida ta :00454328
; HBITMAP __stdcal l

9 ; CreateBitmap (int , int , UINT,UINT,
; const void ∗)

11 extrn __imp_CreateBitmap : dword
; DATA XREF: CreateBitmapr

13
. ida ta :0045432C

15 ; HENHMETAFILE __stdcal l
; CopyEnhMetaFileA (HENHMETAFILE,LPCSTR)

17 extrn __imp_CopyEnhMetaFileA : dword
; DATA XREF: CopyEnhMetaFileAr

Now we have a plan to overwrite an often-
called function pointer with a useful address, but
which one? There are a few good candidates, and
a look at the imports reveals a few of particular
interest: PeekMessageA, DispatchMessageA, and
TranslateMessage, indicating TetriNET relies on
Windows message queues for processing. Because
these are usually handled asynchronously and ap-
plications receive a deluge of messages during nor-
mal operation, these are perfect candidates for cor-
ruption. Indeed, TetriNET implements a Peek-
MessageA / TranslateMessage / DispatchMess-
ageA subroutine.

sub_424620 sub_424620 proc near
2 sub_424620

sub_424620 var_20 = byte ptr −20h
4 sub_424620 Msg = MSG ptr −1Ch

sub_424620
6 sub_424620 push ebx

sub_424620+1 push e s i
8 sub_424620+2 add esp , 0FFFFFFE0h

sub_424620+5 mov e s i , eax
10 sub_424620+7 xor ebx , ebx

sub_424620+9 push 1 ; wRemoveMsg
12 sub_424620+B push 0 ; wMsgFilterMax

sub_424620+D push 0 ; wMsgFilterMin
14 sub_424620+F push 0 ; hWnd

sub_424620+11 l e a eax , [esp+30h+Msg]
16 sub_424620+15 push eax ; lpMsg

sub_424620+16 c a l l PeekMessageA
18 sub_424620+1B t e s t eax , eax

. . .
20 sub_424620+8E l e a eax , [esp+20h+Msg]

sub_424620+92 push eax ; lpMsg
22 sub_424620+93 c a l l TranslateMessage << ! !

sub_424620+98 l e a eax , [esp+20h+Msg]
24 sub_424620+9C push eax ; lpMsg

sub_424620+9D c a l l DispatchMessageA
26 sub_424620+A2 jmp short loc_4246C8

Adjusting our firing solution to overwrite the ad-
dress of TranslateMessage (remember the vulnera-
ble instruction multiplies the player number by the
size of a pointer; scale the payload accordingly) and
voila! EIP jumps to our provided level number.

Now, all we have to do is jump to some shell-
code. This may be a little trickier than it seems at
first glance.

The first option: with a stable write-anywhere
bug, we could write shellcode into an rwx section
and jump to it. Unfortunately, the level number
that eventually becomes ebx in the vulnerable in-
struction is a signed double word, and only posi-
tive integers can be written without raising an error.
We could hand-craft some clever shellcode that only
uses bytes smaller than 0x80 in key locations, but
there must be a better way.

The second option: we could attempt to write
our shellcode three bytes at a time instead of four,
working backward from the end of an RWX sec-
tion, always writing double words with one positive-
integer-compliant byte followed by three bytes of
shellcode, always overwriting the useless byte of the
last write. Alas, the vulnerable instruction enforces
4-byte aligned writes:

0044B963 mov ds : dword_453F28 [eax ∗4] , ebx

49

The third option: we could patch either the
positive-integer-compliant check or the vulnerable
instruction to allow us to perform either of the first
two options. Alas, the page containing this code is
not writable.

1 00401000 ; Segment type : Pure code
00401000 ; Segment perms : Read/Execute

Suddenly, the Stack grants us a brief moment of
clarity in our moment of desperation: because the
login encoding accepts an arbitrary binary string as
the nickname, all manner of shellcode can be passed
as the nickname, all we have to do is find a way to
jump to it. Surely, there must be a pointer some-
where in the data section to the nickname we can
use to jump it. After a brief search, we discover
there is indeed a static value pointing to the login
nickname in the heap. Now, we can write a small

trampoline to load that pointer into a register and
jump to it:

0 : a1 bc 37 45 00 mov eax , ds : 0 x4537bc
2 5 : f f e0 jmp eax

Voila! Login as shellcode, update your level to
the trampoline, smash the pointer to Translate-
Message and pull the trigger on the windows mes-
sage pump and rejoice in the shiny goodness of a
running exploit. The Stack would be proud! While
a host of vulnerabilities surely lie in wait betwixt
the subroutines of tetrinet.exe, this vulnerabil-
ity’s shameless affair with the player is truly one for
the ages.

Scripts and a reference tetrinet executable are
attached to this PDF,39 and the editors of this
fine journal have resurrected the abandoned web-
site, http://tetrinet.us/.

39unzip pocorgtfo18.pdf tetrinet.zip

50

