
17:04 Sniffing BTLE with the Micro:Bit
by Damien Cauquil

Howdy y’all!
It’s well known that sniffing Bluetooth Low En-

ergy communications is a pain in the bottom, unless
you have specialty tools like the Ubertooth One and
its competitors. During my exploration of the BBC
Micro:Bit, I discovered the very interesting fact that
it may be used to sniff BLE communications.

The BBC Micro:Bit is a small device based on
a nRF51822 transceiver made by Nordic Semicon-
ductor, with a 5 × 5 LED screen and two buttons
that can be powered by two AAA batteries. The
nRF51822 is able to communicate over multiple pro-
tocols: Enhanced ShockBurst (ESB), ShockBurst
(SB), GZLL, and Bluetooth Low Energy (BLE).

Nordic Semiconductor provides its own im-
plementation of a Bluetooth Low Energy stack,
released in what they call a SoftDevice and a
well-known closed-source sniffing firmware used in
Adafruit’s BlueFriend LE sniffer for instance. That
doesn’t help that much, as this firmware relies on
BLE connection requests to start following a specific
connection, and not on packets exchanged between
two devices in an existing connection. So, I found
no way to cheaply sniff an existing BLE connection.

In this short article, I’ll describe how to imple-
ment a Bluetooth Low Energy sniffer as software
on the BBC Micro:Bit that can follow pre-existing
connection despite channel hopping. In cases where
channel remapping is in use, it can sniff connections
on which even the Ubertooth currently fails.

The Goodspeed Way of Sniffing
The Micro:Bit being built upon a nRF51822, it ig-
nited a sparkle in my mind as I remembered the
hack found by our great neighbor Travis Goodspeed
who managed to turn another Nordic Semiconduc-
tor transceiver (nRF24L01+) into a sniffer.7 I was
wondering if by any chance this nRF51822 would
have been prone to the same error, and therefore
could be turned into a BLE sniffer.

It took me hours to figure out how to reproduce
this exploit on this chip, but in fact it works exactly
the same way as described in Travis’ paper. Since
the nRF51822 is a lot different than the nRF24L01+
(as it includes its own CPU rather being driven by

a SPI bus), we must change multiple parameters in
order to sniff BLE packets over the air.

First, we need to enable the processor high fre-
quency clock because it is required before enabling
the RADIO module of the nRF51822. This is done
with the following code.

1 NRF_CLOCK−>EVENTS_HFCLKSTARTED = 0 ;
NRF_CLOCK−>TASKS_HFCLKSTART = 1 ;

3 while (NRF_CLOCK−>EVENTS_HFCLKSTARTED == 0) ;

Then, we must specify the mode, addresses,
power and frequency our nRF51822 will be tuned
to.

1 /∗ Max power . ∗/
NRF_RADIO−>TXPOWER = (

3 RADIO_TXPOWER_TXPOWER_0dBm
<< RADIO_TXPOWER_TXPOWER_Pos) ;

5
/∗ Se t t i n g addresses . ∗/

7 NRF_RADIO−>TXADDRESS = 0 ;
NRF_RADIO−>RXADDRESSES = 1 ;

9
/∗ BLE channels are not contiguous , so you

11 need to conver t them in to frequency
o f f s e t . ∗/

13 NRF_RADIO−>FREQUENCY =
channel_to_freq ( channel ) ;

15
/∗ Set BLE data ra t e . ∗/

17 NRF_RADIO−>MODE = (RADIO_MODE_MODE_Ble_1Mbit
<< RADIO_MODE_MODE_Pos) ;

19
/∗ Set the base address . ∗/

21 NRF_RADIO−>BASE0 = 0x00000000 ;
NRF_RADIO−>PREFIX0 = 0xAA; // preamble

The trick here, as described in Travis’ paper, is
to use an address length of two bytes instead of the
five bytes expected by the chip. The address length
is stored in a configuration register called PCNF0,
along with other extra parameters. The PCNF0 and
PCNF1 registers define the way the nRF51822 will
behave: its endianness, the expected payload size,
the address size and much more documented in the
nRF51 Series Reference Manual.8

The following lines of code configure the
nRF51822 to use a two-byte address, big-endian
with a maximum payload size of 10 bytes.

7unzip pocorgtfo17.pdf promiscuousnrf24l01.pdf # Promiscuity is the nRF24L01+’s Duty
8unzip pocorgtfo17.pdf nrf51.pdf
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// LFLEN=0 b i t s , S0LEN=0, S1LEN=0
2 NRF_RADIO−>PCNF0 = 0x00000000 ;

// STATLEN=10, MAXLEN=10, BALEN=1,
4 // ENDIAN=0 ( l i t t l e ) , WHITEEN=0

NRF_RADIO−>PCNF1 = 0x00010A0A ;

Eventually, we have to disable the CRC compu-
tation in order to make the chip consider any data
received as valid.

1 NRF_RADIO−>CRCCNF = 0x0 ;

Identifying BLE Connections

With this setup, we can now receive crappy data
from the 2.4GHz bandwidth and hopefully some
BLE packets. The problem is now to find the needle
in the haystack, that is a valid BLE packet in the
huge amount of data received by our nRF51822.

A BLE packet starts with an access address, a
32-bit carefully-chosen value that uniquely identifies
a link between two BLE devices, as specified in the
Bluetooth 4.2 Core Specifications document. This
access address is followed by some PDU and a 3-
byte CRC, but this CRC value is computed from
a CRCInit value that is unique and associated with
the connection. The BLE packet data is whitened in
order to make it more tamper-resistant, and should
be dewhitened before processing. If the connection
is already initiated, as it is our case, the PDU is a
Data Channel PDU with a specific two-byte header,
as stated in the Bluetooth Low Energy specifica-
tions.

When a BLE connection is established, keep-
alive packets with a size of 0 bytes are exchanged
between devices.

Again, we follow the same methodology as
Travis’ by listing all the candidate access addresses
we get, and identifying the redundant ones. This is
the same method chosen by Mike Ryan in its Uber-
tooth BTLE tool fromWOOT13,9 with a nifty trick:

we determine a valid access address based on the
number of times we have seen it combined with a
filter on its dewhitened header. We may also want
to rely on the way the access address is generated, as
the core specifications give a lot of extra constraints
access address must comply with, but it is not al-
ways followed by the different implementations of
the Bluetooth stack.

Once we found a valid access address, the next
step consists in recovering the initial CRC value
which is required to allow the nRF51822 to auto-
matically check every packet CRC and let only the
valid ones go through. This process is well docu-
mented in Mike Ryan’s paper and code, so we won’t
repeat it here.

With the correct initial CRC value and access
address in hands, the nRF51822 is able to sniff a
given connection’s packets, but we still have a prob-
lem. The BLE protocol implements a basic channel
hopping mechanism to avoid sniffing. We cannot sit
on a channel for a while without missing packets,
and that’s rather inconvenient.

9unzip pocorgtfo17.pdf woot13-ryan.pdf
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1 func t i on pickUniqueChannel ( a_channelMap ) :
aa_sequences = generateSequences ( a_channelMap )

3 for channel in range ( 0 . . 3 7 ) do :
i f ( a_channelMap conta in s channel ) then do :

5 for increment in range ( 0 . . 1 2 ) do :
count = 0

7 for i in range ( 0 . . 3 7 ) do :
i f aa_sequences [ increment ] [ i ] == channel then do :

9 count = count + 1
i f count > 1 then do :

11 break
end i f

13 end i f
end for

15
i f count == 1 then do :

17 return channel
end i f

19 end for
end i f

21 end for

23 return −1
end func t i on

25
func t i on computeRemapping ( a_channelMap ) :

27 a_remapping = [ ]
j = 0

29 for channel in range ( 0 . . 3 7 ) do :
i f a_channelMap conta in s channel then do :

31 a_remapping [ j ] = channel
j = j + 1

33 end i f
end for

35
return a_remapping

37 end func t i on

39 func t i on generateSequences ( a_channelMap ) :
aa_sequences = [ ] [ ]

41 remapping = computeRemapping ( a_channelMap )
for i in range ( 0 . . 1 2 ) do :

43 aa_sequences [ i ] = generateSequence ( i +5, a_channelMap , a_remapping )
end for

45 return aa_sequences
end func t i on

47
func t i on generateSequence ( increment , a_channelMap , a_remapping ) :

49 channel = 0
a_sequence = [ ]

51 for i in range ( 0 . . 3 7 ) do :
i f i in a_channelMap then do :

53 sequence [ i ] = channel
else

55 sequence [ i ] = a_remapping [ channel modulo s i z e o f a_remapping ]
end i f

57
channel = ( channel + increment ) % 37

59 end for
end func t i on

Figure 2. Hopping Algorithm
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Following the Rabbit

The Bluetooth Low Energy protocol defines 37 dif-
ferent channels to transport data. In order to com-
municate, two devices must agree on a hopping se-
quence based on three characteristics: the hop in-
terval, the hop increment, and the channel map.

The first one, the hop interval, is a value spec-
ifying the amount of time a device should sit on a
channel before hopping to the next one. The hop
increment is a value between 5 and 16 that specifies
the number of channels to add to the current one
(modulo the number of used channels) to get the
next channel in the sequence. The last one may be
used by a connecting device to restrict the channels
used to the ones given in a bitmap. The channel map
was quite a surprise for me, as it isn’t mentioned in
Ubertooth’s BTLE documentation.10

We need to know these values in order to cap-
ture every possible packets belonging to an active
connection, but we cannot get them directly as we
did not capture the connection request where we
would find them. We need to deduce these values
from captured packets, as we did for the CRC initial
value. In order to find out our first parameter, the
hop interval, Mike Ryan designed the simplest algo-
rithm that could be: measuring the time between
two packets received on a specific channel and di-
viding it by the number of channels used, i.e. 37.
So did I, but my measures did not seem really ac-
curate, as I got two distinct values rather than a
unique one. I was puzzled, as it would normally
have been straightforward as the algorithm is sim-
ple as hell. The only explanation was that a valid
packet was sent twice before the end of the hopping
cycle, whereas it should only have been sent once.
There was something wrong with the hopping cycle.

It seems Mike Ryan made an assumption that
was correct in 2013 but not today in 2017. I checked
the channels used by my connecting device, a Sam-
sung smartphone, and guess what? It was only using
28 channels out of 37, whereas Mike assumed all 37
data channels will be used. The good news is that
we now know the channel map is really important,
but the bad news is that we need to redesign the
connection parameters recovery process.

Improving Mike Ryan’s Algorithm

First of all, we need to determine the channels in use
by listening successively on each channel for a packet
with our expected access address and a valid CRC
value. If we get no packet during a certain amount
of time, then it means this channel is not part of the
hopping sequence. Theoretically, this may take up
to four seconds per channel, so not more than three
minutes to determine the channel map. This is a
significant amount of time, but luckily devices gen-
erally use more than half of the available channels
so it would be quicker.

Once the channel map is recovered, we need to
determine precisely the hop interval value associated
with the target connection. We may want our sniffer
to sit on a channel and measure the time between
two valid packets, but we have a problem problem:
if less than 37 channels are used, one or more chan-
nels may be reused to fill the gaps. This behavior
is due to a feature called “channel remapping” that

10unzip pocorgtfo17.pdf ubertooth.zip; unzip -c ubertooth.zip ubertooth/host/doc/ubertooth-btle.md | less

16



is defined in the Bluetooth Low Energy specifica-
tions, which basically replace an unused channel by
another taken from the channel map. It means a
channel may appear twice (or more) in the hopping
sequence and therefore compromise the success of
Mike’s approach.

37 channe l s in use , no remapping :
2 { 0 , 1 , 2 , 3 , . . . , 27 , 28 , 29 , 30 ,

31 , 32 , 33 , 34 , 35 , 36 , 37}
4

28 f i r s t channe l s in use :
6 { 0 , 1 , 2 , 3 , . . . , 27 , 0 , 1 , 2 , 3 ,

4 , 5 , 6 , 7 , 8}

A possible workaround involves picking a chan-
nel that appears only once in the hopping sequence,
whatever the hop increment value. If we find such
a channel, then we just have to measure the time
between two packets, and divide this value by 37
to recover the hop interval value. The algorithm in
Figure 2 may be used to pick this channel.

This algorithm finds a unique channel only if
more than the half of the data channels are used, and
may possibly work for a fewer number of channels
depending on the hop increment value. This quick
method doesn’t require a huge amount of packets to
guess the hop interval.

The last parameter to recover is the hop incre-
ment, and Mike’s approach is also impacted by the
number of channels in use. His algorithm measures
the time between a packet on channel 0 and channel
1, and then relies on a lookup table to determine
the hop increment used. The problem is, if channel
1 appears twice then the measure is inaccurate and
the resulting hop increment value guessed wrong.

Again, we need to adapt this algorithm to a more
general case. My solution is to pick a second channel
derived from the first one we have already chosen to
recover the hop interval value, for which the corre-
sponding lookup table only contains unique values.
The lookup table is built as shown in Figure 3.

Eventually, we try every possible combination
and only keep one that does not contain duplicate
values, as shown in Figure 4.

Last but not least, in Figure 5 we build the
lookup table from these two carefully chosen chan-
nels, if any. This lookup table will be used to deduce
the hop increment value from the time between these
two channels.

17



1 func t i on generateLUT ( aa_sequences , f i r s tChanne l , secondChannel ) :
aa_lookupTable = [ ] [ ]

3 for increment in range ( 0 . . 1 2 ) do :
aa_lookupTable [ increment ] = computeDistance ( aa_sequences , increment ,

5 f i r s tChanne l , secondChannel )
end for

7 end func t i on

9 func t i on computeDistance ( aa_sequences , increment , f i r s tChanne l , secondChannel ) :
d i s t anc e = 0

11 fc Index = findChannelIndex ( aa_sequences , increment , f i r s tChanne l , 0)
scIndex = findChannelIndex ( aa_sequences , increment , secondChannel , f c Index )

13 i f ( scIndex > fc Index ) then do :
d i s t anc e = ( scIndex − f c Index )

15 else do :
d i s t anc e = ( scIndex − f c Index ) + 37

17 end i f

19 return d i s t anc e
end func t i on

21
func t i on f indChannelIndex ( aa_sequences , increment , channel , s t a r t ) :

23 for i in range ( 0 . . 3 7 ) do :
i f aa_sequences [ increment ] [ ( s t a r t + i ) modulo 37 ] == channel then do :

25 return ( ( s t a r t + i ) modulo 37)
end i f

27 end for
end func t i on

Figure 3. Channel Lookup Table

f unc t i on pickSecondChannel ( aa_sequences , a_channelMap , f i r s tChanne l ) :
2 for channel in range ( 0 . . 3 7 ) do :

i f a_channelMap conta in s channel then do :
4 lookupTable = generateLUT ( aa_sequences , f i r s tChanne l , channel )

dup l i c a t e s = FALSE
6 for i in range ( 0 . . 1 1 ) do :

for k in range ( i+1 . . 12) do :
8 i f lookupTable [ i ] == lookupTable [ k ] then do :

dup l i c a t e s = TRUE
10 end i f

end for
12 end for

14 i f not dup l i c a t e s then do :
return channel

16 end i f
end i f

18 end for

20 return −1
end func t i on

Figure 4. Picking the Second Channel
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1 func t i on deduceHopIncrement ( aa_sequences , f i r s tChanne l , secondChannel ,
measure , hopInte rva l ) :

3 channelsJumped = measure / hopInte rva l
LUT = generateHopIncrementLUT ( aa_sequences , f i r s tChanne l , secondChannel )

5 i f LUT[ channelsJumped ] > 0 then do :
return LUT[ channelsJumped ]

7 else do :
return −1

9 end i f
end func t i on

11
func t i on generateHopIncrementLUT ( aa_sequences , f i r s tChanne l , secondChannel ) :

13 reverseLUT = generateLUT ( aa_sequences , f i r s tChanne l , secondChannel )
LUT = [ ]

15 for i in range ( 0 . . 3 7 ) do :
LUT[ i ] = 0

17 end for
for i in range ( 0 . . 1 2 ) do :

19 LUT[ reverseLUT [ i ] ] = i+5
end for

21
return LUT

23 end func t i on

Figure 5. Deducing the Hop Increment

Patching BBC Micro:Bit

Thanks to the designers of the BBC Micro:Bit, it
is possible to easily develop on this platform in C
and C++. Basically, they wrote a Device Abstrac-
tion Layer11 that provides everything we need ex-
cept the radio, as they developed their own custom
protocol derived from Nordic Semiconductor Shock-
Burst protocol. We must get rid of it.

I removed all the useless code from this abstrac-
tion layer, the piece of code in charge of handling
every packet received by the RADIO module of
our nRF51822 in particular. I then substitute this
one with my own handler, in order to perform all
the sniffing without being annoyed by some hidden
third-party code messing with my packets.

Eventually, I coded a specific firmware for the
BBC Micro:Bit that is able to communicate with
a Python command-line interface, and that can be
used to detect and sniff existing connections. This
is not perfect and still a work in progress, but it can
passively sniff BLE connections. Of course, it may
lack the legacy sniffing method based on capturing
connection requests; that will be implemented later.

This tiny tool, dubbed ubitle, is able to enu-
merate every active Bluetooth Low Energy connec-
tions.

1 # python3 ub i t l e . py −s
uB i t l e v1 . 0 [ f irmware ve r s i on 1 . 0 ]

3
[ i ] L i s t i n g a v a i l a b l e a c c e s s addre s s e s . . .

5 [ − 46 dBm] 0x8a9b8e58 | pkts : 1
[ − 46 dBm] 0x8a9b8e58 | pkts : 2

7 [ − 46 dBm] 0x8a9b8e58 | pkts : 3

It is also able to recover the channel map used
by a given connection, as well as its hop interval and
increment.

1 # python3 ub i t l e . py −f 0x8a9b8e58
uB i t l e v1 . 0 [ f irmware ve r s i on 1 . 0 ]

3
[ i ] Fol lowing connect ion 0x8a9b8e58 . . .

5 [ i ] Recovered i n i t i a l CRC value : 0 x16e9df
[ i ] Recover ing channel map .

7 [ i ] Recovered channel map : 0 x 1 f f f f f f f f f
[ i ] Recover ing hop i n t e r v a l . . .

9 [ i ] Recovered hop i n t e r v a l : 48
[ i ] Recover ing hop increment . . .

11 [ i ] Recovered hop increment : 16

11git clone https://github.com/lancaster-university/microbit-dal
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Once all the parameters recovered, it may also
dump traffic to a PCAP file.

1 # python3 ub i t l e . py −f 0x8a9b8e58 \
−m 0 x 1 f f f f f f f f f −o t e s t . pcap

3 uB i t l e v1 . 0 [ f i rmware ve r s i on 1 . 0 ]

5 [ i ] Fol lowing connect ion 0x8a9b8e58 . . .
[ i ] Recovered i n i t i a l CRC value : 0 x16e9df

7 [ i ] Forced channel map : 0 x 1 f f f f f f f f f
[ i ] Recover ing hop i n t e r v a l . . .

9 b ’ \xbcC\x06\x00X\x8e\x9b\x8a0\x00\ xf1 ’
[ i ] Recovered hop i n t e r v a l : 48

11 [ i ] Recover ing hop increment . . .
[ i ] Recovered hop increment : 16

13 [ i ] A l l parameters s u c c e s s f u l l y recovered ,
f o l l ow i ng BLE connect ion . . .

15 LL Data : 02 07 03 00 04 00 0a 03 00
LL Data : 0a 0a 06 00 04 00 0b 70 6 f 75 65 74

17 LL Data : 02 07 03 00 04 00 0a 05 00
LL Data : 0a 07 03 00 04 00 0b 00 00

19 LL Data : 02 07 03 00 04 00 0a 03 00
LL Data : 0a 0a 06 00 04 00 0b 70 6 f 75 65 74

The resulting PCAP file may be opened in Wire-
shark to dissect the packets. You may notice the
keep-alive packets are missing from this capture. It
is deliberate; these packets are useless when analyz-
ing Bluetooth Low Energy communications.

Source code

The source code of this project is available on
Github under GPL license, feel free to submit bugs
and pull requests.12

This tool does not support dynamic channel map
update or connection request based sniffing, which
are implemented in Nordic Semiconductor’s closed
source sniffer. It’s PoC‖GTFO so take my little tool
as it is: a proof of concept demonstrating that it is
possible to passively sniff BLE connections for less
than twenty bucks, with a device one may easily find
on the Internet.

12git clone https://github.com/virtualabs/ubitle-firmware || unzip pocorgtfo17.pdf ubitle.tgz
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17:05 Up close and personal with Ethernet.
by Andrew D. Zonenberg,

because real hackers don’t need PHYs or NICs!

If you’re reading this, you’ve almost certainly
used Ethernet on a PC by means of the BSD sockets
API. You’ve probably poked around a bit in Wire-
shark and looked at the TCP/IP headers on your
packets. But what happens after the kernel pushes a
completed Ethernet frame out to the network card?

A PC network card typically contains three main
components. These were separate chips in older de-
signs, but many modern cards integrate them all
into one IC. The bus controller speaks PCIe, PCI,
ISA, or some other protocol to the host system, as
well as generating interrupts and handling DMA.
The MAC (Media Access Controller) is primarily
responsible for adding the Ethernet framing to the
outbound packet. The MAC then streams the out-
bound packet over a “reconciliation sublayer” inter-
face to the PHY (physical layer), which converts the
packet into electrical or optical impulses to travel
over the cabling. This same process runs in the op-
posite direction for incoming packets.

In an embedded microcontroller or SoC plat-
form, the bus controller and MAC are typically in-
tegrated on the same die as the CPU, however the
PHY is typically a separate chip. FPGA-based sys-
tems normally implement a MAC on the FPGA and
connect to an external PHY as well; the bus con-
troller may be omitted if the FPGA design sends
data directly to the MAC. Although the bus con-
troller and its firmware would be an interesting tar-
get, this article focuses on the lowest levels of the
stack.

MII and Ethernet framing

The reconciliation sublayer is the lowest (fully digi-
tal) level of the Ethernet protocol stack that is typ-
ically exposed on accessible PCB pins. For 10/100
Ethernet, the base protocol is known as MII (Media
Independent Interface). It consists of seven digital
signals each for the TX and RX buses: a clock (2.5
MHz for 10Base-T, 25 MHz for 100Base-TX), a data
valid flag, an error flag, and a 4-bit parallel bus con-
taining one nibble of packet data. Other commonly
used variants of the protocol include RMII (reduced-
pin MII, a double-data-rate version, which uses less
pins), GMII (gigabit MII, that increases the data
width to 8 bits and the clock to 125 MHz), and
RGMII (a DDR version of GMII using less pins). In
all of these interfaces, the LSB of the data byte/nib-
ble is sent on the wire first.

An Ethernet frame at the reconciliation sublayer
consists of a preamble (seven bytes of 0x55), a start
frame delimiter (SFD, one byte of 0xD5), the 6-byte
destination and source MAC addresses, a 2-byte
EtherType value indicating the upper layer protocol
(for example 0x0800 for IPv4 or 0x86DD for IPv6),
the packet data, and a 32-bit CRC-32 of the packet
body (not counting preamble or SFD). The byte val-
ues for the preamble and SFD have a special signifi-
cance that will be discussed in the following section.

10Base-T Physical Layer

The simplest form of Ethernet still in common use
is known as 10Base-T (10 Mbps, baseband signal-
ing, twisted pair media). It runs over a cable con-
taining two twisted pairs with 100 ohm differential
impedance. Modern deployments typically use Cat-
egory 5 cabling, which contains four twisted pairs.
The orange and green pairs are used for data (one
pair in each direction), while the blue and brown
pairs are unused.

When the line is idle, there is no voltage dif-
ference between the positive (white with stripe) and
negative (solid colored) wires in the twisted pair. To
send a 1 or 0 bit, the PHY drives 2.5V across the
pair; the direction of the difference indicates the bit
value. This technique allows the receiver to reject
noise coupled into the signal from external electro-
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