
17:01 I thought I turned it on, but I didn’t.

Neighbors, please join me in reading this eigh-
teenth release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little
collection of articles for ladies and gentlemen of dis-
tinguished ability and taste in the field of reverse
engineering and the study of weird machines. This
release is a gift to our fine neighbors in Leipzig and
Washington, D.C.

If you are missing the first seventeen issues, we
suggest asking a neighbor who picked up a copy of
the first in Vegas, the second in São Paulo, the third
in Hamburg, the fourth in Heidelberg, the fifth in
Montréal, the sixth in Las Vegas, the seventh from
his parents’ inkjet printer during the Thanksgiv-
ing holiday, the eighth in Heidelberg, the ninth in
Montréal, the tenth in Novi Sad or Stockholm, the
eleventh in Washington D.C., the twelfth in Heidel-
berg, the thirteenth in Montréal, the fourteenth in
São Paulo, San Diego, or Budapest, the fifteenth in
Canberra, Heidelberg, or Miami, the sixteenth re-
lease in Montréal, New York, or Las Vegas, or the
seventeenth release in São Paulo or Budapest.

After our paper release, and only when quality
control has been passed, we will make an electronic
release named pocorgtfo17.pdf. It is a valid PDF
document and a ZIP file filled with fancy papers
and source code. It is also a valid program for the
Apollo Guidance Computer, which will run in the
VirtualAGC emulator

As you’ll recall from PoC‖GTFO 3:11, AES in
CBC mode allows you to flip bits of the initializa-
tion vector to flip bits of the first cleartext block.
On page 5, Albert Spruyt and Niek Timmers share
some handy tricks for using a similar property: by
flipping bits of one block’s ciphertext you can also
flip blocks of the subsequent ciphertext block after
decryption. In this manner, they can sacrifice half
of the blocks by flipping their bits to control the
other half, loading shellcode into the cleartext of an
encrypted ARM image for which they have no key.

Our own Pastor Laphroaig has a sermon for you
on page 9, concerning the good ol’ days of juvenile
science fiction, when chemistry sets were dangerous
and Dr. Watson trusty pistol was always at hand.

Software defined radios and radios built from
custom hardware can receive damned near anything
these days, but some of the most clever radio hack-
ing involves firmware patches to existing, commod-
ity radios. On page 13, Damien Cauquil shows us
how to write custom firmware for the nRF51 chip
in the BBC Micro:Bit to sniff an ongoing Bluetooth
Low Energy connection, without previously know-
ing the hop interval, increment, or even the channel
map.

Speaking of PHY layer tricks, what does a clever
neighbor do when he hasn’t got a hardware PHY?
For Ethernet, Andrew Zonenberg simply bitbangs it
from an old Spartan-6 FPGA and the right resistors.
Page 21.

When assembling hardware, sometimes it can be
ambiguous whether a chip is inserted one way, or
rotated one hundred and eighty degrees from that
way. On page 32, Joe Grand shares with us a DIP-8
design that selectively re-adjusts itself to having the
chip rotated. Build your PCB by the ferric chloride
method with a 0.1” DIP socket for proper nostalgia.

Back in the good ol’ days, folks would share
hooking techniques over a pint of good ale. Now
that pints have as few as eight ounces, and some jerk
ranting about Bitcoin ruins all our conversations,
it’s nice to read that Shawn Webb has been playing
with methods for hooking functions in FreeBSD pro-
cesses through unprivileged ptrace() debugging.
Page 34.

Page 42 features a gumshoe detective novella,
one in which Soldier of Fortran hangs out his neon
sign and teams up with Bigendian Smalls to cre-
ate the niftiest EBCDIC login screen for his z/OS
mainframe.

Leandro Pereira has some clever tricks on
page 56 for injecting additional code into pre-
existing ELF files to enable defensive features
through seccomp-bpf.

On page 60, the last page, we pass around the
collection plate. Our church has no interest in bit-
coins or wooden nickels, but we’d love your donation
of a reverse engineering story. Please send one our
way.

3

4

17:02 Constructing AES-CBC Shellcode
by Albert Spruyt and Niek Timmers

Howdy folks!
Imagine, if you will, that you have managed to

bypass the authenticity measures (i.e., secure boot)
of a secure system that loads and executes an binary
image from external flash. We do not judge, it does
not matter if you accomplished this using a fancy
attack like fault injection1 or the authenticity mea-
sures were lacking entirely.2 What’s important here
is that you have gained the ability to provide the
system with an arbitrary image that will be happily
executed. But, wait! The image will be decrypted
right? Any secure system with some self respect will
provide confidentiality to the image stored in exter-
nal flash. This means that the image you provided
to the target is typically decrypted using a strong
cryptographic algorithm, like AES, using a cipher
mode that makes sense, like Cipher-Block-Chaining
(CBC), with a key that is not known to you!

Works of exquisite beauty have been made with
the CBC-mode of encryption. Starting with hum-
ble tricks, such as bit flipping attacks, we go to
heights of dizzying beauty with the padding-oracle-
attack. However, the characteristics of CBC-mode
provide more opportunities. Today, we’ll apply its
bit-flipping characteristics to construct an image
that decrypts into executable code! Pretty nifty!

Cipher-Block-Chaining (CBC) mode

The primary purpose of the CBC-mode is prevent-
ing a limitation of the Electronic Code Book (ECB)
mode of encryption. Long story short, the CBC-
mode of encryption ensures that plain-text blocks
that are the same do not result in duplicate cipher-
text blocks when encrypted. Below is an ASCII art
depiction of AES decryption in CBC-mode. We de-
note a cipher text block as CTi and a plain text block
as PTi.

CT-1 CT-2
|_______ |_______ . . .
| | |

_________ | _________
| | | | |

IV --- | AES | | | AES |
| |_________| | |_________|
| | | |
|______XOR |______XOR

| |
PT-1 PT-2

An important aspect of CBC-mode is that the
decryption of CT2 depends, besides the AES decryp-
tion, on the value of CT1. Magically, without know-
ing the decryption key, flipping 1 or more bits in CT1
will flip 1 or more bits in PT2.

Let’s see how that works, where ∧1 denotes flip-
ping a bit at an arbitrary position.

CT1 ∧ 1 + CT2

Which get decrypted into:

TRASH+ PT2 ∧ 1

1Bypassing Secure Boot using Fault Injection, Niek Timmers and Albert Spruyt, Black Hat Europe 2016
2Arm9LoaderHax — Deeper Inside, Jason Dellaluce

5

