
16:10 Locating Return Addresses via High Entropy Stack Canaries
by Matt Davis

Introduction

The following article describes a technique that can
be used to identify a function return address within
an opaque memory space. Stack canaries of max-
imum entropy can be used to locate stack infor-
mation, thus repurposing a security mechanism as
a tool for learning about the memory space. Of
course, once a return address is located, it can be
overwritten to allow for the execution of malicious
code. This return address identification technique
can be used to compromise the stack environment
in a multi-threaded Linux environment. While the
operating system and compiler are mere specifici-
ties, the logic discussed here can be considered for
other executing environments. This all assumes that
a process is allowed to inspect the memory of either
itself or of another process.

Canaries and Stacks

Stack canaries are a mechanism for detecting a cor-
rupted stack, specifically malware that relies on
stack overflows to exploit a function’s return ad-
dress. Much like the oxygen-breathing avian in a
coalmine, which acts as a primitive toxic-gas detec-
tor, the analogous stack canary is a digital species
that will be destroyed upon stack corruption/com-
promise. Thus, a canary is a known value that is
placed onto the stack prior to function execution.
Upon function exit, that value is validated to en-
sure that it was not overwritten or corrupted during
the execution of the function. If the canary is not
the original value, then the validation routine can
prematurely terminate the application, to protect
the system from executing potential malware or op-
erating on corrupted data.

As it turns out, for security purposes, it is ideal
to have a canary that cannot be predicted before-
hand. If such were not the case, then a crafty
malware author could take control of the stack and
patch the expected value over-top of where the ca-
nary lives. One solution to avoid this compromise is
for the underlying system’s random number genera-
tor (/dev/urandom) to be used for generating canary
values. That is arguably a better solution to using
hard-coded canaries; however, one can compromise
a stack by using a randomly generated canary as a

beacon for locating stack data, importantly return
addresses. Before the technique is discussed, the
idea of stacks living in dynamically allocated mem-
ory space must be visited.

POSIX threads and split-stack runtimes (think
Go-lang) allocate threads and their corresponding
stack regions dynamically, as a blob of memory
marked as read/write. To understand why this is,
one must first realize that threads are created at
runtime, and thus it is undecidable for a compiler
to know the number of threads a program might re-
quire.

Split-stacks are dynamically allocated thread-
stacks. A split-stack is like a traditional POSIX
thread stack, but instead of being a predetermined
size, the stack is allowed to grow dynamically at
runtime. Upon function entry, the thread will first
determine if it has enough stack space to contain the
stack contents of the to-be-executed function (pro-
logue check). If the thread’s stack space is not large
enough, then a new stack is allocated, the function
parameters are copied to the newly allocated space,
and then the stack pointer register is updated to
point to this new stack. These dynamically allo-
cated stacks can still utilize the security implied by
a stack canary. To illustrate the advantage of a split-
stack, the default POSIX thread size on my box (cre-
ated whenever a program calls ‘pthread_create’) is
hard-coded to 8MB. If for some reason a thread re-
quires more than 8MB, the program can crash. As
you can see, 8MB is a rather gross guess, and not
quite scalable. With GCC’s -fsplit-stack flag,
threads can be created tiny and grow as necessary.

All this is to say that stack frames can live in
a process’ memory space. As I will demonstrate,
locating stack data in this memory space can be
simple. If a return address can be found, then it
can be compromised. The memory mapped regions
of thread memory are fairly easy to find, looking
at ‘/proc/<pid>/maps’ one can find the correspond
memory maps. Those memory addresses can then
be used to read or write to the actual memory lo-
cated at ‘/proc/<pid>/mem’. Let’s take a look at
what happens after calling ‘pthread_create’ once
and dumping the maps table, as shown in Figure 4.

This figure highlights the regions of memory that
were allocated for the threads, not all of this might
be memory just for the thread. Note that the

49

1 00400000−00401000 r−xp 00000000 08 :01 5505848 /home/ user /a . out
00600000−00601000 r−−p 00000000 08 :01 5505848 /home/ user /a . out

3 00601000−00602000 rw−p 00001000 08 :01 5505848 /home/ user /a . out
022 c7000−022e8000 rw−p 00000000 00 :00 0 [heap]

5 7 fbdc8000000−7fbdc8021000 rw−p 00000000 00 :00 0 <−− Thread memory .
7 fbdc8021000−7fbdcc000000 −−−p 00000000 00 :00 0 <−− Guard memory .

7 7 fbdcd18b000−7fbdcd18c000 −−−p 00000000 00 :00 0 <−− Guard memory .
7 fbdcd18c000−7fbdcd98c000 rw−p 00000000 00 :00 0 <−− Thread memory .

9 7 fbdcd98c000−7fbdcdb27000 r−xp 00000000 08 :01 7080135 / usr / l i b / l i b c −2.25. so
[. . . I gnor ing a few e n t r i e s . . .]

11 f f f f f f f f f f 6 0 0 0 0 0 − f f f f f f f f f f 6 0 1 0 0 0 r−xp 00000000 00 :00 0 [v s y s c a l l]

Figure 4. Memory Map

pages marked without read and write permissions
are guard pages. In the case of a read/write op-
eration leaking onto those safety pages, a memory
violation will occur and the process will be termi-
nated.

This section started with an introduction with
what a canary is, but what do they look like? The
next two code dumps present a boring function and
the corresponding assembly. This code was com-
piled using GCC’s -fstack-protector-all flag.
The all variant of this flag forces GCC to always
generate a canary, even if the compiler can deter-
mine that one is not required.

1 // Boring func t i on . . .
int f oo (void) {

3 return 0 xdeadbeef ;
}

5
In asm with −f s tack−protec tor−a l l

7 # passed at compi le time .
foo :

9 pushq %rbp
movq %rsp , %rbp

11 subq %16, %rsp
movq %f s : 4 0 , %rax

13 movq %rax , −8(%rbp)
xo r l %eax , %eax

15 movl $0xdeadbeef , %eax
movq −8(%rbp) , %rdx

17 xorq %f s : 4 0 , %rdx
j e . L3

19 c a l l __stack_chk_fail
. L3 :

21 l eave
r e t

The instruction ‘movq %fs:40, %rax’ loads the
canary value from the thread’s thread local storage.
This value is established at program load thanks to
the libssp library (bundled with GCC). That value is
then immediately pushed to the stack, 8 bytes from
the stack’s base pointer. The same compiler code
that generated this stack push should also have gen-
erated the validation portion in the function’s epi-
logue. Indeed, towards the end of the function there
is a check of the stack value against the thread local
storage value: ‘xorq %fs:40, %rdx.’ If the values
do not match, ‘__stack_chk_fail’ is called to pre-
maturely terminate the process.

50

Making use of Maximum Entropy to
Identify a Stack
Now that we have gently strolled down thread-stack
and canary alley, we now arrive at the intersection
of pwnage. The question I am trying to answer here
is: How can an malicious attacker locate a stack
within a process’ memory space and compromise a
return address? I showed earlier what the /proc
entry looks like, which can be trivial to locate by
parsing the maps entries within the /proc file sys-
tem. But how can one locate a stack within that
potentially enormous memory space?

If your executable is at all security minded, it
will probably be compiled with stack canaries. In
fact, certain distributions alias GCC to use the
-fstack-protector option. (See the man page of
GCC for variations on that flag.) That is what we
need, a canary that we can easily spot in a mem-
ory space. Since the canaries from GCC seem to
be placed at a constant address from the stack base
pointer, it also happens to be a constant address
from the return address. The following is a stack
frame with a canary on it. (This is x86, and of
course the stack grows toward lower addresses.)

Bottom of Stack

caller’s stack frame
parameters to callee

return address to caller
previous stack pointer (rbp)

stack canary
Top of Stack

rbp +8

rbp −8

0

ba
se

of
st
ac
k
in

ca
lle

e

in
cr

ea
si
n
g

a
d
d
r
es

s

High entropy canaries simplify locating return
addresses. Once a maximum entropy word has been
located, an additional check can be made to see if
the value 16 bytes from that word looks like an ad-
dress. If that value is an address, it will fall within
the bounds of any of the pages listed for that pro-
cess in the /proc file system. While it is possible
that it might be a value that looks like an address,
it could also be a return address. At this point, you
can patch that value with your bad wares.

The POC of this technique and the accompa-
nying entropy calculation are included.33 To calcu-
late entropy I applied the Shannon Entropy formula,
with the variant that I looked at bytes and not in-
dividual bits.

Afterward
As an aside, I scanned all of the processes on my
Arch Linux box to get an idea of how common a
maximum entropy word is. This is far from any kind
of scientific or statistically significant result, but it
provides an idea on the frequency of maximum en-
tropy (bytes not bits). After scanning 784,700,416
words, I found that 4,337,624 words had a different
value for each byte in the word. That is about 0.55%
of the words being maximum entropy.

33unzip pocorgtfo16.pdf canarypoc.c

51

