
16:08 Naming Network Interfaces
by Cornelius Diekmann

There are only two hard things in Computer Sci-
ence: misogyny and naming things. Sometimes they
are related, though this article only digresses about
the latter, namely the names of the beloved network
interfaces on our Linux machines. Some neighbors
stick to the boring default names, such as lo, eth0,
wlan0, or ens1. But what names does the mighty
kernel allow for interfaces? The Linux kernel spec-
ifies that any byte sequence which is not too long,
has neither whitespace nor colons, can be pointed
to by a char*, and does not cause problems when
interpreted as filename, is okay.29

The church of weird machines praises this nice
and clean recognition routine. The kernel is not
even bothering its deferential user with character
encoding; interface names are just plain bytes.

ip l i n k s e t eth0 name \
2 $ (echo −ne ’ l o l \x01\x02\x03\x04\ x05yolo ’)

$ ip addr | xxd
4 6 c6 f 6 c01 0203 0405 79 6 f 6 c6 f l o l yo lo

For convenience, our time-honoured terminals
interpret byte sequences according to our local en-
coding, also featuring terminal escapes.

ip l i n k s e t eth0 name \
2 $ (echo −ne ’ \e [31m \e [0m’)

Given a contemporary color display, the user can
enjoy a happy red snowman.

For the uplink to the Internet (with capital I), I
like to call my interface “+”.

ip l i n k s e t eth1 name +

Having decided on fine interface names, we ob-
viously need to protect ourselves from the evil
haxXx0rs in the Internet. Yet, our happy red snow-
man looks innocent and we are sure that no evil will
ever come from that interface.

1 # i p t a b l e s −I INPUT − i + −j DROP
i p t a b l e s −A INPUT \

3 − i $ (echo −ne ’ \e [31m \e [0m’) −j ACCEPT

Hitting enter, my machine is suddenly alone in
the void, not even talking to my neighbors over the
happy red snowman interface.

1 # i p t ab l e s−save
∗ f i l t e r

3 : INPUT ACCEPT [0 : 0]
:FORWARD ACCEPT [0 : 0]

5 :OUTPUT ACCEPT [0 : 0]
−A INPUT −j DROP

7 −A INPUT − i −j ACCEPT
COMMIT

Where did the match “-i +” in the first rule go?
Why is it dropping all traffic, not just the traffic
from the evil Internet?

The answer lies, as envisioned by the prophecy
of LangSec, in a mutual misunderstanding of what
an interface name is. This misunderstanding is be-
tween the Linux kernel and netfilter/iptables. ipta-
bles has almost the same understanding as the ker-
nel, except that a “+” at the end of an interface’s
byte sequence is interpreted as a wildcard. Hence,
iptables and the Linux kernel have the same under-
standing about “ ”, “eth0”, and “eth+++0”, but not
about “eth+”. Ultimately, iptables interprets “+” as
“any interface.” Thus, having realized that iptables
match expressions are merely Boolean predicates in
conjunctive normal form, we found universal truth
in “-i +”. Since tautological subexpressions can be
eliminated, “-i +” disappears.

But how can we match on our interface “+” with
a vanilla iptables binary? With only the minor in-
convenience of around 250 additional rules, we can
match on all interfaces which are not named “+”.
#! / bin /bash

2 i p t a b l e s −N PLUS
i p t a b l e s −A INPUT −j PLUS

4 for i in $ (seq 1 255) ; do
B=$ (echo −ne "\x$ (p r i n t f ’%02x ’ $ i) ")

6 i f ["$B" != ’+’] && ["$B" != ’ ’] \
&& ["$B" != ""] ; then

8 i p t a b l e s −A PLUS − i "$B+" −j RETURN
f i

10 done
i p t a b l e s −A PLUS −m comment \

12 −−comment ’ only + remains ’ −j DROP
i p t a b l e s −A INPUT \

14 − i $ (echo −ne ’ \e [31m \e [0m’) −j ACCEPT

29See Figure 3.

45

1 /∗ dev_valid_name − check i f name i s okay fo r network dev i ce
∗ @name: name s t r i n g

3 ∗
∗ Network dev i ce names need to be v a l i d f i l e names to a l l ow s y s f s to work . We a l s o

5 ∗ d i s a l l ow any kind o f whi tespace .
∗/

7 bool dev_valid_name (const char ∗name) {
i f (∗name == ’ \0 ’)

9 return f a l s e ;
i f (s t r l e n (name) >= IFNAMSIZ)

11 return f a l s e ;
i f (! strcmp (name , " . ") | | ! strcmp (name , " . . "))

13 return f a l s e ;

15 while (∗name) {
i f (∗name == ’ / ’ | | ∗name == ’ : ’ | | i s s p a c e (∗name))

17 return f a l s e ;
name++;

19 }
return t rue ;

21 }
EXPORT_SYMBOL(dev_valid_name) ;

Figure 3. net/core/dev.c from Linux 4.4.0.

As it turns out, iptables 1.6.0 accepts certain
chars in interfaces the kernel would reject, in par-
ticular tabs, dots, colons, and slashes.

With great interface names comes great respon-
sibility, in particular when viewing iptables-save.
Our esteemed paranoid readers likely never print
any output on their terminals directly, but always
pipe it through cat -v to correctly display non-
printable characters. But can we do any better?
Can we make the firewall faster and the output of
iptables-save safe for our terminals?

The rash reader might be inclined to opine that
the heretic folks at netfilter worship the golden
calf of the almighty “+” character deep within their
hearts and code. But do not fall for this fallacy any
further! Since the code is the window to the soul,
we shall see that the fine folks at netfilter are pure
in heart. The overpowering semantics of “+” exist
just in userspace; the kernel is untainted and pure.
Since all bytes in a char[] are created equal, I shall
venture to banish this unholy special treatment of
“+” from my userland.

−−− i p t ab l e s −1.6 .0 _orig / l i b x t a b l e s / x tab l e s . c
2 +++ ip tab l e s −1.6.0/ l i b x t a b l e s / x tab l e s . c
@@ −532 ,10 +532 ,7 @@

4 st rcpy (vianame , arg) ;
i f (v i a l e n == 0)

6 return ;
− else i f (vianame [v i a l e n − 1] == ’+’) {

8 − memset (mask , 0xFF , v i a l e n − 1) ;
− /∗ Don ’ t remove ‘+ ’ here ! −HW ∗/

10 − } else {
+ else {

12 /∗ Inc lude nul−terminator in match ∗/
memset (mask , 0xFF , v i a l e n + 1) ;

14 for (i = 0 ; vianame [i] ; i++) {

With the equality of chars restored, we can fi-
nally drop those packets.

i p t a b l e s −A INPUT − i + −j DROP

Happy naming and many pleasant encounters
with all the näıve programs on your machine not
anticipating your fine interface names.

46

