
15:12 Nail in the Java Key Store Coffin
by Tobias “Floyd” Ospelt

The Java Key Store (JKS) is Java’s way of stor-
ing one or several cryptographic private and public
keys for asymmetric cryptography in a file. While
there are various key store formats, Java and An-
droid still default to the JKS file format. JKS is one
of the file formats for Java key stores, but the same
acronym is confusingly also used the general key
store API. This article explains the security mecha-
nisms of the JKS file format and how the password
protection of the private key can be cracked. Due
to the unusual design of JKS, we can ignore the key
store password and crack the private key password
directly.

By exploiting a weakness of the Password Based
Encryption scheme for the private key in JKS, pass-
words can be cracked very efficiently. As no pub-
lic tool was available exploiting this weakness, we
implemented this technique in Hashcat to amplify
the efficiency of the algorithm with higher cracking
speeds on GPUs.

The JKS File Format

Examples and API documentation for developers
use the JKS file format heavily, without any se-
curity warnings.44 This format has been the de-
fault key store since key stores were introduced to
Java. As early as 1999, JDK 1.2 introduced the “-
much stronger” JCEKS format that uses 3DES.45
However, JKS remained the default format. Just to
mention some examples, Oracle databases and the
Apache Tomcat webserver still use the JKS format
to store their private keys.

When building an Android 7 app in the Android
Studio IDE, it will create a JKS file with which
to self-sign the app. Every application on Android
needs to be signed before it can be installed on a
device, and the phone will check that an update for
an app is signed with the same key again. The pri-
vate keys generated by Android Studio are valid for
25 years by default. Android does not offer any re-

covery mechanism to recover a lost private key, so
efficient cracking of JKS files also benefits develop-
ers who forgot their passwords.

The JKS format is due to be replaced by
PKCS12 as the default key store format in the up-
coming Java 9.46 When talking to members of
the security community who can still remember the
nineties, some seem to remember that JKS uses
some kind of weak cryptography, but nobody re-
members exactly. Let’s explore weaknesses of the
JKS file format and what an attacker needs to ex-
tract a private key in cleartext.

When a new key store is created and a new key-
pair generated, the developer has to set at least two
passwords. There is not only a password for the
key store as a whole (key store password), but each
private key in it has its own password as well (pri-
vate key password), while public keys do not have
passwords. Both passwords are used independently.
Surprisingly, the key store password is not used to
encrypt any parts of the JKS file format, it is only
used for integrity protection. This means the en-
crypted private key bytes and the cleartext bytes of
public keys in a key store can be extracted without
knowing the key store password.47 The password
of the private key however, is used to apply a cus-
tom Password Based Encryption to the private key.
Having two passwords leads to three possible cases.

In the first case, there is a password on the key
store, but no private key password is used. (In prac-
tice, the available Java APIs prevent this.) However,
in such a key store the private key would not be pro-
tected at all.

The second case is when the key store password
and the private key password are identical. This is
very common in practice and the default behavior
of most tools such as Java’s keytool command. If
no separate password for the private key is specified,
the private key password will be set to the key store
password.

In the third case, both passwords are set but the
44http://docs.oracle.com/javase/6/docs/api/java/security/KeyStore.html#getDefaultType()

http://download.java.net/java/jdk9/docs/api/java/security/KeyStore.html#getDefaultType--
https://developer.android.com/reference/java/security/KeyStore.html#getDefaultType()
http://stackoverflow.com/questions/11536848/keystore-type-which-one-to-use
http://www.pixelstech.net/article/1408345768-Different-types-of-keystore-in-Java----Overview

45See Dan Boneh’s notes on JCE 1.2 from CS255, Winter of 2000.
46http://openjdk.java.net/jeps/229
47https://gist.github.com/zach-klippenstein/4631307

89

key store password is not the same as the private key
password. While not the default behavior, it is still
very common that users choose a different password
for the private key.

It is important to demonstrate that in the third
case some password crackers will crack a password
that is useless and cannot be used to access the pri-
vate key. The Jumbo version of the John the Rip-
per password cracking tool does this, cracking the
(useless) key store password rather than the private
key password. Let’s generate a key store with differ-
ent key store (storepass) and private key password
(keypass), then crack it with John:
$ keytoo l −genkey −dname \

2 ’CN=test , OU=test , O=test , L=test , S=tes t , C=CH’ \
−noprompt −a l i a s mytestkey −key s i z e 512 \

4 −keyalg RSA −keystore rsa_512 . j k s \
−s t o r epa s s 1234567 −keypass 7654321

6 $ pypy keystore2 john . py rsa_512 . j k s > keystore . txt
$ /opt/ john−1.8.0−jumbo−1/run/ john \

8 −−word l i s t=word l i s t . txt keys tore . txt
[. . .]

10 1234567 (rsa_512 . j k s)
[. . .]

While this reveals the storepass, we cannot ac-
cess the private key with this password. My proof
of concept will crack the private key password in-
stead:48

1 $ java -jar JksPrivkPrepare.jar rsa_512.jks > privkey.txt
$ pypy jksprivk_crack.py privkey.txt

3 Password: ’7654321 ’

Naive Password Cracking
If we take the perspective of an attacker, we can con-
clude that we will not need to crack any password in
the first case to get access to the private key. In the-
ory, it also doesn’t matter which password we find
out in the second case, as both are the same. And
in the third case we can simply ignore the key store
password; we only need to crack attack the private
key password.

However, when we encounter the second case in
practice, we would like to use the most efficient

48unzip -j pocorgtfo15.pdf jksprivk/JksPrivkPrepare.jar jksprivk/jksprivk_crack.py

90

password cracking technique to find the key store
password or the private key password. This means
we need to explore first how each password can be
cracked individually and which one leads to the most
efficient cracking method.

There are already several programs that will try
to crack the password of the key store:

• John the Ripper (JtR) Jumbo version49 ex-
tracts necessary information with a Python
script and the cracking is implemented in C;

• KeyStoreBrute50 tries to load the key store via
the official Java method in Java;

• KeystoreCracker51 uses the simple official Java
way in Java as well;

• keystoreBrute52 uses keytool on the com-
mand line with the storepass option (sub-
process);

• bruteforcer.py53 uses keytool on the com-
mand line with the storepass option (sub-
process);

• Patator54 uses keytool on the command line
with the storepass option (subprocess).

All these parse the JKS file format first, which
has a SHA-1 checksum at the end. They then cal-
culate a SHA-1 hash consisting of the password, the
magic “Mighty␣Aphrodite” and all bytes of the key
store file except for the checksum If the newly calcu-
lated hash matches the checksum, it was the correct
password.

No other operation with the key store password
takes place when parsing the JKS file format; there-
fore, we can conclude that this password is only used
for integrity protection. When the correct password
is guessed and it is the same as the private key pass-
word, an attacker can now decrypt the private key.

From a performance perspective, this means that
for every potential password a SHA-1 hash needs to
be calculated of nearly all bytes of the key store file.
As key stores usually hold private and public keys
of at least 512-byte length, the SHA-1 hash is cal-
culated over several thousand bytes of input. To

summarize, the effort to check one password for va-
lidity is roughly:

SHA-1(<password>
"Mighty Aphrodite"

?= Keystore

Keys
Checksum

(
It is also important to emphasize again that the

above implementations will waste CPU time if the
key store password is not identical to the private
key password (third case) and are not attempting
to crack the password necessary to extract the pri-
vate key.

There are also implementations that crack the
password of the private key directly:

• android-keystore-recovery55 tries to decrypt
the entire private key with each password, in
Scala;

• android-keystore-password-recover56 tries to
decrypt the entire private key with each pass-
word, in Java.

These implementations have in common that
they parse the JKS file format, but then only ex-
tract the entry of the encrypted private keys. For
each private key entry, the first 20 bytes serve as an
Initialization Vector and the last 20 bytes are again
a checksum. The implementations then calculate
a keystream. The keystream starts as the SHA-1
hash of the password plus IV. For every 20 bytes of
the encrypted private key, the next 20 bytes of the
keystream are calculated as the SHA-1 of the pass-
word plus previous keystream block (of 20 bytes).
The encrypted private key bytes are then XORed
with the keystream to get the private key in clear-
text. This is a custom Password Based Encryption
(PBE) scheme with chaining. As a last step, the
cleartext private key is SHA-1 hashed again and
compared to the checksum that was extracted from
the JKS private key entry. Therefore, the effort to
check one password for validity is roughly:

49http://www.openwall.com/lists/john-users/2015/06/07/3
50git clone https://github.com/bes/KeystoreBrute
51git clone https://github.com/jeffers102/KeystoreCracker
52git clone https://github.com/volure/keystoreBrute
53https://gist.github.com/robinp/2143870
54https://www.darknet.org.uk/2015/06/patator-multi-threaded-service-url-brute-forcing-tool/
55https://github.com/rsertelon/android-keystore-recovery
56https://github.com/MaxCamillo/android-keystore-password-recover

91

Key entry
IV checksum{ {

20 bytes20 bytes

variable-length
encrypted key

SHA-1(<password> + IV)

Keystream

SHA-1(<password> +)previous
block

SHA-1(<password> +)previous
block

.

.

.

(decrypted key)
SHA-1

?=

Efficient Password Cracking

From a naive perspective, it was not analyzed which
of these algorithms would be more efficient for pass-
word cracking.57 However, an article on Cryp-
tosense.com was published in 201658 and didn’t
seem to get the attention it deserves. It points out
that for the private key password cracking method it
is not necessary to calculate the entire keystream to
reject an invalid password. As the cleartext private
key will be a DER encoded file format, the first SHA-
1 calculation of password plus IV with the XOR op-
eration is sufficient to check if a password candidate
could potentially lead to a valid DER encoded pri-
vate key. These all miss out on this optimization
and therefore do too many SHA-1 calculations for
every password candidate.

It turns out, it is even possible to pre-calculate
the XOR operation. For each password candidate
only one SHA-1 hash needs to be calculated, then
some bytes of the result have to be compared to
the pre-calculated bytes. If the bytes are identi-
cal, this proves that the password might decrypt the
key to a DER format. Practical tests showed that
a DER encoded RSA private key in cleartext will
start with 0x30 and bytes at index six to nineteen
will be 0x00300d06092a864886f70d010101. Simi-
lar fingerprints exist for DSA and EC keys. These
bytes we expect in a DER encoded private key can
be XORed with the corresponding encrypted private

key bytes to precalculate the SHA-1 output bytes we
are looking for.

This means, the cracking can be optimized to use
a more efficient two-step cracking algorithm to crack
the private key password. After parsing the JKS file
format and precalculating the necessary values, we
have the following optimized algorithm:

0. Choose a password in pseudo UTF-16, mean-
ing that a null byte is added to every character.

1. keystream = SHA-1(password + STATIC_-
20_BYTES_IV_FROM_PRIVKEY_ENTRY)

2. Check if bytes at index 0 and 6 to 19 of the
keystream correspond to PRECOMPUTED_15_-
BYTES_DER_PROOF. If they are not the same,
go to step 0.

3. Let keybytes be every 20 bytes of STATIC_-
VARIABLE_LEN_ENCRYPTED_BYTES_FROM_-
PRIVKEY_ENTRY.

4. For each keybytes:

(a) key += keystream ⊕ keybytes

(b) keystream = SHA-1(password‖keystream)

5. checksum = SHA-1(password‖key)

6. Check if checksum is STATIC_20_BYTES_-
CHECKSUM_FROM_PRIVKEY_ENTRY. If they are
the same, key is the private key in cleartext
and we can stop. Otherwise, go to step 0.

As practical tests will later indicate, step 3 is
typically never reached with an incorrect password
during cracking and all passwords can be rejected
early. In fact, Hashcat only implements steps 0 to
3, as the probability that a wrong candidate is ever
found is neglectible (1/2120)!

Implementation

The parsing of the file format and extraction of the
precomputed values for cracking were implemented
as a standalone JAR Java version 8 command line
application JksPrivkPrepare.jar. The script will

57While the key store calculations must do the single SHA-1 over all bytes of the public and private keys in the key store,
the private key calculations are many more SHA-1 calculations but with less bytes as inputs.

58Might Aphrodite – Dark Secrets of the Java Keystore
59Running much faster with the PyPy Python implementation rather than CPython. The script works without further de-

pendencies. However, another script in the benchmark section needs the numpy packet. It has to be installed for PyPy. The
easiest way of installing is usually via PIP: pypy -m pip install numpy

92

1 $ keytoo l −genkey −dname ’CN=tes t , OU=tes t , O=tes t , L=te s t , S=te s t , C=CH’ −noprompt \
−a l i a s mytestkey −key s i z e 512 −keya lg RSA −keys to r e rsa_512_123456 . j k s \

3 −s t o r epa s s 123456 −keypass 123456
$ java − j a r JksPrivkPrepare . j a r rsa_512_123456 . j k s > privkey_123456 . txt

5 $ pypy −m cP r o f i l e −s tot t ime jkspr ivk_naive_crack . py privkey_123456 . txt
Password : ’ 123456 ’

7 10278681 func t i on c a l l s (10277734 p r im i t i v e c a l l s) in 9 .763 seconds
[. . .]

9 n c a l l s tot t ime p e r c a l l cumtime p e r c a l l f i l ename : l i n eno (func t i on)
123457 2 .944 0 .000 2 .944 0 .000 jkspr ivk_naive_crack . py : 1 4 (xor)

11 2345683 1 .651 0 .000 1 .651 0 .000 {method ’ d i g e s t ’ o f ’HASH’ ob j e c t s }
2345684 1 .608 0 .000 1 .608 0 .000 {_hashlib . openssl_sha1 }

13 2345683 1 .491 0 .000 5 .266 0 .000 jkspr ivk_naive_crack . py : 1 9 (get_keystream)
[. . .]

15 $ pypy −m cP r o f i l e −s tot t ime jkspr ivk_crack . py privkey_123456 . txt
Password : ’ 123456 ’

17 649118 func t i on c a l l s (648171 p r im i t i v e c a l l s) in 0 .438 seconds
[. . .]

19 n c a l l s tot t ime p e r c a l l cumtime p e r c a l l f i l ename : l i n eno (func t i on)
123476 0 .086 0 .000 0 .086 0 .000 {method ’ d i g e s t ’ o f ’HASH’ ob j e c t s }

21 123477 0 .067 0 .000 0 .067 0 .000 {_hashlib . openssl_sha1 }
1 0 .056 0 .056 0 .293 0 .293 jkspr ivk_crack . py : 5 4 (get_candidates)

23 14 0 .055 0 .004 0 .486 0 .035 __init__ . py:1(<module>)
[. . .]

Figure 11. Java Key Store with a Short Password

prepare the precomputed values for a given JKS file
and outputs it as asterix separated values.

As a PoC, a Python script jksprivk_crack.py59
was implemented to do the actual cracking of the
private key password. To put a final nail in the cof-
fin of the JKS format, it is important to enable the
security community to do efficient password crack-
ing.60 To optimize cracking speed, Jens “atom”
Steube — developer of the Hashcat password recov-
ery program — implemented the cracking step in
GPU optimized code. Hashcat takes the same ar-
guments as the Python cracking script. As hashcat
uses a weakness in SHA-1,61 the cracking speed on
a single NVidia GTX 1080 GPU reaches around 7.8
(stock clock) to 8.5 (overclocked) billion password
tries per second.62 This allows to try all alphanu-
meric passwords (uppercase, lowercase, numbers) of
length eight in about eight hours on a single GPU.

_____: _____________ _____: v3.6.0 ____________
_\ |________ _/_______ _\ |_____ _____________ /__ ______
| _ | __ \ ____/____ _ | ___/____ __ |_______/
| | | \ _____ / | | \ / \ | |
|_____| |______/ / /____| |_________/_________: |

|_____:-aTZ!/___________/ |_____: /_______:

* BLAKE2 * BLOCKCHAIN2 * DPAPI * CHACHA20 * JAVA KEYSTORE * ETHEREUM WALLET *

Benchmarking

When doing a benchmark, it is important to try
to measure the actual algorithm and not some inef-
ficiency of the implementation. Some simple mea-
surements were done by implementing the described
techniques in Python. All the mentioned resources
are available in the feelies.63 Let’s first look at
the naive implementation of the private key cracker
jksprivk_naive_crack.py versus the efficient pri-
vate key cracking algorithm jksprivk_crack.py.
Let’s generate a test JKS file first. We can generate
a small 512-byte RSA key pair with the password
123456, then crack it with both implementations.
Both implementations only try numeric passwords,
starting with length 6 password 000000 and incre-
menting, as in Figure 11.

These measurements show that a lot more calls
to the update and digest function of SHA-1 are nec-
essary to crack the password in the naive script. If
the keysize of the private key in the JKS store is big-
ger, the time difference is even greater. Therefore,
we conclude that our efficient cracking method is far

60The Python script only reaches around 220,000 password-tries per second when run with PyPy on a single 3-GHz CPU.
61https://hashcat.net/events/p12/js-sha1exp_169.pdf
62git clone https://github.com/hashcat/hashcat
63unzip -j pocorgtfo15.pdf jksprivk/jksprivk_resources.zip

93

$ keytoo l −genkey −dname ’CN=tes t , OU=tes t , O=tes t , L=te s t , S=te s t , C=CH’ −noprompt \
2 −a l i a s mytestkey −key s i z e 512 −keya lg RSA −keys to r e rsa_512_12345678 . j k s \

−s t o r epa s s 12345678 −keypass 12345678
4 $ java − j a r JksPrivkPrepare . j a r rsa_512_12345678 . j k s > privkey_12345678 . txt

$ pypy −m cP r o f i l e −s tot t ime jkspr ivk_crack . py privkey_12345678 . txt
6 Password : ’ 12345678 ’

116760228 func t i on c a l l s (116759281 p r im i t i v e c a l l s) in 60 .009 seconds
8 [. . .]

n c a l l s tot t ime p e r c a l l cumtime p e r c a l l f i l ename : l i n eno (func t i on)
10 23345699 16 .940 0 .000 16 .940 0 .000 {_hashlib . openssl_sha1 }

23345698 16 .082 0 .000 16 .082 0 .000 {method ’ d i g e s t ’ o f ’HASH’ ob j e c t s }
12 23345775 10 .971 0 .000 10 .972 0 .000 {method ’ j o i n ’ o f ’ s t r ’ o b j e c t s }

1 8 .560 8 .560 59 .851 59 .851 jkspr ivk_crack . py : 5 4 (get_candidates)
14 23345698 4 .024 0 .000 4 .024 0 .000 {method ’ update ’ o f ’HASH’ ob j e c t s }

23345679 3 .274 0 .000 14 .245 0 .000 jkspr ivk_crack . py : 9 1 (next_brute_force_token)
16 [. . .]

$ pypy /opt/ john−1.8.0− jumbo−1/run/ keys tore2 john . py rsa_512_12345678 . j k s \
18 > keystore_12345678 . txt

$ pypy −m cP r o f i l e −s tot t ime jkskeys tore_crack . py keystore_12345678 . txt
20 Password : ’ 12345678 ’

163420866 func t i on c a l l s in 84 .719 seconds
22 [. . .]

n c a l l s tot t ime p e r c a l l cumtime p e r c a l l f i l ename : l i n eno (func t i on)
24 70037037 33 .712 0 .000 33 .712 0 .000 {method ’ update ’ o f ’HASH’ ob j e c t s }

23345679 17 .780 0 .000 17 .780 0 .000 {method ’ d i g e s t ’ o f ’HASH’ ob j e c t s }
26 23345680 12 .022 0 .000 12 .022 0 .000 {_hashlib . openssl_sha1 }

23345682 9 .679 0 .000 9 .679 0 .000 {method ’ j o i n ’ o f ’ s t r ’ o b j e c t s }
28 1 8 .482 8 .482 84 .716 84 .716 jkskeys tore_crack . py : 1 4 (crack_password)

23345679 3 .042 0 .000 12 .721 0 .000 jkskeys tore_crack . py : 2 6 (next_brute_force_token)
30 [. . .]

Figure 12. Java Key Store with a Longer Password

94

more suitable.
Now we still have to compare the efficient crack-

ing of the private key password with the cracking of
the key store password. The algorithm for key store
password cracking was also implemented in Python:
jkskeystore_crack.py. It takes a password file as
argument like John the Ripper does. As these imple-
mentations are more efficient, let’s generate a new
JKS with a longer password, as shown in Figure 12.

In this profile, we see that the update method of
the SHA-1 object when cracking the key store takes
much longer to return and is called more often, as
more data goes into the SHA-1 calculation. Again,
the efficient cracking algorithm for the private key
is faster and the difference is even bigger for bigger
key sizes

So far we tried to compare techniques in Python.
As they use the same SHA-1 implementation, the
benchmarking was kind of fair. Let’s compare two
vastly different implementations, the efficient al-
gorithm jksprivk_crack.py to John the Ripper.
First, create a wordlist for John with the same nu-
meric passwords as the Python script will try, then
run the comparison shown in Figure 13.

That figure shows that John is faster for 512-bit
keys, but as soon as we grow to 1024-bit keys in Fig-
ure 14, we see that our humble little Python script
wins the race against John. It’s faster, even without
John’s fancy C code or optimizations!

As John the Ripper needs to do SHA-1 opera-
tions for the entire key store content, the Python
script outperforms John the Ripper. For larger key
sizes, the difference is even bigger.

These benchmarks were all done with CPU cal-
culations and Hashcat will use performance opti-
mized GPU code and Markov Chains for password
generation. Cracking a JKS with private key pass-
word POC||GTFO on a single overclocked NVidia
GTX 1080 GPU is illustrated on Figure 15.

Neighborly Greetings
Neighborly greetings go out to atom, vollkorn, cem,
doegox, ange, xonox and rexploit for supporting this
article in one form or another

95

$ keytoo l −genkey −dname ’CN=tes t , OU=tes t , O=tes t , L=te s t , S=te s t , C=CH’ −noprompt \
2 −a l i a s mytestkey −key s i z e 512 −keya lg RSA −keys to r e rsa_512_12345678 . j k s \

−s t o r epa s s 12345678 −keypass 12345678
4 $ java − j a r JksPrivkPrepare . j a r rsa_512_12345678 . j k s > privkey_12345678 . txt

$ time pypy jkspr ivk_crack . py privkey_12345678 . txt
6 Password : ’ 12345678 ’

54 .96 r e a l 53 .76 user 0 .71 sys
8 $ pypy /opt/ john−1.8.0− jumbo−1/run/ keys tore2 john . py rsa_512_12345678 . j k s \

> keystore_12345678 . txt
10 $ time /opt/ john−1.8.0− jumbo−1/run/ john −−word l i s t=word l i s t . txt keystore_12345678 . txt

[. . .]
12 12345678 (rsa_512_12345678 . j k s)

[. . .]
14 42 .28 r e a l 41 .55 user 0 .33 sys

Figure 13. John the Ripper is faster for 512-byte keystores.

$ time pypy jkspr ivk_crack . py privkey_12345678 . txt
2 Password : ’ 12345678 ’

58 .17 r e a l 56 .36 user 0 .84 sys
4 $ time /opt/ john−1.8.0− jumbo−1/run/ john −−word l i s t=word l i s t . txt keystore_12345678 . txt

[. . .]
6 12345678 (rsa_1024_12345678 . j k s)

[. . .]
8 64 .60 r e a l 62 .96 user 0 .57 sys

Figure 14. For 1024-bit keystores, our script is faster (full output in the feelies).

$. / hashcat −m 15500 −a 3 −1 ’ ?u | ’ −w 3 hash . txt ?1?1?1?1?1?1?1?1?1
2 hashcat (v3 . 6 . 0) s t a r t i n g . . .

[. . .]
4 ∗ Device #1: GeForce GTX 1080 , 2026/8107 MB a l l o c a t ab l e , 20MCU

[. . .]
6 $ j k sp r i vk$ ∗D1BC102EF5FE5F1A7ED6A63431767DD4E1569670 . . . 8 ∗ t e s t :POC| |GTFO

[. . .]
8 Speed . Dev . # 1 : 7946 .6 MH/ s (39 . 48ms)

[. . .]
10 Started : Tue May 30 17 : 41 : 56 2017

Stopped : Tue May 30 17 : 50 : 24 2017

Figure 15. Cracking session on a NVidia GTX 1080 GPU.

96

