
15:09 Detecting Emulation with MIPS16 Delay Slots
by Ryan Speers and Travis Goodspeed

with the kindest of thanks to Thorsten Haas.

Howdy y’all,
Let’s begin with a joke that I once heard at a con-

ference: David Patterson and John Hennessy walk
into a bar. Everyone gathers to listen to the two
heroes who built legendary machines. The entire bar
spends the night multiplying fractions, and then ev-
eryone has that terrible hangover you get when you
realize you had no fun and learned nothing new, even
though your night started out so promising.

But let’s tell the joke differently: Patterson and
Hennessy walk into a bar in another town, but this
time, Greg Peterson is behind the bar. The two of
them begin a long-winded story about weighted aver-
ages, lashing out at “RISC-deniers” who aren’t even
in the room. Just as folks begin to get bored, and
begin to sip their drinks too quickly out of nervous-
ness, Peterson jumps in and saves the day. Because
he knows that these fine folks build real machines
that really shipped, he redirects the conversation to
war stories and practical considerations.

Patterson tells how the two-stage pipeline in the
RISC 1 chip was the first design with a branch delay
slot, as there’s no point in throwing away the staged
instruction that has already finished execution. Hen-
nessy jumps in with a tale of dual instruction sets
on MIPS, allowing denser code without abandoning
the spirit of the RISC faith. Then Peterson, the
bartender, serves up a number of Xilinx devkits to
bar patrons, who begin collaborating on a five-stage
pipeline design of their own, with advice on spe-
cific design choices from David and John. The next
morning, they’ve built a working CPU and suffered
no hangovers.

If your Computer Architecture class was more
like the former than the latter, I hope that this brief
article will show you some of the joy of this fine
subject.

In PoC‖GTFO 6:6, Craig Heffner discussed a va-
riety of methods for detecting Qemu emulation of
MIPS hardware. We’ll be discussing one more way
to detect emulation, but we’ll be using the MIPS16
instruction set and a clever trick of delay slots to
detect the emulation.

We wanted to craft a capability that is (a) able
to differentiate hardware from an emulation environ-
ment, and also (b) able to confuse static analysis.
We picked used standard tools: Qemu as an emula-
tion environment and IDA Pro as a disassembler.34

The first criterion leads us to want something
that both: (a) works in userland, and (b) is not
trivial for an emulator developer to patch. Mov-
ing to userland meant that hardware registry inspec-
tion, as discussed in Section 6.1 of Heffner’s article,
would not work. Similarly, the technique of reading
cpuinfo in Section 6.2 would be easily patchable,
as Craig noted. Here, we instead seek a capability
more similar to Section 6.3, where cache incoherency
is exploited to differentiate real hardware and Qemu.

MIPS16e

SSH’ing to a newly acquired MIPS box, we find the
same nifty line of cpuinfo that struck our fancy in
Craig’s article. MIPS16 is an extension to the clas-
sic MIPS instruction set that fills the same niche as
Thumb2 does on ARM. The instructions word is 16
bits wide, a subset of the full register set is directly
available, and a core tenet of RISC is violated: some
instructions are more than one word long.

1 $ cat /proc / cpu in fo
system type : BCM7358A1 STB plat form

3 cpu model : Broadcom BMIPS3300 V3. 2
cpu MHz : 751 .534

5 t l b_en t r i e s : 32
i s a : mips1 mips2 mips32r1

7 ASEs implemented : mips16

Just like ARM, this alternate instruction set is
used whenever the least significant bit of the pro-
gram counter is set. Function pointers work as ex-
pected between the two instruction sets, and the
calling conventions are compatible.

34We will happily buy the drinks in celebration of Radare2 issue 1917 and Capstone issue 241 being closed.

76



ALU

AF AM

IT ID IS IB DD DR DS DM

IFU

IDU
IR IK IX

IFU

AGEN

EM

EA EC ES EB

AGEN

ALU

AC AB

MB M1 M2 M3

MDU

M4

GRU

WB GC

74Kc Core Pipeline

Figure 7. MIPS 74Kc Pipeline

Despite careful work to maintain compatibility
between MIPS16 and MIPS32, there are inevitable
differences. MIPS16 only has direct access to eight
registers, rather than the 32 of its larger cousin.

CPU Pipelines
In Hennessy and Patterson’s books, a five-stage
pipeline is described and hammered into the poor
reader’s head. This classic RISC pipeline isn’t what
you’ll find in modern chips, but it’s a lot easier to
keep in mind while working on them. The stages
in order are Instruction Fetch (IF), Instruction De-
code (ID), Execute (EX), Memory Access (MEM),
and Write Back (WB).

Each pipeline stage can only hold one instruction
at a time, but by passing the instructions through
as a queue, multiple instructions can exist in dif-
ferent stages at the same time. When a branch is
mis-predicted, the pipeline will be “flushed,” which
is to say that the partially-completed instructions
from the incorrectly guessed branch are blown to the
wind and replaced with harmless NOP instructions,
which are sometimes called “bubbles.”

Bubbles are also one way to avoid “data haz-
ards,” which are dependencies between instructions
that run at the same time. For example, if you were
to use a value just after loading it, the CPU would

have to either insert a bubble to delay the second
instruction until the value is ready or it would “for-
ward” the register result.35

The MIPS 74Kc on one of our target machines
has 14 or 15 pipeline stages, depending upon how
you count, plus three additional stages for MIPS16e
instruction decoding.36 These stages are quite well
documented, but to ease the explanation a bit, we
won’t bore you with the details of exactly what hap-
pens where. The stages themselves are shown in
Figure 7, helpfully illustrated by Ange Albertini.

Extended (Wide) Instructions

We mentioned earlier that MIPS16 instructions are
usually just one instruction word, but that some-
times they are two. That’s a bit vague and hand-
wavy, so we’d like to clear that up now with a con-
crete example.

There is an Extend Immediate instruction which
allows us to enlarge the immediate field of another
MIPS16 instruction, as its immediate field is smaller
than that in the equivalent 32-bit MIPS instruction.
This instruction is itself two bytes, and is placed
directly before the instruction which it will extend,
making the “extended instruction” a total of four
bytes.

35Very early MIPS machines made the hazard the compiler’s responsibility, in what was called the “load delay slot.” It is
separate from the “branch delay slot” that we’ll discuss in a later section, and is no longer found in modern MIPS designs.

36unzip pocorgtfo15.pdf mips74kc.pdf
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For example, the opcode for adding an immedi-
ate value of 1 to r2 is 0x4a01. (r2 is the register for
both the first argument to a function and its return
value.) Because MIPS16 only encodes room for five
immediate bits in this instruction, it allows for an
extension word before the opcode to include extra
bits. These can of course be zero, so 0xF000 0x4a01
also means addi r2, 1.

Some combinations are illegal. For example, ex-
tending the immediate bits of a NOP isn’t quite
meaningful, so trying to execute 0xF008 0x6500
(Extended Immediate NOP) will trigger a bus er-
ror and the process will crash.

The Extended Shift instruction shown along
with a regular Shift in Figure 8. Now how the prefix
word changes the meaning of the subsequent instruc-
tion word.

However, thinking of these two words as a single
instruction isn’t quite right, as we’ll soon see.

Delay Slots

Unlike ARM and Thumb, but like MIPS32 and
SPARC, MIPS16 has a branch delay slot. The way
most folks think of this, and the way that it is first
explained by Patterson and Hennessy,37 is that the
very next instruction after a branch is executed re-
gardless of whether the branch is taken.

Sometimes this is hidden by an assembler, but
a disassembler will usually show the instructions in
their physical order. IDA Pro helpfully groups the
delay-slot instruction into the proper block, so in
graph view you won’t mistake it for being condi-
tionally executed.

Extended Instructions in a Delay Slot

So what happens if we put a multi-word instruction
into the delay slot? IDA Pro, being first written for
X86, assumes that X86 rules apply and the whole
chunk is one instruction. Qemu agrees, and a quick

test of the following code reveals that the full in-
struction is executed in the delay slot.

We can test this as we see that on both real hard-
ware and Qemu, extending an instruction like a NOP
that shouldn’t be extended will trigger a bus error.
However, when we put this combination after a re-
turn, it will only crash Qemu. In this case in hard-
ware, only the extension word was fetched, which
didn’t cause an issue.

1 0xE820 //Return .
0xF008 //Extension word .

3 0x6500 //NOP, w i l l crash i f extended .

This is a known issue with the MIPS16e instruc-
tion set.38 To quote page 30, “There is only one
restriction on the location of extensible instructions:
They may not be placed in jump delay slots. Doing
so causes UNPREDICTABLE results.”

Making Something Useful

We can now crash an emulator while allowing hard-
ware to execute, but let’s improve this technique into
something that can be used effectively for evasion.
We’ll replace the NOP which caused the crash when
extended with an instruction which is intended to
be extended, specifically an add immediate, addi.

1 0x6740 // F i r s t we zero r2 , the
// return va lue .

3 0xE820 // j r $ra (Return )
0xF000 // Extended immediate o f 0 .

5 0x4A01 // Add immediate 1 to r2 .
// ( only executed in Qemu)

If we take that shellcode and view the IDA disas-
sembly for it, you will see that, as above, IDA groups
the delay-slot instruction into the function block so
it looks like one is added to the return value. See
Figure 9, being careful to remember that $v0 means
r2.

37Page 444 of Computer Organization and Design, 2nd ed.
38unzip pocorgtfo15.pdf mips16e-isa.pdf

a

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHIFT rx ry sa f

a 0 0 0 0 0 SHIFT rx ry 0 0 0 f

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND sa 4:0 s5

Figure 8. MIPS16 Regular and Extended Shift Instructions
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But hang on a minute, that delay slot holds two
instruction words, and as we learned earlier, these
can be thought of as separate instructions!

In fact, IDA only shows the instruction bytes on
the left if you explicitly request a number of bytes
from the assembly be shown. Without these be-
ing shown, a reverse engineer might forget that the
program assembled a double-length instruction and
thus that this behavior will occur.

This shows how we can confuse static analysis
tools, which disassemble without taking into account
this special case.

Let’s now look at what happens when we take
the above shellcode and execute it as a function from
a program. We print the return value from the func-
tion in the below sample output.

1 int exec16 ( int (∗ f p t r 16 ) ( int ) ,
int verbose ) {

3 uint32_t r e s ;
uint8_t∗ bytes ;

5 int (∗ f unc t i onPtr ) ( int ) ;
func t i onPtr=(void ∗) ( ( ( int ) f p t r 16 ) | 1 ) ;

7 return f unc t i onPtr (0 xdeadbeef ) ;
}

9
uint16_t amiemulated16 [ ]={

11 0x6740 , // F i r s t we zero r2 , the
// return va lue .

13 0xE820 , // j r $ra (Return )
0xF000 , // Extended immediate o f 0 .

15 0x4A01 // Add immediate 1 to r2 .
// ( only executed in Qemu)

17 } ;

19 int main ( ) {
p r i n t f ( " I am running %s . \ n" ,

21 exec16 ( ( void ∗) amiemulated16 , 0)
? " in Qemu"

23 : "on r e a l hardware" ) ;
return 0 ;

25 }

We’ve discussed how IDA sees the extended ad-
dition as a single instruction, when in fact they are
two separate MIPS instructions. But how is this
handled in an emulator versus real MIPS hardware?

On the real hardware, when the return instruc-
tion is processed, the next instruction in the pipeline
is 0xF000 (the extension instruction) and this is ex-
ecuted in the branch delay slot. That instruction,
however, becomes a NOP in hardware.

ROM:0000 . s e t mips16
2 ROM:0000 # ====== SUBROUTINE ======
ROM:0000 amiemulated :

4 ROM:0000 67 40 move $v0 , $zero # Clear re turn value to zero .
ROM:0002 E8 20 j r $ra # Return

6 ROM:0004 F0 00 4A 01 addiu $v0 , 1 # Adds 1 to re turn value in Qemu.
ROM:0004 # End o f func t i on amiemulated # This becomes a NOP on r e a l hardware .

Figure 9. MIPS16 Machine Code abusing the Delay Slot
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1 ~$ uname −a
Linux ta r g e t 3 . 1 2 . 1 #1 mips GNU/Linux

3 ~$ . / h e l l o
I am running on r e a l hardware .

The reason this detection works, we hypothesize,
is because Qemu doesn’t actually have a pipeline,
and thus it is emulated by knowing that it should
run the instruction following a branch, to “correctly”
handle the branch-delay slot. When it reads that
next instruction, it reads the two instructions that
it sees as a single extended instruction, instead of
just reading the extension.

~$ mips−l inux−gnu−gcc −s t a t i c −std=gnu99 \
2 h e l l o . c −o h e l l o

~$ qemu−mips −L /usr /mips−l inux−gnu h e l l o
4 I am running in Qemu.

In hardware, we should note, the instruction isn’t
exactly tossed away because it’s broken in half. The
extension word, as the first half of the pair, never
really gets executed on its own; rather, it hangs
around in the pipeline to modify the subsequent in-
struction word. As the pipeline flows, the first word
becomes a bubble as the second word becomes the
single, unified instruction, but that unified instruc-
tion is too late to be executed. Instead, it is cruelly
flushed from the MIPS16 pipeline while the bible
ahead of it becomes a worthless NOP.

Thus, with just the eight byte function 0x6740
0xe820 0xf000 0x4a01, we can reliably detect em-
ulation of MIPS16. As an added bonus, IDA Pro
will agree with the simulation behavior, rather than
the hardware behavior.

– — — – — — — — – — –
Kind thanks are due to Thorsten Haas for lend-

ing us a MIPS shell account on impossibly short
notice. If you’d like to play around with more dif-
ferences between hardware and emulation, we’ll note
that in MIPS32, 0x03E00008 0x03E00008 is a clean
return to $ra on hardware, but crashes Qemu. To
crash on hardware and return normally in Qemu,
use 0x03e0f809 0x8fe20001.

Cheers from Hanover, New Hampshire,
Travis and Ryan
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