
15:05 RISC-V Shellcode
by Don A. Bailey

RISC-V is a new and exciting open source archi-
tecture developed by the RISC-V Foundation. The
Foundation has released the Instruction Set Archi-
tecture open to the public, and a Privilege Architec-
ture Model that defines how general purpose operat-
ing systems can be implemented. Even more excit-
ing than a modern open source processing architec-
ture is the fact that implementations of the RISC-V
are available that are fully open source, such as the
Berkeley Rocket Chip7 and the PULPino.8

To facilitate silicon development, a new lan-
guage developed at Berkeley, Chisel,9 was devel-
oped. Chisel is an open-source hardware language
built from Scala, and synthesizes Verilog. This al-
lows fast, efficient, effective development of hard-
ware solutions in far less time. Much of the Rocket
Chip implementation was written in Chisel.

Furthermore, and perhaps most exciting of all,
the RISC-V architecture is 128-bit processor ready.
Its ISA already defines methodologies for imple-
menting a 128-bit core. While there are some
aspects of the design that still require definition,
enough of the 128-bit architecture has been specified
that Fabrice Bellard has successfully implemented
a demo emulator.10 The code he has written as a
demo of the emulator is, perhaps, the first 128-bit
code ever executed.

Binary Exploitation

To compromise a RISC-V application or kernel
in the traditional memory corruption manner, one
must understand both the ISA and the calling con-
vention for the architecture. In RISC-V, the term
XLEN is used to denote the native integer size of
the base architecture, e.g. XLEN=32 in RV32G.
Each register in the processor is of XLEN length,
meaning that when a register is defined in the spec-
ification, its format will persist throughout any def-
inition of the RISC-V architecture, except for the
length, which will always equate to the native inte-
ger length.

General Registers

In general, RISC-V has 32 general (or x) registers:
x0 through x31.11 These registers are all of length
XLEN, where bit zero is the least-significant-bit and
the most-significant-bit is XLEN-1. These registers
have no specific meaning without the definition of
the Application Binary Interface (ABI).

The ABI defines the following naming conven-
tions to contextualize the general registers, shown
in Figure 2.12

7git clone https://github.com/freechipsproject/rocket-chip
8http://www.pulp-platform.org/
9https://chisel.eecs.berkeley.edu/

10https://bellard.org/riscvemu/
11RISC-V ISA Specification v2.1, Page 10, Figure 2.1.
12RISC-V ISA Specification v2.1, Page 109, Table 20.2

17

Register ABI Name Description Saver
x0 zero Hard-wired to zero –
x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer –
x4 tp Thread pointer –
x5-7 t0-2 Temporaries Caller
x8 s0/fp Saved register/frame pointer Callee
x9 s1 Saved register Callee
x10-11 a0-1 Function arguments/return values Caller
x12-17 a2-7 Function arguments Caller
x18-27 s2-11 Saved registers Callee
x28-31 t3-6 Temporaries Caller

Figure 2. Naming conventions for general registers according to the current ABI.

Floating-Point Registers

RISC-V also has 32 floating point registers fp0
through fp31, shown in Figure 3. The bit size of
these registers is not XLEN, but FLEN. FLEN refers
to the native floating point size, which is defined
by which floating point extensions are supported by
the implementation. If the ‘F’ extension is sup-
ported, only 32-bit floating point is implemented,
making FLEN=32.13 If the ‘D’ extension is sup-
ported, 64-bit floating point numbers are supported,
making FLEN=64.14 If the ‘Q’ extension is sup-
ported, quad-word floating point numbers are sup-
ported, and FLEN extends to 128.15

Calling Convention

Like any Instruction Set Architecture (ISA), RISC-
V has a standard calling convention. But, because
of the RISC-V’s definition across multiple architec-
tural subclasses, there are actually three standard-
ized calling conventions: RVG, Soft Floating Point,
and RV32E.

Naming Conventions RISC-V’s architecture is
somewhat reminiscent of the Plan 9 architecture
naming style, where each architecture is assigned a
specific alphanumeric A through Z or 0 through 9.
RISC-V supports 24 architectural extensions, one
for each letter of the English alphabet. The two ex-

ceptions are G and X. The G extension is actually a
mnemonic that represents the RISC-V architecture
extension set IMAFD, where I represents the base in-
teger instruction set, M represents multiply/divide, A
represents atomic instructions, F represents single-
precision floating point, and D represents double-
precision floating point. Thus, when one refers to
RVG, they are indicating the RISC-V (RV) set of
architecture extensions G, actually referring to the
combination IMAFD.16

This colloquialism also implies that there is no
specific architectural bit-space being singled out: all
three of the 32-bit, 64-bit, and 128-bit architectures
are being referenced. This is common in description
of the architectural standard, software relevant to all
architectures (a kernel port), or discussion about the
ISA. It is more common, in development, to see the
architecture described with the bit-space included
in the name, e.g. RV32G, RV64G, or RV128G.

It is also worth noting here that it is defined in
the specification and core register set that an im-
plementation of RISC-V can support all three bit-
spaces in a single processor, and that the state of the
processor can be switched at run-time by setting the
appropriate bit in the Machine ISA Register misa.17

Thus, in this context, the RVG calling conven-
tion denotes the model for linking one function to
another function in any of the three RISC-V bit-
spaces.

13RISC-V ISA Specification v2.1, Section 7.1, Page 39
14RISC-V ISA Specification v2.1, Section 8.1
15RISC-V ISA Specification v2.1, Chapter 12, Paragraph 1
16RISC-V Privileged Architecture Manual v1.9.1, Section 3.1.1, Page 18
17Ibid.
18RISC-V ISA Specification v2.1, Page 6, Paragraph 1

18

Register ABI Name Description Saver
f0-7 ft0-7 FP temporaries Caller
f8-9 fs0-1 FP saved registers Callee
f10-11 fa0-1 FP arguments/return values Caller
f12-17 fa2-7 FP arguments Caller
f18-27 fs2-11 FP saved registers Callee
f28-31 ft8-11 FP temporaries Caller

Figure 3. Floating point register naming convention according to the current ABI.

RVG RISC-V is little-endian by definition and big
or bi-endian systems are considered non-standard.18
Thus, it should be presumed that all RISC-V im-
plementations are little-endian unless specifically
stated otherwise.

To call any given function there are two instruc-
tions: Jump and Link and Jump and Link Register.
These instructions take a target address and branch
to it unconditionally, saving the return address in a
specific register. To call a function whose address is
within 1MB of the caller’s address, the jal instruc-
tion can be used:

1 20400060: 661000 e f j a l 20400 ec0 <printk>

To call a function whose address is either gen-
erated dynamically, or is outside of the 1MB target
range, the jalr instruction must be used:

1 204001 ac : 0087 a783 lw a5 , 8 (a5)
204001b0 : 000780 e7 j a l r a5

In both of the above examples, bits 7 through
11 of the encoded opcode equate to 0b00001. These
bits indicate the destination register where the re-
turn address is stored. In this case, 1 is equivalent
to register x1, also known as the return address reg-
ister: ra. In this fashion, the callee can simply per-
form their specific functionality and return by using
the contents of the register ra.

Returning from a function is even simpler. In
the RISC-V ABI, we learned earlier that the return
address is presumed to be stored in ra, or, general
register x1. To return control to the address stored
in ra, we simply use the Jump and Link Register
instruction, with one slight caveat. When returning
from a function, the return address can be discarded.
So, the encoded destination register for jalr is x0.
We learned earlier that x0 is hardwired to the value
zero. This means that despite the return address

being written to x0, the register will always read
as the value zero, effectively discarding the return
address.

19

Thus, a return instruction is colloquially:

204002 a8 : 00008067 r e t

Which actually equates to the instruction:

1 204002 a8 : 00008067 j a l r ra , ze ro

Local stack space can be allocated in a simi-
lar fashion to any modern processing environment.
RISC-V’s stack grows downward from higher ad-
dresses, as is common convention. Thus, to allocate
space for automatics, a function simply decrements
the stack pointer by whatever stack size is required.

1 20402188 <arch_main>:
20402188: fe010113 addi sp , sp ,−32

3 2040218 c : 80000537 l u i a0 , 0 x80000
20402190: 80000637 l u i a2 , 0 x80000

5 20402194: 00112 e23 sw ra , 2 8 (sp)

7 20402220: 01 c12083 lw ra , 2 8 (sp)
20402224: 02010113 addi sp , sp ,32

9 20402228: 00008067 r e t

In the above example, a standard addi instruc-
tion (highlighted in red) is used to both create and
destroy a stack frame of 32 bytes. Four of these bytes
are used to store the value of ra. This implies that
this function, arch_main, will make calls to other
functions and will require the use of ra. The lines
highlighted in green depict the saving and retrieval
of the return address value.

This fairly standard calling convention implies
that binary exploitation can be achieved, but has
several caveats. Like most architectures, the return
address can be overwritten in stack memory, mean-
ing that standard stack buffer overflows can result
in the control of execution. However, the return ad-
dress is only stored in the stack for functions that
make calls to other functions.

Leaf functions, functions that make no calls to
other functions, do not store their return address on
the stack. These functions, similar to other RISC
architectures, must be attacked by

• Overwriting the previous function’s stack
frame or stored return address

• Overwriting the return address value in regis-
ter ra

• Manipulating application flow by attacking a
function-specific feature such as a function
pointer

Soft-Float Calling Convention With regard to
the threat of exploitation, the RISC-V soft-float call-
ing convention has little effect on an attacker strat-
egy. The jal/jalr and stack conventions from RVG
persist. The only difference is that the floating point
arguments are passed in argument registers accord-
ing to their size. But, this typically has little ef-
fect on general exploitation theory and will only be
abused in the event that there is an application-
specific issue.

It is notable, however, that implementations
with hard-float extensions may be vulnerable to
memory corruption attacks. While hard-float im-
plementations use the same RVG calling conventions
as defined above, they use floating point registers
that are used to save and restore state within the
floating point ecosystem. This may provide an at-
tacker an opportunity to affect an application in an
unexpected manner if they are able to manipulate
saved registers (either in the register file or on the
stack).

While this is application specific and does not
apply to general exploitation theory, it is interesting
in that the RISC-V ABI does implement saved and
temporary registers specifically for floating point
functionality.

RV32E Calling Convention It’s important to
note the RV32E calling convention, which is slightly
different from RVG. The E extension in RISC-V de-
notes changes in the architecture that are benefi-
cial for 32-bit Embedded systems. One could liken
this model to ARM’s Cortex-M as a variant of the
Cortex-A/R, except that RVG and RV32E are more
tightly bound.

RV32E only uses 16 general registers rather than
32, and never has a hard-floating point extension.
As a result, exploit developers can expect the call
and local stack to vary. This is because, with the
reduced number of general registers, there are less
argument registers, save registers, and temporaries.

• 6 argument registers, x10 to x15.

• 2 save registers, x8 and x9.

• 3 temporary registers, x5 to x7.

20

As is described earlier in this document, the gen-
eral RVG model is

• 8 argument registers.

• 12 save registers.

• 7 temporary registers.

Functions defined with numbers of arguments ex-
ceeding the argument register count will pass excess
arguments via the stack. In RV32E this will ob-
viously occur two arguments sooner, requiring an
adjustment to stack or frame corruption attacks.
Save and temporary registers saved to stack frames
may also require adjustments. This is especially true
when targeting kernels.

The ‘C’ Extension Effect

The RISC-V C (compression) extension can be con-
sidered similar to the Thumb variant of the ARM
ISA. Compression reduces instructions from 32 to 16
bits in size. For exploits where shellcode is used, or
Return Oriented Programming (ROP) is required,
the availability (or lack) of C will have a significant
effect on the effects of an implant.

An interesting side effect of the C extension is
that not all instructions are compressed. In fact, in
the Harvest OS kernel (a Lab Mouse Security pro-
prietary operating system), the compression exten-
sion currently only results in approximately 60% of
instructions compressed to 16 bits.

Because the processor must evaluate the type of
an instruction at every fetch (compressed or not)
when compression is available, there is a CISC-like
effect for exploitation. Valid compressed instruc-
tions may be encoded in the lower 16 bits of an ex-
isting 32-bit instruction. This means that someone,
for example, implementing a ROP attack against a
target may be able to find useful 16 bit opcodes em-
bedded in intentional 32-bit opcodes. This is similar
to a paper I wrote in 2002 that demonstrated that
ROP on CISC architectures (then called return-to-
text) could abuse long multi-byte opcodes to target
useful bytes that represented beneficial opcodes not
intended to be used by the compiler.19

1 20400032 <lock_unlock >:
20400032: 0 a05202f amoswap .w. r l zero , zero , (a0)

3 20400036: 4505 l i a0 , 1
20400038: 8082

Since the C extension is not a part of the
RVG IMAFD extension set, it is currently unknown
whether C will become a commonly implemented ex-
tension. Until RISC-V is more predominant and a
key player arises in chip manufacturing, exploit de-
velopers should either target their payloads for spe-
cific machines, or should focus on the uncompressed
instruction set.

Observations

Exploitation really isn’t so different from other
RISC targets, such as ARM. Just like ARM, the
compression extension isn’t necessary for ROP, but
it can be handy for unintentionally encoded gadgets.
While mitigations like -fstack-protection[-all]
are supported, they require __stack_chk_{guard-
,fail}, which might be lacking on your target plat-
form. For Linux targets, be sure to enable PIE,
now, relro for ASLR and GOT hardening.

Building Shellcode

Building shellcode for any given architecture gener-
ally only requires understanding how to satisfy the
following abstractions:

• Allocating memory.

• Locating static data.

• Calling routines.

• Returning from routines.

Allocating Memory

Allocating memory in RISC-V environments is sim-
ilar to almost any other processing environment for
conventional operating systems. Since there is a
stack pointer register (sp/x2), the programmer can
simply take a chance and allocate memory via the
stack. This presumes that there is enough avail-
able memory in the system, and that a fault won’t
occur. If the exploitation target is a userland appli-
cation in a typical operating system, this is always a
reasonable gamble as even if allocating stack would
fault, the underlying OS will generally allocate an-
other page for the userland application. So, since
the stack grows down, the programmer only needs
to decrement the sp (round up to a multiple of 4
bytes) to create more space using system stack.

19Sendmail Prescan Exploitation and CISCO Encodings (127 Research & Development, 2002)

21

Some environments may allocate thread-specific
storage, accessible through a structure stored in the
thread pointer (tp/x4). In this case, simply deref-
erence the structure pointed to by x4, and find the
pointer that references thread-local storage (TLS).
It’s best to store the pointer to TLS in a temporary
register (or even sp), to make it easier to abuse.

As with most programming environments, dy-
namic memory is typically also available, but must
be acquired through normal calling conventions.
The underlying mechanism is usually malloc, mmap,
or an analog of these functions.

Locating Static Data

Data stored within shellcode must be referenced as
an offset to the shellcode payload. This is another
normal shellcode construct. Again, RISC-V is simi-
lar to any other processing environment in this con-
text. The easiest way to identify the address of
data in a payload is to find the address in mem-
ory of the payload, or to write assembly code that
references data at position independent offsets. The
latter is my preferred method of writing shellcode,
as it makes the most engineering sense. But, if
you prefer to build address offsets within executable
images, the usual shellcode self-calling convention
works fine:
0000000000000000 <l o l >:

2 0 : 0100006 f j 10 <bounce>
0000000000000004 <lo l 2 >:

4 4 : 00000513 l i a0 , 0
8 : 0000 a583 lw a1 , 0 (ra)

6 c : 00000073 e c a l l
0000000000000010 <bounce>:

8 10 : f f 5 f f 0 e f j a l ra , 4 <lo l 2 >
0000000000000014 <data >:

10 14 : 0304 addi s1 , sp ,384
16 : 0102 s l l i sp , sp , 0 x0

As you can see in the above code example, the
first instruction performs a jump to the last instruc-
tion prior to static data. The last instruction is a
jump-and-link instruction, which places the return
address in ra. The return address, being the next
instruction after jump-and-link, is the exact address
in memory of the static data. This means that we
can now reference chunks of that data as an offset
of the ra register, as seen in the load-word instruc-
tion above at address 0x08, which loads the value
0x01020304 into register a1.

It’s notable, at this point, to make a comment
about shellcode development in general. Artists gen-

erally write raw assembly code to build payloads, be-
cause it’s more elegant and it results in a much more
efficient application. This is my personal preference,
because it’s a demonstration of one’s connection to
the code, itself. However, it’s largely unnecessary.
In modern environments, many targets are 64-bit
and contain enough RAM to inject large payloads
containing encrypted blobs. As a result, one can
even write position independent code (PIC) appli-
cations in C (and even C++, if one dares). The
resultant binary image can be injected as its own
complete payload, and it runs perfectly well.

But, for constrained targets with little usable
scratch memory, primary loaders, or adversaries
with an artistic temperament, assembly will always
be the favorite tool of trade.

Calling Routines

Earlier in this document, I described the general
RISC-V calling convention. Arguments are placed
in the aN registers, with the first argument at a0, sec-
ond at a1, and so-forth. Branching to another rou-
tine can be done with the jump-and-link (jal) in-
struction, or with the jump-and-link register (jalr)
instruction. The latter instruction has the absolute
address of the target routine stored in the regis-
ter encoded into the instruction, which is a normal
RISC convention. This will be the case for any ap-
plication routine called by your shellcode.

The Linux syscall convention, in the context of
RISC-V, is likely similar to other general purpose
operating systems running on RISC-V processors.
The Linux model deviates from the generic calling
convention by using the ecall instruction. This in-
struction, when executed from userland, initiates a
trap into a higher level of privilege. This trap is
processed as, of course, a system call, which allows
the kernel running at the higher layer of privilege to
process the request appropriately.

System call numbers are encoded into register
a7. Other arguments are encoded in the standard
fashion, in registers a0 through a6. System calls
exceeding seven arguments are stored on the stack
prior to the call. This convention is also true of
general routine calls whose argument totals exceed
available argument registers.

22

Returning from Routines

Passing arguments back from a routine is simple,
and is, again, similar to any other conventional pro-
cessing environment. Arguments are passed back in
the argument register a0. Or, in the argument pair
a0 and a1, depending on the context.

This is also true of system calls triggered by the
ecall instruction. Values passed back from a higher
layer of privilege will be encoded into the a0 regis-
ter (or a0 and a1). The caller should retrieve values
from this register (or pair) and treat the value prop-
erly, depending on the routine’s context.

One notable feature of RISC-V is its compare-
and-branch methodology. Branching can be accom-
plished by encoding a comparison of registers, like
other RISC architectures. However, in RISC-V,
two specific registers can be compared along with
a target in the event that the comparison is equiva-
lent. This allows very streamlined evaluation of val-
ues. For example, when the standard system call
mmap returns a value to its caller, the caller can
check for mmap failure by comparing a0 to the zero
register and using the branch-less-than instruction.
Thus, the programmer doesn’t actually need multi-
ple instructions to effect the correct comparison and
branch code block; a single instruction is all that is
required.

Putting it Together

The following example performs all actions de-
scribed in previous sections. It allocates 80 bytes
of memory on the stack, room for ten 64-bit words.
It then uses the aforementioned bounce method to
acquire the address of the static data stored in the
payload. The system call for socket is then called
by loading the arguments appropriately.

After the system call is issued, the return value
is evaluated. If the socket call failed, and a negative
value was returned, the _open_a_socket function is
looped over.

If the socket call does succeed, which it likely
will, the application will crash itself by calling a
(presumably) non-existent function at virtual ad-
dress 0x00000000.

As an example, the byte stored in static memory
is loaded as part of the system call, only to demon-
strate the ability to load code at specific offsets.

1 0000000000000000 <l o l >:
0 : fb010113 addi sp , sp ,−80

3 4 : 00113023 sd ra , 0 (sp)
8 : 00813423 sd s0 , 8 (sp)

5 c : 0200006 f j 2c <bounce>
0000000000000010 <_open_a_socket>:

7 10 : 00200513 l i a0 , 2
14 : 00100593 l i a1 , 1

9 18 : 00600613 l i a2 , 6
1c : 00008883 lb a7 , 0 (ra)

11 20 : 00000073 e c a l l
0000000000000024 <_crash_or_loop>:

13 24 : f e0546e3 b l t z a0 ,10 <_open_a_socket>
0000000000000028 <_crash>:

15 28 : 00000067 j r ze ro
000000000000002 c <bounce>:

17 2c : f e 5 f f 0 e f j a l ra , 10 <_open_a_socket>
0000000000000030 <data >:

19 30 : 00 c6 s l l i ra , ra , 0 x11

– — — – — — — — – — –
Big shout out to #plan9 for still existing after 17

years, TheNewSh for always rocking the mic, Travis
Goodspeed for leading the modern zine revolution,
RMinnich for being an excellent resource over the
past decade, RPike for being an excellent role model,
and my baby Pierce, for being my inspiration.

Source code and shellcode for this article
are available attached to this PDF and through
Github.20

20git clone https://github.com/donbmouse/riscv-security || unzip pocorgtfo15.pdf riscv-security.zip

23

