
14:06 How likely are random bytes to be a NOP sled on ARM?
by Niek Timmers and Albert Spruyt

Howdy folks!
Any of you ever wondered what the probability

is for executing random bytes in order to do some-
thing useful? We certainly do. The team respon-
sible for analyzing the Nintendo 3DS might have
wondered about an answer when they identified the
1st stage boot loader of the security processor is
only encrypted and not authenticated.14 This al-
lowed them to execute random bytes in the security
processor by changing the original unauthenticated,
but encrypted, image. Using a trial and error ap-
proach, they were able to get lucky when the image
decrypts into code that jumps to a memory location
preloaded with arbitrary code. Game over for the
Nintendo 3DS security processor.

We generalize the potential attack primitive of
executing random bytes by focusing on one ques-
tion: What is the probability of executing random
bytes in a NOP-like fashion? NOP-like instructions
are those that do not impair the program’s contin-
uation, such as by crashing or looping.

Writing NOPs into a code region is a powerful
method which potentially allows full control over the
system’s execution. For example, the NOPs can be
used to remove a length check, leading to an ex-
ploitable buffer overflow. One can imagine various
practical scenarios to leverage this attack primitive,
both during boot and runtime of the system.

A practical scenario during boot is related to
a common feature implemented by secure embed-
ded devices: Secure Boot. This feature provides in-
tegrity and confidentiality of code stored in external
flash. Such implementations are compromised using
software attacks15 and hardware attacks.16 Depend-
ing on the implementation, it may be possible to
bypass the authentication but not the decryption.
In such a situation, similar to the Nintendo 3DS,
changing the original encrypted image will lead to
the execution of randomized bytes as the decryption
key is likely unknown.

During runtime, secure embedded devices often
provide hardware cryptographic accelerators that
implement Direct Memory Access (DMA). This
functionality allows on-the-fly decryption of memory
from location A to location B. It is of utmost im-

portance to implement proper restrictions to prevent
unprivileged entities from overwriting security sensi-
tive memory locations, such as code regions. When
such restrictions are implemented incorrectly, it po-
tentially leads to copying random bytes into code
regions.

The block size of the cipher impacts the size di-
rectly: 8 bytes for T/DES and 16 bytes for AES. Ad-
ditionally the cipher mode has an impact. When the
image is decrypted using ECB, an entire block will
be pseudo randomized without propagating to other
blocks. When the image is decrypted using CBC, an
entire block will be pseudo randomized. Addition-
ally, any changes in a cipher block will propagate
directly into the plain text of the subsequent block.
In other words, flipping a bit in the cipher text will
flip the bit at the same position in the plain text of
the subsequent block. This allows small modifica-
tions of the original plain text code which potential
leads to arbitrary code execution. Further details
for such attacks are for another time.

The pseudo random bytes executed in these sce-
narios must be executed in a NOP-like fashion. This
means they need too be decoded into: valid in-
structions and have no side-effect on the program’s
continuation. The amount of different instruction
matching these requirements are target dependent.
Whenever these requirements are not met, the de-
vice will likely crash.

We approximated the probability for executing
random bytes in a NOP-like fashion for Thumb and
ARM and under different conditions: QEMU, native
user and native bare-metal. For each execution, the
probability is approximated for executing 4, 8 and
16 random bytes. Other architectures or execution
states are not considered here.

14Arm9LoaderHax – Deeper Inside by Jason Dellaluce
15Amlogic S905 SoC: bypassing the (not so) Secure Boot to dump the BootROM by Frédéric Basse
16Bypassing Secure Boot using Fault Injection by Niek Timmers and Albert Spruyt at Black Hat Europe 2016

26

Executing in QEMU
The probability of executing random bytes in a
NOP-like fashion is determined using two pieces of
software: a Python wrapper and an Thumb/ARM
binary containing NOPs to be overwritten.

1 void main (void) {
. . .

3 p r i n t f ("FREE ") ;
asm volat i le (

5 "mov r1 , r1 " ; // Place ho lder by t e s
"mov r1 , r1 " ; // ""

7 "mov r1 , r1 " ; // ""
"mov r1 , r1 " ; // ""

9) ;
p r i n t f ("BEER! ") ;

11 . . .
}

This is cross compiled for Thumb and ARM,
then executed in QEMU.
arm−l inux−gnueabihf−gcc −o te s t−arm \

2 te s t−arm . c −s t a t i c −marm (−mthumb)
qemu−arm tes t−arm

Whenever the test program prints “FREE
BEER!” the instructions executed between the two
printf calls do not impact the program’s execution
negatively; that is, the instructions are NOP-like.
The Python wrapper updates the place holder bytes
with random bytes, executes the binary, and logs the
printed result.

The random bytes originate from /dev/urandom.
Executing the updated binary results in: intended
(NOP-like) executions, unintended executions (e.g.
only “FREE” is printed) and crashes. The results of
executing the binary ten thousand times, grouped
by type, are shown in Table 1. A small percentage
of the results are unclassified.

The results show that executing random bytes
in a NOP-like fashion has potential for emulated
Thumb/ARM code. The amount of random bytes
impact the probability directly. The density of bad
instructions, where the program crashes, is higher
for Thumb than for ARM. Let’s see if the same prob-
ability holds up for executing native code.

Cortex A9 as a Native User

The binary used to approximate the probability on
a native platform in user mode is similar as listed in
Section 2. Differently, this code is executed natively
on an ARM Cortex-A9 development board. The
code is developed, compiled and executing within
the Ubuntu 14.04 LTS operating system. A disas-
sembled representation of the ARM binary is shown
below:

1 10804 : e92d4800 push { fp , l r }
10808 : e28db004 add fp , sp , #4

3 1080 c : e b f f f f f 0 b l 107d4 <p1>
// These by t e s are updated by the

5 // python wrapper be f o r e each execu t ion .
10810 : e1a01001 mov r1 , r1

7 10814 : e1a01001 mov r1 , r1
10818 : e1a01001 mov r1 , r1

9 1081 c : e1a01001 mov r1 , r1
10820 : e b f f f f f 1 b l 107 ec <p2>

11 10824 : e8bd8800 pop { fp , pc}

The results of performing one thousand experi-
ments are listed in Table 2.

The results show that executing random bytes
in a NOP-like fashion is very similar between em-
ulated code and native user mode code. Let’s see
if the same probability holds up for executing bare-
metal code.

27

Cortex A9 as Native Bare Metal
The binary used to approximate the probability on
native platform in bare metal mode is implemented
in U-Boot. The code is very similar to that which
we used on Qemu and in userland. U-Boot is only
executed during boot and therefore the platform is
executed before each experiment. The target’s serial
interface is used for communication. A new com-
mand is added to U-Boot which is able to receive
random bytes via the serial interface, update the
placeholder bytes and execute the code.

All ARM CPU exceptions are handled by U-
Boot which allows us to classify the crashes ac-
cordingly. For example, the following exception is
printed on the serial interface when the random
bytes result in a illegal exception:

1 FREE undef ined i n s t r u c t i o n
pc : [<1 f f50218 >] l r : [<1 f f5020c >]

3 r e l o c pc : [<04016218>] l r : [<0401620c>]
sp : 1 eb19e68 ip : 0000000 c fp : 00000000

5 r10 : 00000000 r9 : 1 eb19ee8
r8 : 1 c091c09 r7 : 1 f f 5 0 3 f c r6 : 1 f f 5 0 3 f c

7 r5 : 00000000 r4 : 1 f f 50214 r3 : e0001000
r2 : 0000080a r1 : 1 f f 50214 r0 : 00000005

9 Flags : nZCv IRQs o f f FIQs o f f Mode SVC_32
Rese t t ing CPU . . .

The results of performing one thousand experi-
ments are listed in Table 3.

The results show that executing random bytes
in a NOP-like fashion is similar for bare-metal code
compared to emulated and native user mode code.
There seems to be less difference between Thumb
and ARM but that could be due statistics.

Conclusion
Let us wonder no more. The results of this arti-
cle tell us that the probability for executing random
bytes in a NOP-like fashion for Thumb an ARM is
significant enough to consider it a potentially rele-
vant attack primitive. The probability is very simi-
lar for execution of emulated code, native user-mode
code and bare-metal code. The number of ran-
dom bytes executed impact the probability directly
which matches our common sense. In Thumb mode,
the density of bad instructions where the program
crashes is higher than for ARM. One must realize
the true probability for a given target cannot be
determined in a generic fashion, thanks to memory
mapping, access restrictions, and the surrounding
code.

28

Type 4 bytes 8 bytes 16 bytes
NOP-like 32% / 52% 13% / 34% 4% / 13%
Illegal instruction 11% / 20% 14% / 29% 15% / 41%
Segmentation fault 52% / 23% 66% / 31% 73% / 40%
Unhandled CPU exception 1% / 2% 0% / 3% 0% / 4%
Unhandled ARM syscall 1% / 0% 1% / 1% 1% / 1%
Unhandled Syscall 1% / 1% 0% / 0% 0% / 0%
Unclassified 5% / 3% 6% / 2% 6% / 1%

Table 1. Probabilities for QEMU (Thumb / ARM)

Type 4 bytes 8 bytes 16 bytes
NOP-like 36% / 61% 13% / 39% 2% / 12%
Illegal instruction 13% / 19% 17% / 27% 23% / 40%
Segmentation fault 48% / 19% 66% / 33% 71% / 46%
Bus error 0% / 1% 0% / 1% 0% / 2%
Unclassified 3% / 0% 4% / 0% 4% / 0%

Table 2. Probabilities for native user (Thumb / ARM)

Type 4 bytes 8 bytes 16 bytes
NOP-like 53% / 63% 32% / 41% 7% / 19%
Undefined Instruction 16% / 20% 19% / 34% 25% / 51%
Data Abort 17% / 4% 25% / 7% 33% / 11%
Prefetch Abort 1% / 1% 1% / 1% 2% / 1%
Unclassified 15% / 12% 23% / 18% 33% / 18%

Table 3. Probabilities for native bare metal (Thumb / ARM)

29

