
9 Where is ShimDBC.exe?
by Geoff Chappell

Microsoft’s Shim Database Compiler might be a
legend . . . except that nobody seems ever to have
made any story of it. It might be mythical . . . ex-
cept that it actually does exist. Indeed, it has been
around for 15 years in more or less plain sight. Yet
if you ask Google to search the Internet for occur-
rences of shimdbc, and especially of “shimdbc.exe”
in quotes, you get either remarkably little or a tan-
talising hint, depending on your perspective.

Mostly, you get those scam sites that have pre-
pared a page for seemingly every executable that
has ever existed and can fix it for you if only you
will please download their repair tool. But amongst
this dross is a page from Microsoft’s TechNet site.
Google excerpts that “QFixApp uses the support
utility ShimDBC.exe to test the group of selected
fixes.” Follow the link and you get to one of those
relatively extensive pages that Microsoft sometimes
writes to sketch a new feature for system adminis-
trators and advanced users (if not also to pat them-
selves on the back for the great new work). This
page is from 2001 and is titled Windows XP Appli-
cation Compatibility Technologies.30

9.1 Application Compatibility?

There can’t be anything more boring in the whole
of Windows, you may think. I certainly used to,
and might still for applications if I cared enough,
but Windows 8 brought Application Compatibility
to kernel mode in a whole new way, and this I do
care about.

The integrity of any kernel-mode driver that you
or I write nowadays depends on what anyone else,
well-meaning or not, can get into the DRVMAIN.SDB
file in the AppPatch subdirectory of the Windows
installation. This particular Shim Database file ex-
ists in earlier Windows versions too, but only to list
drivers that the kernel is not to load. If you’re the
writer of a driver, there’s nothing you can do at run-
time about your driver being blocked from loading,
and in some sense you’re not even affected: you’re
not loaded and that’s that. Starting with Win-
dows 8, however, the DRVMAIN.SDB file defines the
installed shim providers and either the registry or
the file can associate your driver with one or more of
these defined shim providers. When your driver gets
loaded, the applicable shim providers get loaded too,
if they are not already, and before long your driver’s
image in memory has been patched, both for how it
calls out through its Import Address Table and how
it gets called, e.g., to handle I/O requests.

In this brave new world, is your driver really
your driver? You might hope that Microsoft would
at least give you the tools to find out, if only so
that you can establish that a reported problem with
your driver really is with your driver. After all,
for the analogous shimming, patching, and what-
ever of applications, Microsoft has long provided an
Application Compatibility Toolkit (ACT), recently
re-branded as the Windows Assessment and Deploy-
ment Kit (ADK). The plausible thoroughness of this
kit’s Compatibility Administrator in presenting a
tree view of the details is much of the reason that
I, for one, regarded the topic as offering, at best,
slim pickings for research. For the driver database,
however, this kit does nothing—well, except to leave
me thinking that the SDB file format and the API
support through which SDB files get interpreted,
created, and might be edited, are now questions I
should want to answer for myself rather than imag-

30https://technet.microsoft.com/library/bb457032.aspx

63

ine they’ve already been answered well by whoever
managed somehow to care about Application Com-
patibility all along.

9.2 The SDB File Format

Relax! I’m not taking you to the depths of Applica-
tion Compatibility, not even just for what’s specific
to driver shims. Our topic here is reverse engineer-
ing. Now that you know what these SDB files are
and why we might care to know what’s in them,
I expect that if you have no interest at all in Ap-
plication Compatibility, you can treat this part of
this article as using SDB files just as an example
for some general concerns about how we present
reverse-engineered file formats. (And please don’t
skip ahead, but I promise that the final part is pretty
much nothing but ugly hackery.)

Let’s work even more specifically with just one
example of an SDB file, shown in Figure 15. It’s a
little long, despite being nearly minimal. It defines
one driver shim but no drivers to which this shim is
to be applied.

Although Microsoft has not documented the
SDB file format, Microsoft has documented a se-
lection of API functions that work with SDB files,
which is in some ways preferable. Perhaps by look-
ing at these functions researchers and reverse engi-
neers have come to know at least something of the
file format, as evidenced by various tools they have
published which interpret SDB files one way or an-
other, typically as XML.

As a rough summary, an SDB file has a 3-dword
header, for a major version, minor version, and sig-
nature, and the rest of the file is a list of variable-size
tags which each have three parts:

1. a 16-bit TAG, whose numerical value tells of the
tag’s type and purpose;

2. a size in bytes, which can be given explicitly as
a dword or may be implied by the high 4 bits
of the TAG;

3. and then that many bytes of data, whose in-
terpretation depends on the TAG.

Importantly for the power of the file format, the
data for some tags (the ones whose high 4 bits are
7) is itself a list of tags. From this summary and a
few details about the recognised TAG values, the im-
plied sizes and the general interpretation of the data,

e.g., as word, dword, binary, or Unicode string—
all of which can be gleaned from Microsoft’s admit-
tedly terse documentation of those API functions—
you might think to reorganise the raw dump so that
it retains every byte but more conveniently shows
the hierarchy of tags, each with their TAG, size (if
explicit) and data (if present). A decoding of Fig-
ure 15 is shown in Figure 16.

To manually verify that everything in the file is
exactly as it should be, there is perhaps no better
representation to work from than one that retains
every byte. In practice, though, you’ll want some
interpretation. Indeed, the dump above does this
already for the tags whose high 4 bits are 6. The
data for any such tag is a string reference, specifi-
cally the offset of a 0x8801 tag within the 0x7801
tag (at offset 0x0142 in this example), and an auto-
mated dump can save you a little trouble by show-
ing the offset’s conversion to the string. Since those
numbers for tags soon become tedious, you may pre-
fer to name them. The names that Microsoft uses
in its programming are documented for the roughly
100 tags that were defined ten years ago (for Win-
dows Vista). All tags, documented or not (and now
running to 260), have friendly names that can be ob-
tained from the API function SdbTagToString. If
you haven’t suspected all along that Microsoft pre-
pares SDB files from XML input, then you’ll likely
take “tag” as a hint to represent an SDB file’s tags
as XML tags. And this, give or take, is where some
of the dumping tools you can find on the Internet
leave things, such as in Figure 17.

Notice already that choices are made about what
to show and how. If you don’t show the offset in
bytes that each XML tag has as an SDB tag in the
original SDB file, then you risk complicating your
presentation of data, as with the string references,
whose interpretation depends on those file offsets.
But show the offsets and your XML quickly looks
messy. Once your editorial choices go so far that you
don’t reproduce every byte but instead build more
and more interpretation into the XML, why show
every tag? Notably, the string table that’s the data
for tag 0x7801 (TAG_STRINGTABLE) and the indexes
that are the data for tag 0x7802 (TAG_INDEXES)
must be generated automatically from the data for
tag 0x7001 (TAG_DATABASE) such that the last may
be all you want to bother with. Observe that for any
tag that has children, the subtags that don’t have
children come first, and perhaps you’ll plumb for a
different style of XML in which each tag that has no

64

00000000: 02 00 00 00 01 00 00 00-73 64 62 66 02 78 CA 00sdbf.x..
00000010: 00 00 03 78 14 00 00 00-02 38 07 70 03 38 01 60 ...x.....8.p.8.‘
00000020: 16 40 01 00 00 00 01 98-00 00 00 00 03 78 0E 00 .@...........x..
00000030: 00 00 02 38 17 70 03 38-01 60 01 98 00 00 00 00 ...8.p.8.‘......
00000040: 03 78 0E 00 00 00 02 38-07 70 03 38 04 90 01 98 .x.....8.p.8....
00000050: 00 00 00 00 03 78 14 00-00 00 02 38 1C 70 03 38x.....8.p.8
00000060: 01 60 16 40 02 00 00 00-01 98 00 00 00 00 03 78 .‘.@...........x
00000070: 14 00 00 00 02 38 1C 70-03 38 0B 60 16 40 02 008.p.8.‘.@..
00000080: 00 00 01 98 00 00 00 00-03 78 14 00 00 00 02 38x.....8
00000090: 1A 70 03 38 01 60 16 40-02 00 00 00 01 98 00 00 .p.8.‘.@........
000000A0: 00 00 03 78 14 00 00 00-02 38 1A 70 03 38 0B 60 ...x.....8.p.8.‘
000000B0: 16 40 02 00 00 00 01 98-00 00 00 00 03 78 1A 00 .@...........x..
000000C0: 00 00 02 38 25 70 03 38-01 60 01 98 0C 00 00 00 ...8%p.8.‘......
000000D0: 00 00 52 45 4B 43 41 48-14 01 00 00 01 70 60 00 ..REKCAH.....p‘.
000000E0: 00 00 01 50 D8 C1 31 3C-70 10 D2 01 22 60 06 00 ...P..1<p..."‘..
000000F0: 00 00 01 60 1C 00 00 00-23 40 01 00 00 00 07 90 ...‘....#@......
00000100: 10 00 00 00 28 22 AB F9-12 33 73 4A B6 F9 93 6D("...3sJ...m
00000110: 70 E1 12 EF 25 70 28 00-00 00 01 60 50 00 00 00 p...%p(....‘P...
00000120: 10 90 10 00 00 00 C8 E4-9C 91 69 D0 21 45 A5 45i.!E.E
00000130: 01 32 B0 63 94 ED 17 40-03 00 00 00 03 60 64 00 .2.c...@.....‘d.
00000140: 00 00 01 78 7A 00 00 00-01 88 10 00 00 00 32 00 ...xz.........2.
00000150: 2E 00 31 00 2E 00 30 00-2E 00 33 00 00 00 01 88 ..1...0...3.....
00000160: 2E 00 00 00 48 00 61 00-63 00 6B 00 65 00 64 00H.a.c.k.e.d.
00000170: 20 00 44 00 72 00 69 00-76 00 65 00 72 00 20 00 .D.r.i.v.e.r. .
00000180: 44 00 61 00 74 00 61 00-62 00 61 00 73 00 65 00 D.a.t.a.b.a.s.e.
00000190: 00 00 01 88 0E 00 00 00-48 00 61 00 63 00 6B 00H.a.c.k.
000001A0: 65 00 72 00 00 00 01 88-16 00 00 00 68 00 61 00 e.r.........h.a.
000001B0: 63 00 6B 00 65 00 72 00-2E 00 73 00 79 00 73 00 c.k.e.r...s.y.s.
000001C0: 00 00 ..

Figure 15. ShimDB File

child tags is represented as an attribute and value,
e.g.,

<DATABASE
2 TIME="0x01D210703C31C1D8"

COMPILER_VERSION=" 2 . 1 . 0 . 3 "
4 NAME="Hacked Driver Database"

OS_PLATFORM="0x00000001"
6 DATABASE_ID="0x28 0x22 0xAB 0xF9 0x12 0x33

0x73 0x4A 0xB6 0xF9 0x93 0x6D 0x70 0xE1 0
x12 0xEF">
<KSHIM

8 NAME="Hacker"
FIX_ID="0xC8 0xE4 0x9C 0x91 0x69 0xD0 0

x21 0x45 0xA5 0x45 0x01 0x32 0xB0 0x63 0
x94 0xED"

10 FLAGS="0x00000003"
MODULE="hacker . sys " />

12 </DATABASE>

Whether you choose XML in this style or to have
every tag’s data between opening and closing tags,
there are any number of ways to represent the data
for each tag. For instance, once you know that
the binary data for tag 0x9007 (TAG_DATABASE_ID)
or tag 0x9010 (TAG_FIX_ID) is always a GUID, you
might more conveniently represent it in the usual
string form. Instead of showing the data for tag
0x5001 (TAG_TIME) as a raw qword, why not show

that you know it’s a Windows FILETIME and present
it as 16/09/2016 23:15:37.944? Or, on the grounds
that it too must be generated automatically, you
might decide not to show it at all!

If I labour the presentation, it’s to make the
point that what’s produced by any number of dump-
ing tools inevitably varies according to purpose and
taste. Let’s say a hundred researchers want a tool
for the easy reading of SDB files. Yes, that’s doubt-
ful, but 100 is a good round number. Then ninety
will try to crib code from someone else—because,
you know, who wants to reinvent the wheel—and
what you get from the others will each be different,
possibly very different, not just for its output but
especially for what the source code shows of the file
format. Worse, because nine out of ten program-
mers don’t bother much with commenting, even for
a tool they may intend as showing off their cod-
ing skills, you may have to pick through the source
code to extract the file format. That may be easier
than reverse-engineering Microsoft’s binaries that
work with the file, but not necessarily by much—and
not necessarily leaving you with the same confidence
that what you’ve learnt about the file format is cor-

65

00000000: Header: MajorVersion=0x00000002 MinorVersion=0x00000001 Magic=0x66626473
0000000C: Tag=0x7802 Size=0x000000CA Data=
00000012: Tag=0x7803 Size=0x00000014 Data=
00000018: Tag=0x3802 Data=0x7007
0000001C: Tag=0x3803 Data=0x6001
00000020: Tag=0x4016 Data=0x00000001
00000026: Tag=0x9801 Size=0x00000000
0000002C: Tag=0x7803 Size=0x0000000E Data=
00000032: Tag=0x3802 Data=0x7017
00000036: Tag=0x3803 Data=0x6001
0000003A: Tag=0x9801 Size=0x00000000
00000040: Tag=0x7803 Size=0x0000000E Data=

...

000000BC: Tag=0x7803 Size=0x0000001A Data=
000000C2: Tag=0x3802 Data=0x7025
000000C6: Tag=0x3803 Data=0x6001
000000CA: Tag=0x9801 Size=0x0000000C Data=0x00 0x00 0x52 0x45 0x4B 0x43 0x41 0x48 0x14 0x01 0x00 0x00
000000DC: Tag=0x7001 Size=0x00000060
000000E2: Tag=0x5001 Data=0x01D210703C31C1D8
000000EC: Tag=0x6022 Data=0x00000006 => L"2.1.0.3"
000000F2: Tag=0x6001 Data=0x0000001C => L"Hacked Driver Database"
000000F8: Tag=0x4023 Data=0x00000001
000000FE: Tag=0x9007 Size=0x00000010 Data=0x28 0x22 0xAB 0xF9 0x12 0x33 0x73 0x4A 0xB6 0xF9 0x93 0x6D

0x70 0xE1 0x12 0xEF
00000114: Tag=0x7025 Size=0x00000028
0000011A: Tag=0x6001 Data=0x00000050 => L"Hacker"
00000120: Tag=0x9010 Size=0x00000010 Data=0xC8 0xE4 0x9C 0x91 0x69 0xD0 0x21 0x45 0xA5 0x45 0x01 0x32

0xB0 0x63 0x94 0xED
00000136: Tag=0x4017 Data=0x00000003
0000013A: Tag=0x6003 Data=0x00000064 => L"hacker.sys"
00000142: Tag=0x7801 Size=0x0000007A Data=
00000148: Tag=0x8801 Size=0x00000010 Data=L"2.1.0.3"
0000015E: Tag=0x8801 Size=0x0000002E Data=L"Hacked Driver Database"
00000192: Tag=0x8801 Size=0x0000000E Data=L"Hacker"
000001A6: Tag=0x8801 Size=0x00000016 Data=L"hacker.sys"

Figure 16. ShimDB File (Decoded from Figure 15)

66

1 <INDEXES>
<INDEX>

3 <INDEX_TAG>0x7007</INDEX_TAG>
<INDEX_KEY>0x6001</INDEX_KEY>

5 <INDEX_FLAGS>0x00000001</INDEX_FLAGS>
<INDEX_BITS></INDEX_BITS>

7 </INDEX>
<INDEX>

9 <INDEX_TAG>0x7017</INDEX_TAG>
<INDEX_KEY>0x6001</INDEX_KEY>

11 <INDEX_BITS></INDEX_BITS>
</INDEX>

13 . . .
<INDEX>

15 <INDEX_TAG>0x7025</INDEX_TAG>
<INDEX_KEY>0x6001</INDEX_KEY>

17 <INDEX_BITS>0x00 0x00 0x52 0x45 0x4B 0x43 0x41 0x48 0x14 0x01 0x00 0x00</INDEX_BITS>
</INDEX>

19 </INDEXES>
<DATABASE>

21 <TIME>0x01D210703C31C1D8</TIME>
<COMPILER_VERSION>0x00000006</COMPILER_VERSION>

23 <NAME>0x0000001C</NAME>
<OS_PLATFORM>0x00000001</OS_PLATFORM>

25 <DATABASE_ID>0x28 0x22 0xAB 0xF9 0x12 0x33 0x73 0x4A 0xB6 0xF9 0x93 0x6D 0x70 0xE1 0x12 0xEF</
DATABASE_ID>

<KSHIM>
27 <NAME>0x00000050</NAME>

<FIX_ID>0xC8 0xE4 0x9C 0x91 0x69 0xD0 0x21 0x45 0xA5 0x45 0x01 0x32 0xB0 0x63 0x94 0xED</
FIX_ID>

29 <FLAGS>0x00000003</FLAGS>
<MODULE>0x00000064</MODULE>

31 </KSHIM>
</DATABASE>

33 <STRINGTABLE>
<STRINGTABLE_ITEM>2 . 1 . 0 . 3</STRINGTABLE_ITEM>

35 <STRINGTABLE_ITEM>Hacked Driver Database</STRINGTABLE_ITEM>
<STRINGTABLE_ITEM>Hacker</STRINGTABLE_ITEM>

37 <STRINGTABLE_ITEM>hacker . sys</STRINGTABLE_ITEM>
</STRINGTABLE>

Figure 17. Illegible XML From a ShimDB Dumping Tool

67

rect and comprehensive. Writing a tool that dumps
an undocumented file format may be more reward-
ing for you as a programmer but it is not nearly the
same as documenting the file format.

9.3 Reversing XML to SDB
But is there really no definitive XML for repre-
senting SDB files? Of all the purposes that moti-
vate anyone to work with SDB files closely enough
to need to know the file format, one has special
standing: Microsoft’s creation of SDB files from
XML input. If we had Microsoft’s tool for that,
then wouldn’t most researchers plumb for revers-
ing its work to recover the XML source? After
all, most reverse engineers and certainly the popular
reverse-engineering tools don’t take binary code and
unassemble it just to what you see in the debugger.
No, they disassemble it into assembly language that
can be edited and re-assembled. Many go further
and try to decompile it into C or C++ that can be
edited and re-compiled (even if it doesn’t look re-
motely like anything you’d be pleased to have from
a human programmer). In this context, the SDB to
XML conversion to want is something you could feed
to Microsoft’s Shim Database Compiler for compila-
tion back to SDB. Anything else is pseudo-code. It
may be fine in its way for understanding the content,
and some may prefer it to a raw dump interpreted
with reference to documentation of the file format,
but however widely it gets accepted it is nonetheless
pseudo-code.

The existence of something that someone at
Microsoft refers to as a Shim Database Com-
piler has been known for at least a decade be-
cause Microsoft’s documentation of tag 0x6022
(TAG_COMPILER_VERSION), apparently contempora-
neous with Windows Vista, describes this tag’s data
as the “Shim Database Compiler version.” And
what, then, is the ShimDBC.exe from the even older
TechNet article if it’s not this Shim Database Com-
piler?

But has anyone outside Microsoft ever seen this
compiler? Dig out an installation disc for Win-
dows XP from 2001, look in the Support Tools di-
rectory, install the ACT version 2.0 from its self-
extracting executable, and perhaps install the Sup-
port Tools too in case that’s what the TechNet ar-
ticle means by “support utility.” For your troubles,
which may include having to install Windows XP,
you’ll get the article’s QFixApp.exe, and the Com-
patibility Administrator, as CompatAdmin.exe, and

some other possibly useful or at least instructive
tools such as GrabMI.exe, but you don’t get any
file named ShimDBC.exe. I suspect that Shim-
DBC.exe never has existed in public as any sort of
self-standing utility or even as its own file. Even if
it did once upon a time, we should want a modern
version that knows the modern tags such as 0x7025
(TAG_KSHIM) for defining driver shims.

For some good news, look into either QFix-
App.exe or CompatAdmin.exe using whatever is
your tool of choice for inspecting executables. In-
side each, not as resources but intermingled with the
code and data, are several instances of ShimDBC as
text. We’ve had Microsoft’s Shim Database Com-
piler for 15 years since the release of Windows XP.
All along, the code and data for the console program
ShimDBC.exe, from its wmain function inwards, has
been linked into the GUI programs QFixApp.exe
and CompatAdmin.exe (of which only the latter sur-
vives to modern versions of the ACT). Each of the
GUI programs has a WinMain function that’s first to
execute after the C Run-Time (CRT) initialisation.
Whenever either of the GUI programs wants to cre-
ate an SDB file, it composes the Unicode text of a
command line for the fake ShimDBC.exe and calls a
routine that first parses this into the argc and argv
that are expected for a wmain function and which
then simply calls the wmain function. Where the
TechNet article says QFixApp uses ShimDBC.exe,
it is correct, but it doesn’t mean that QFixApp ex-
ecutes ShimDBC.exe as a separate program, more
that QFixApp simulates such execution from the
ShimDBC code and data that’s built in.

Unfortunately, CompatAdmin does not provide,
even in secret, for passing a command line of our
choice through WinMain to wmain. But, c’mon, we’re
hackers. You’ll already be ahead of me: we can
patch the file. Make a copy of CompatAdmin.exe as
ShimDBC.exe, and use your favourite debugger or
disassembler to find three things:

• the program’s WinMain function;

• the routine the program passes the fake com-
mand line to for parsing and for calling wmain;

• the address of the Import Address Table entry
for calling the GetCommandLineW function.

68

Ideally, you might then assemble something like
c a l l dword ptr [__imp__GetCommandLineW@0]

2 mov ecx , eax
c a l l SimulateShimDBCExecution

4 r e t 10h

over the very start of WinMain. In practice, you
have to allow for relocations. Our indirect call to
GetCommandLineW will need a fixup if the program
doesn’t get loaded at its preferred address. Worse,
if we overwrite any fixup sites in WinMain, then our
code will get corrupted if fixups get applied. But
these are small chores that are bread and butter for
practised reverse engineers. For concreteness, I give
the patch details for the 32-bit CompatAdmin.exe
from the ACT version 6.1 for Windows 8.1 in Ta-
ble 2.

For hardly any trouble, we get an executable
that still contains all its GUI material (except for
the 17 bytes we’ve changed) but never executes
it and instead runs the console-application code
with the command line that we give when running
the patched program. Microsoft surely has Shim-
DBC.exe as a self-standing console application, but
what we get from patching CompatAdmin.exe must
be close to the next best thing, certainly for so little
effort. It’s still a GUI program, however, so to see
what it writes to standard output we must explicitly
give it a standard output. At a Command Prompt
with administrative privilege, enter

shimdbc -? >help.txt

to get the built-in ShimDBC program’s mostly accu-
rate description of its command-line syntax, includ-
ing most of the recognised command-line options.

To produce the SDB file that is this article’s ex-
ample, write the following as a Unicode text file
named test.xml:
<?xml version=" 1 .0 " encoding="UTF−16" ?>

2 <DATABASE NAME="Hacked Driver Database"
ID="{F9AB2228−3312−4A73−B6F9−936D70E112EF}">

4 <LIBRARY>
<KSHIM NAME="Hacker" FILE="hacker . sys "

6 ID="{919CE4C8−D069−4521−A545−0132B06394ED}
"
LOGO="YES" ONDEMAND="YES" />

8 </LIBRARY>
</DATABASE>

and feed it to the compiler via the command line
1 shimdbc Driver t e s t . xml t e s t . sdb >t e s t . txt

I may be alone in this, but if you’re going to
tell me that I should know that you know the SDB
file format when all you have to show is a tool that
converts SDB to XML, then this would better be
the XML that your tool produces from this article’s
example of an SDB file. Otherwise, as far as I’m
concerned for studying any SDB file, I’m better off
with a raw dump in combination with actual docu-
mentation of the file format.

Do not let it go unnoticed, though, that the
XML that works for Microsoft’s ShimDBC needs at-
tributes that differ from the programmatic names
that Microsoft has documented for the tags or the
friendly names that can be obtained from the Sdb-
TagToString function. For instance, the 0x6003 tag
(TAG_MODULE) is compiled from an attribute named
not MODULE but FILE. The 0x4017 tag (TAG_FLAGS)
is synthesised from two attributes. Even harder to
have guessed is that a LIBRARY tag is needed in the
XML but does not show at all in the SDB file, i.e.,
as a tag 0x7002 (TAG_LIBRARY). So, to know what
XML is acceptable to Microsoft’s compiler for creat-
ing an SDB file, you’ll have to reverse-engineer the
compiler or do a lot of inspired guesswork.

Happy hunting!

69

File Offset Original Patched Remarks
0x0002FB54 8B FF EB 08 jump to instruction that will use existing fixup site
0x0002FB56 55
0x0002FB57 8B EC
0x0002FB59 81 EC 88 05 00 00
0x0002FB5E FF 15 D0 30 49 00 incorporate existing fixup site at file offset 0x0002FB60
0x0002FB5F A1 00 60 48 00
0x0002FB64 33 C5 8B C8
0x0002FB66 89 45 FC E8 55 87 01 00 no fixup required for this direct call within .text section
0x0002FB69 8B 45 08
0x0002FB6B C2 10 00
0x0002FB6C 53
0x0002FB6D 56

Table 2. Patch details for the 32-bit CompatAdmin.exe from the ACT version 6.1 for Windows 8.1.

ba
se

d
on

 h
ttp

s:/
/d

iv
isb

yz
er

o.c
om

/2
01

6/
07

/0
6/

m
ak

e-a
-su

gih
ar

a-
cir

cle
sq

ua
re

-o
pt

ica
l-i
llu

sio
n-

ou
t-o

f-p
ap

er
/

Ambiguous Cylinder by Kokichi Sugihara

result

杉原 厚吉 の 多義柱体

70

