
5 Decoding AMBE+2 in MD380 Firmware in Linux
by Travis Goodspeed KK4VCZ

with kind thanks to DD4CR, DF8AV, and AB3TL

Howdy y’all,
In PoC‖GTFO 10:8, I shared with you fine folks

a method for extracting a cleartext firmware dump
from the Tytera MD380. Since then, a rag-tag gang
of neighbors has joined me in hacking this device,
and hundreds of amateur radio operators around
the world are using our enhanced firmware for DMR
communications.

AMBE+2 is a fixed bit-rate audio compression
codec under some rather strict patents, for which
the anonymously-authored Digital Speech Decoder
(DSD) project14 is the only open source decoder. It
doesn’t do encoding, so if for example you’d like to
convert your favorite Rick Astley tunes to AMBE
frames, you’ll have to resort to expensive hardware
converters.

In this article, I’ll show you how I threw to-
gether a quick and dirty AMBE audio decompressor
for Linux by wrapping the firmware into a 32-bit
ARM executable, then running that executable ei-
ther natively or through Qemu. The same tricks
could be used to make an AMBE encoder, or to
convert nifty libraries from other firmware images
into handy command-line tools.

This article will use an MD380 firmware image
version 2.032 for specific examples, but in the spirit
of building our own bird feeders, the techniques
ought to apply just as well to your own firmware
images from other devices.

– — — – — — — — – — –
Suppose that you are reverse engineering a

firmware image, and you’ve begun to make good
progress. You know where plenty of useful func-
tions are, and you’ve begun to hook them, but now
you are ready to start implementing unit tests and
debugging chunks of code. Wouldn’t it be nicer to
do that in Unix than inside of an embedded system?

As luck would have it, I’m writing this article
on an aarch64 Linux machine with eight cores and
a few gigs of RAM, but any old Raspberry Pi or
Android phone has more than enough power to run
this code natively.

Be sure to build statically, targeting
arm-linux-gnueabi. The resulting binary will run
on armel and aarch64 devices, as well as damned

near any Linux platform through Qemu’s userland
compatibility layer.

5.1 Dynamic Firmware Loading
First, we need to load the code into our process.
While you can certainly link it into the executable,
luck would have it that GCC puts its code sections
very low in the executable, and we can politely ask
mmap(2) to load the unpacked firmware image to
the appropriate address. The first 48kB of Flash
are used for a recovery bootloader, which we can
conveniently skip without consequences, so the load
address will be 0x0800c000.

s i ze_t l ength =994304;
2 int fd=open (" experiment . img" ,0) ;

void ∗ f i rmware=mmap(
4 (void ∗) 0x0800c000 , length ,

PROT_EXEC|PROT_READ|PROT_WRITE,
6 MAP_PRIVATE, // f l a g s

fd , // f i l e
8 0 // o f f s e t

) ;

Additionally, we need the 128kB of RAM at
0x20000000 and 64kB of TCRAM at 0x10000000
that the firmware expects on this platform. Since
we’d like to have initialized variables, it’s usually
better go with dumps of live memory from a running
system, but /dev/zero works for many functions if
you’re in a rush.

14git clone https://github.com/szechyjs/dsd

38

1 //Load an SRAM image .
int fdram=open ("ram . bin " ,0) ;

3 void ∗sram=mmap(
(void ∗) 0x20000000 ,

5 (s i ze_t) 0x20000 ,
PROT_EXEC|PROT_READ|PROT_WRITE,

7 MAP_PRIVATE, // f l a g s
fdram , // f i l e

9 0 // o f f s e t
) ;

11
//Create an empty TCRAM region .

13 int fdtcram=open ("/dev/ zero " ,0) ;
void ∗ tcram=mmap(

15 (void ∗) 0x10000000 ,
(s i z e_t) 0x10000 ,

17 PROT_READ|PROT_WRITE, // p ro t e c t i on s
MAP_PRIVATE, // f l a g s

19 fdtcram , // f i l e
0 // o f f s e t

21) ;

5.2 Symbol Imports

Now that we’ve got the code loaded, calling it is as
simple as calling any other function, except that our
C program doesn’t yet know the symbol addresses.
There are two ways around this:

The quick but dirty solution is to simply cast a
data or function pointer. For a concrete example,
there is a null function at 0x08098e14 that sim-
ply returns without doing anything. Because it’s
a Thumb function and not an ARM function, we’ll
have to add one to that address before calling it at
0x08098e15.

void (∗ nu l l sub) ()=(void ∗) 0x08098e15 ;
2

p r i n t f ("Trying to c a l l nu l l sub () . \ n") ;
4 nu l l sub () ;

p r i n t f (" Success ! \ n") ;

Similarly, you can access data that’s in Flash or
RAM.

1 p r i n t f ("Manufacturer i s : ’%s ’\n" ,
0 x080f9e4c) ;

Casting function pointers gets us part of the way,
but it’s rather tedious and wastes a bit of memory.
Instead, it’s more efficient to pass a textfile of sym-
bols to the linker. Because this is just a textfile, you

can easily export symbols by script from IDA Pro
or Radare2.

The symbol file is just a collection of assignments
of names to addresses in roughly C syntax.
/∗ Populates the audio b u f f e r ∗/

2 ambe_decode_wav = 0x08051249 ;
/∗ Just re turns . ∗/

4 nu l l sub = 0x08098e15 ;

You can include it in the executable by passing
GCC parameters to the linker, or by calling ld di-
rectly.
CC=arm−l inux−gnueabi−gcc−6 −s t a t i c −g

2 $ (CC) −o test test . c \
−Xl inker −−ju s t−symbols=symbols

Now that we can load the firmware into process
memory and call its functions, let’s take a step back
and see a second way to do the linking, by rewrit-
ing the firmware dump into an ELF object and then
linking it. After that, we’ll get along to decoding
some audio.

5.3 Static Firmware Linking
While it’s nice and easy to load firmware with
mmap(2) at runtime, it would be nice and correct
to convert the firmware dump into an object file for
static linking, so that our resulting executable has
no external dependencies at all. This requires both
a bit of objcopy wizardry and a custom script for
ld.

First, let’s convert our firmware image dump to
an ELF that loads at the proper address.

1 arm−l inux−gnueabi−objcopy \
−I b inary experiment . img \

3 −−change−addre s s e s=0x0800C000 \
−−rename−s e c t i o n . data=. experiment \

5 −O e l f 32−l i t t l e a rm −B arm experiment . o

Sadly, ld will ignore our polite request
to load this image at 0x08000C000, be-
cause load addresses in Unix are just po-
lite suggestions, to be thrown away by the
linker. We can fix this by passing -Xlinker
–section-start=.experiment=0x0800C000 to gcc
at compile time, so ld knows to place the section at
the right address.

Similarly, the SRAM image can be embedded at
its own load address.

39

5.4 Decoding the Audio
To decode the audio, I decided to begin with the
same .amb format that DSD uses. This way, I could
work from their reference files and compare my de-
coding to theirs.

The .amb format consists of a four byte header
(2e 61 6d 62) followed by eight-byte frames. Each
frame begins with a zero byte and is followed by
49 bits of data, stored most significant bit first with
the final bit in the least significant bit of its own
byte.

To have as few surprises as possible, I take the
eight packed bytes and extract them into an array of
49 shorts located at 0x20011c8e, because this is the
address that the firmware uses to store its buffer.
Shorts are used for convenience in addressing dur-
ing computation, even if they are a bit more verbose
than they would be in a convenient calling conven-
tion.

1 //Re−use the firmware ’ s own AMBE bu f f e r .
short ∗ambe=(short ∗) 0 x20011c8e ;

3
int ambei=0;

5 for (int i =1; i <7; i++){// Skip f i r s t by te .
for (int j =0; j <8; j++){

7 //MSBit f i r s t
ambe [ambei++]=(packed [i]>>(7− j))&1;

9 }
}

11 //Final b i t in i t s own frame as LSBit .
ambe [ambei++]=packed [7]&1 ;

Additionally, I re-use the output buffers to store
the resulting WAV audio. In the MD380, there are
two buffers of audio produced from each frame of
AMBE.

//80 samples f o r each audio b u f f e r
2 short ∗ outbuf0=(short ∗) 0x20011aa8 ;

short ∗ outbuf1=(short ∗) 0x20011b48 ;

The thread that does the decoding in firmware is
tied into the MicroC/OS-II realtime operating sys-
tem of the MD380. Since I don’t have the timers and
interrupts to call that thread, nor the I/O ports to
support it, I’ll instead just call the decoding routines
that it calls.

1 //Placed at 0x08051249
int ambe_decode_wav(

3 signed short ∗wavbuffer ,
signed int e ighty , // always 80

5 short ∗ b i t bu f f e r , //0x20011c8e
int a4 , //0

7 short a5 , //0
short a6 , // t imes l o t , 0 or 1

9 int a7 //0x20011224
) ;

For any parameter that I don’t understand, I
just copy the value that I’ve seen called through my
hooks in the firmware running on real hardware. For
example, 0x20011224 is some structure used by the
AMBE code, but I can simply re-use it thanks to
my handy RAM dump.

Since everything is now in the right position, we
can decode a frame of AMBE to two audio frames
in quick succession.

//One AMBE frame becomes two audio frames .
2 ambe_decode_wav(

outbuf0 , 80 , ambe ,
4 0 , 0 , 0 ,

0x20011224
6) ;

ambe_decode_wav(
8 outbuf1 , 80 , ambe ,

0 , 0 , 1 ,
10 0x20011224

) ;

After dumping these to disk and converting to
a .wav file with sox -r 8000 -e signed-integer
-L -b 16 -c 1 out.raw out.wav, a proper audio
file is produced that is easily played. We can now
decode AMBE in Linux!

41

5.5 Runtime Hooks

So now we’re able to decode audio frames, but this is
firmware, and damned near everything of value ex-
cept the audio routines will eventually call a function
that deals with I/O—a function we’d better replace
if we don’t want to implement all of the STM32’s
I/O devices.

Luckily, hooking a function is nice and easy. We
can simply scan through the entire image, replac-
ing all BX (Branch and eXchange) instructions to
the old functions with ones that direct to the new
functions. False positives are a possibility, but we’ll
ignore them for now, as the alternative would be to
list every branch that must be hooked.

The BL instruction in Thumb is actually two ad-
jacent 16-bit instructions, which load a low and high
half of the address difference into the link register,
then BX against that register. (This clobbers the
link register, but so does any BL, so the register use
is effectively free.)

1 /∗ Ca l cu l a t e s Thumb code to branch from
one address to another . ∗/

3 int c a l c b l (int adr , int t a r g e t) {
/∗ Begin with the d i f f e r e n c e o f the t a r g e t

5 and the PC, which po in t s to j u s t a f t e r
the current i n s t r u c t i o n . ∗/

7 int o f f s e t=target−adr−4;
//LSBit doesn ’ t count .

9 o f f s e t =(o f f s e t >>1) ;

11 /∗ The BL in s t r u c t i on i s a c t u a l l y two
Thumb in s t r u c t i on s , wi th one s e t t i n g

13 the h igh par t o f the LR and the other
s e t t i n g the low part wh i l e swapping

15 LR and PC. ∗/
int hi=0xF000 | ((o f f s e t&0xFFF800)>>11) ;

17 int l o=0xF800 | (o f f s e t&0x7FF) ;

19 //Return the pa i r as a s i n g l e 32− b i t word .
return (lo <<16) | h i ;

21 }

Now that we can calculate function call instruc-
tions, a simple loop can patch all calls from one ad-
dress into calls to a second address. You can use this
to hook the I/O functions live, rather than trapping
them.

5.6 I/O Traps
What about those I/O functions that we’ve forgot-
ten to hook, or ones that have been inlined to a
dozen places that we’d rather not hook? Wouldn’t
it sometimes be easier to trap the access and fake
the result, rather than hooking the same function?

You’re in luck! Because this is Unix, we can sim-
ply create a handler for SIGSEGV, much as Jeffball
did in PoC‖GTFO 8:8. Your segfault handler can
then fake the action of the I/O device and return.

Alternately, you might not bother with a proper
handler. Instead, you can use GDB to debug the
process, printing a backtrace when the I/O region
at 0x40000000 is accessed. While GDB in Qemu
doesn’t support ptrace(2), it has no trouble trap-
ping out the segmentation fault and letting you
know which function attempted to perform I/O.

5.7 Conclusion
Thank you kindly for reading my ramblings about
ARM firmware. I hope that you will find them
handy in your own work, whenever you need to work
with reverse engineered firmware away from its own
hardware.

If you’d like to similarly instrument Linux ap-
plications, take a look at Jonathan Brossard’s
Witchcraft Compiler Collection,15 an interactive
ELF shell that makes it nice and easy to turn an
executable into a linkable library.

The emulator from this article has now been in-
corporated into my md380tools16 project, for use in
Linux.

Cheers from Varaždin, Croatia,
–Travis 6A/KK4VCZ

15git clone https://github.com/endrazine/wcc
unzip pocorgtfo13.pdf wcc.tar.bz2

16git clone https://github.com/travisgoodspeed/md380tools

42

