
3 How Slow Can You Go?
by James Forshaw

While doing my research into Windows, I tend to
find quite a few race condition vulnerabilities. Al-
though these vulnerabilities can be exploited, you
typically only get a tiny window of time in which
to do it. A fairly typical sequence of actions looks
something like this:

1. Do some security check.

2. Access some resource.

3. Perform secure action.

In this case the race condition is between the
security check and the action. If we can modify
the state of the system in between those actions,
it might be possible to elevate privileges or do un-
expected things. The time window is typically very
small, but if the code is accessing some controllable
resource in between the check and the action, we
might still be able to create a very reliable exploit.

I wanted to find a way of increasing the time win-
dow to win the race in cases where the code accesses
a resource we control. The following is an overview
of the thought process I went through to come up
with a working solution.

3.1 Investigating Object Manager
Lookup Performance

Hidden under the hood of Windows NT is the Ob-
ject Manager Namespace (OMN). You wouldn’t typ-
ically interact with it directly as the Win32 API for
the most part hides it away. The NT kernel defines a
set of objects, such as Files, Events, Registry Keys,
that can all have a name associated with them. The
OMN provides the means to lookup these named
objects. It acts like a file system; for example, you
can specify a path to an NT system call such as
\BaseNamedObjects\MyEvent, and an event can be
thus looked up.

There are two special object types for use in the
OMN: Object Directories and Symbolic Links. Ob-
ject Directories act as named containers for other
objects, whereas Symbolic Links allow a name to be
redirected to another OMN path. Symbolic Links
are used quite a lot; for example, the Windows drive
letters are really symbolic links to the real storage
device. When we call an NT system call, the kernel
must lookup the entire path, following any symbolic
links until it either reaches the named object or fails
to find a match.

In this exploit we want to make the process of
looking up a resource we control as slow as possible.
For example, if we could make it take 1 or 2 seconds,
then we’ve got a massive window of opportunity to
win the race condition. Therefore I want to find
a way of manipulating the Object Manager lookup
process in such a way that we achieve this goal. I
am going to present my approach to achieving the
required result.

A note about my setup: for my testing I am go-
ing to open a named Event object. All testing is
done on my 2.8GHz Xeon Workstation. Although it
has 20 physical cores, the lookup process won’t be
parallelized, and therefore that shouldn’t be an is-
sue. Xeons tend to have more L2/L3 cache than con-
sumer processors, but if anything this should only
make our timings faster. If I can get a long lookup
time on my Workstation, it should be possible on
pretty much anything else running Windows. Fi-
nally, this is all tested on an up-to-date Windows 10;
however, not much has changed since Windows 7
that might affect the results.

First let’s just measure the time it takes to do

24

a normal lookup. We’ll repeat the lookup a 1, 000
times and take the average. The results are prob-
ably what we’d expect: the lookup process for a
simple named Event is roughly 3µs. That includes
the system call transition, lookup process, and the
access check on the Event object. Although in the-
ory you could win a race, it seems pretty unlikely,
even on a multi-core processor. So let’s think about
a way of improving the lookup time (and when I say
“improve”, I mean making the lookup time slower).

An Object Manager path is limited to the
maximum string size afforded by the UNI-
CODE_STRING structure.

struct UNICODE_STRING {
2 USHORT Length ;

USHORT MaximumLength ;
4 PWSTR Buf f e r ;

}

We can see that the Length member is an un-
signed 16 bit integer, limiting the maximum length
to 216 − 1. This, however, is a byte count, so in
fact this limits us to 215 − 1 or 32767 characters.
From this result, there are two obvious possible ap-
proaches we can take:

1. Make a path that contains one very long name.
The lookup process would have to compare the
entire name using a typical string comparison
operation to verify it’s accessing the correct
object. This should take linear time relative
to the length of the string.

2. Make multiple small named directories and re-
peat. E.g., \A\A\A\A\...\EventName. The
assumption here is that each lookup takes a
fixed amount of time to complete. The oper-
ation will again be linear time relative to the
depth of recursion of the directories.

Now it would seem likely that the cost of the en-
tire operation of a single lookup will be worse than
a string comparison, a primitive that is typically op-
timized quite heavily. At this point we have not had
to look at any actual kernel code, and we won’t start
quite yet, so instead empirical testing seems the way
to go.

Let’s start with the first approach, making a
long string and performing a lookup on it. Our
name limit is around 32767, although we’ll need
to be able to make the object in a writable direc-
tory such as \BaseNamedObject, which reduces the

length slightly, but not enough to make significant
impact. Therefore, we’ll perform the Event opening
on names between 1 character and 32,000 characters
in length. The results are shown below:

0 8000 16000 24000 32000
0

0.025

0.05

0.075

0.1

Name Length in Characters

L
oo

ku
p

T
im

e
A
ve

ra
ge

 (
m

s)

Although this is a little noisy, our assumption
of a linear lookup time seems correct. The longer
the string, the longer it takes to look it up. For a
32,000 character long string, this seems to top out
at roughly 90µs – still not enough in my opinion for
a useful primitive, but certainly a start.

Now let’s instead look at the recursive directory
approach. In this case the upper bound is around
16,000 directories. This is because each path compo-
nent must contain a backslash and a single charac-
ter name (i.e. \A\A\A...). Therefore our maximum
path limit is halved. Of course we’d make the as-
sumption that the time to go through the lookup
process is going to be greater than the time it takes
to compare 4 Unicode characters, but let’s test to
make sure. The results are shown below:

0 4000 8000 12000 16000
0

1

2

3

4

Directory Count

L
oo

ku
p

T
im

e
A
ve

ra
ge

 (
m

s)

Well, I think that’s unequivocal. For 16,000 re-
cursive depth, the average lookup time is around
3700µs, or around 40 times larger than the long path
name lookup result. Now, of course, this comes with
downsides. For a start, you need to create 16,000 or
so directory objects in the kernel. At least on a mod-

25

ern 64 bit Windows this isn’t likely to be too taxing,
however it’s still worth bearing in mind. Also the
process must maintain a handle to each of those di-
rectories, because otherwise they’d be deleted (as a
normal user cannot make kernel objects permanent).
Fortunately our handle limit for a single process is
of the order of 16 million, so we’re a couple of orders
of magnitude below the limit of that.

Now, is 3700µs going to be enough for us?
Maybe, it’s certainly orders of magnitude greater
than 3µs. But can we do better? We’ve now run
out of path space, we’ve filled the absolute maxi-
mum allowed string length with recursive directory
names. What we could do with is a method of mul-
tiplying that effect without requiring a longer path.
We can do this by using Object Manager symbolic
links. By placing the symbolic link as the last com-
ponent of the long path we can force the kernel to
reparse, and start the lookup all over again. On the
final lookup we’ll just point the symbolic link to the
target.

Ultimately though we can only do this 64 times.
Why, can’t we do this indefinitely? Well, no—for
a fairly obvious reason: each time a symbolic link
is encountered the kernel restarts the parsing pro-
cesses; if you pointed a symbolic link at itself, you’d
end up in an infinite loop. The reparse limit of 64
prevents that from becoming a problem. The re-
sults are as we expected, the time taken to lookup
our event is proportional to both the number of sym-
bolic links and the number of recursive directories.
For 64 symbolic links and 16,000 directories it takes
approximately 200ms (note I’ve had to change the
order of the result now to milliseconds). At around
1
5 of a second that should be enough, right? Sure,
but I’m greedy; I want more. How can we make the
lookup time even worse?

At this point it’s time to break out the disassem-
bler and see how the lookup process works under the
hood in the kernel. First off, let’s see what an object
directory structure looks like. We can dump it from
a kernel debugging session using WinDBG with the

26

command dt nt!_OBJECT_DIRECTORY. Converted
back to a C-style structure, it looks something like
the following:

1 struct OBJECT_DIRECTORY
{

3 POBJECT_DIRECTORY_ENTRY HashBuckets [3 7] ;
EX_PUSH_LOCK Lock ;

5 PDEVICE_MAP DeviceMap ;
ULONG Ses s i on Id ;

7 PVOID NamespaceEntry ;
ULONG Flags ;

9 POBJECT_DIRECTORY ShadowDirectory ;
}

Based on the presence of the HashBucket field,
it’s safe to assume that the kernel is using a hash
table to store directory entries. This makes some
sense, because if the kernel just maintained a list
of directory entries, this would be pretty poor for
performance. With a hash table the lookup time
is much reduced as long as the hashing algorithm
does a good job of reducing collisions. This is only
the case though if the algorithm isn’t being actively
exploited. As we’re trying to increase the cost of
lookups, we can intentionally add entries with col-
lisions to make the lookup process take the worst
case time, which is linear relative to the number of
entries in a directory. This again provides us with
another scaling factor, and in this case the number
of entries is only going to be limited by available
memory, as we are never going to need to put the
name into the path.

So what’s the algorithm for the hash? The
main function of interest is ObpLookupObject-
Name, which is referenced by functions such as Ob-
ReferenceObjectByName. The directory entry logic
is buried somewhere in this large function; however,
fortunately there’s a helper function ObpLookup-
DirectoryEntryEx, which has the same logic (it
isn’t actually called by ObpLookupObjectName, but
it doesn’t matter) that is smaller and easier to re-
verse (Figure 10).

So the hashing algorithm is pretty simple; it re-
peatedly mixes the bits of the current hash value
and then adds the uppercase Unicode character to
the hash. We could work out a clever way of getting
hash collisions from this, but actually it’s pretty sim-
ple. The object manager allows us to specify names
containing NULL characters, therefore if we take our
target name, say ‘A’, and prefix it with increasing
length strings containing only NULL, we get both
Hash and Bucket collisions. This does limit us to

creating only 32,000 or so colliding entries before we
run out of strings to create them, but, as we’ll see
in a minute, that’s not a problem. Let’s look at the
results of doing this for a single directory:

0 4000 8000 12000 16000
0

0.15

0.3

0.45

0.6

Collisions

L
oo

ku
p

T
im

e
A
ve

ra
ge

 (
m

s)

Yet again, a nice linear graph. For a given col-
lision count it’s nowhere near as good as the recur-
sive directory approach, but it is a multiplicative
factor in the lookup time, which we can abuse. So
you’d think we can now easily apply this to all our
16,000 recursive directories, add in symbolic links,
and probably get an insane lookup time. Yes, we
would, however there’s a problem, insertion time.
Every time we add a new entry to a directory, the
kernel must do a lookup to check that the entry
doesn’t already exist. This means that, for every
entry we add, we must do (n − 1)2 checks in the
hash bucket just to find that we don’t have the en-
try before we insert it. This means that the time
to add a new entry is approximately proportional to
the square of the number of entries. Sure it’s not
a cubic or exponential increase, but that’s hardly a
consolation. To prove that this is the case we can
just measure the insertion time:

0 4000 8000 12000 16000
0

1500

3000

4500

6000

Directory Count

In
se

rt
io

n
T

im
e

(m
s)

That graph shows a pretty clear n2 trend for the
insertion time. If, say, we wanted to create a direc-
tory entry with 16,000 collisions, it takes close to 5.5
seconds. If we wanted to then do that for all 16,000

27

POBJECT_DIRECTORY ObpLookupDirectoryEntryEx (POBJECT_DIRECTORY Directory ,
2 PUNICODE_STRING Name,

ULONG Attr ibuteF lags) {
4 BOOLEAN Case InSens i t i v e = (Att r ibuteF lags & OBJ_CASE_INSENSITIVE) != 0 ;

SIZE_T CharCount = Name−>Length / s izeof (WCHAR) ;
6 WCHAR∗ Buf f e r = Name−>Buf f e r ;

ULONG Hash = 0 ;
8 while (CharCount) {

Hash = (Hash / 2) + 3 ∗ Hash ;
10 Hash += RtlUpcaseUnicodeChar (∗ Buf f e r) ;

Bu f f e r++;
12 CharCount−−;

}
14

OBJECT_DIRECTORY_ENTRY∗ Entry = Directory−>HashBuckets [Hash % 3 7] ;
16 while (Entry) {

i f (Entry−>HashValue == Hash) {
18 i f (RtlEqualUnicodeStr ing (Name,

ObpGetObjectName (Entry−>Object) , Case InSens i t i v e)) {
20 ObReferenceObject (Entry−>Object) ;

return Entry−>Object ;
22 }

}
24 Entry = Entry−>ChainLink ;

}
26

return NULL;
28 }

Figure 10. ObpLookupDirectoryEntryEx()

28

recursive directory entries, it would take around 24
hours! Now, I think we’re going a bit over the top
here, and by fiddling with the values we can get
something that doesn’t take too long to set up and
gives us a long lookup time. But I’m still greedy; I
want to see how far I can push the lookup time. Is
there any way we can get the best of all worlds?

The final piece of the puzzle is to bring in Shadow
directories, which allow the Object Manager a fall-
back path if it can’t find an entry in a directory.
You can use almost any other Object Manager direc-
tory as a shadow, which will allow us to control the
lookup behavior. A Shadow Directory has a crucial
difference from symbolic links, as it doesn’t cause a
reparse to occur in the lookup process. This means
they’re not restricted to the 64 reparse limit. As
each lookup consumes a path component, eventually
there will be no more paths to lookup. If we put to-
gether two directories in the following arrangement,
we can pass a similar path to our recursive directory
lookup, without actually creating all the directories.

Shadow Directory
Lookup

Path: \A\A\A\A\A ...

Lookup

AA

So how does this actually work? If we open a
path of the form \A\A\A\A\A..., the kernel will first
lookup the initial ‘A’ directory. This is the directory
on the left of the diagram. It will then try to open
the next ‘A’ directory, which is on the right, which
again it will find. Next the kernel again looks up
‘A’, but in this case it doesn’t exist. As the direc-
tory has a shadow link to its parent, it looks there
instead, finds the same ‘A’ directory, and repeats
the process. This will continue until we run out of
path elements to lookup.

So let’s determine the performance of this ap-
proach. We’d perhaps expect it to be less perfor-

mant relative to actually creating all those directo-
ries if only because of the cache effects of the pro-
cessor. But hopefully it won’t be too far behind.

0 4000 8000 12000 160000

1

2

3

4

Directory Count

L
oo

ku
p

T
im

e
A
ve

ra
ge

 (
m

s) Linear Sub
Directory

Linear
Shadow
Directory

Looks good. Yes, the performance is lower than
actually creating the directories, but once we bring
collisions into the mix, that’s not really going to
matter much. So the final result is that instead of
creating 16,000 directories with 16,000 collisions we
can do it with just 2 directories, which is far more
manageable and only takes around 11 seconds on
my workstation. So, to sign off, let’s combine every-
thing together.

1. 16,000 path components using 2 object direc-
tories in a shadow configuration

2. 16,000 collisions per directory

3. 64 symbolic link reparses

And the resulting time for a single lookup on
my workstation is *drum roll please* 19 minutes! I
think we might just be able to win the race condition
with that.

Code examples can be found attached to this
document.10

3.2 Conclusion

So after all that effort we can make the kernel take
around 19 minutes to lookup a single controlled re-
source path. That’s pretty impressive. We have
many options to get the kernel to start the lookup
process, allowing us to use not just files and registry
keys but almost any named event. It’s a typical tale
of unexpected behavior when facing pathological in-
put, and it’s not really surprising Microsoft wouldn’t
optimize for this use case.

10unzip pocorgtfo13.pdf object_manager_lookup_poc.cs

29

