5 A Cirisis of Existential Import; or,
Putting the VM in M /o/Vfuscator

|mov esi, offset ops |mov esi, offset ops|
[v [v

loop: 1loop:

mov ebx, [esi] mov ebx, [esi]

mov ebx, [ebx] mov ebx, [ebx]

add ebx, [esi+4] add ebx, [esi+4]

mov ebx, [ebx] mov ebx, [ebx]

mov edx, [esi+8] mov edx, [esi+8]

mov edx, [edx] mov edx, [edx]

add edx, [esi+0Ch] add edx, [esi+0Ch]

mov [edx], ebx mov [edx], ebx

add esi, 16h add esi, 16h

jmp short loop jmp short loop
I I

AES Minesweeper

A programmer writes code. That is his purpose:
to define the sequence of instructions that must be
carried out to perform a desired action. Without
code, he serves no purpose, fulfills no need. What
then would be the effect on our existential selves if
we found that all code was the same, that every pro-
gram could be written and executed exactly as every
other? What if the net result of our century of work
was precisely ... nothing?

Here, we demonstrate that all programs, on all
architectures,3? can be reduced to the same instruc-
tion stream; that is, the sequence of instructions
executed by the processor can be made identical
for every program. On careful analysis, it is nec-
essary to observe that this is subtly distinct from
prior classes of research. In an interpreter, we might
say that the same instructions (those that compose
the VM) can execute multiple programs, and this is
correct; however, in an interpreter the sequence of
the instructions executed by the processor changes
depending on the program being executed—that is,
the instruction streams differ. Alternatively, we note
that it has been shown that the x86 MMU is itself
Turing-complete, allowing a program to run with no
instructions at all.33

In this sense, on x86, we could argue that any
program, compiled appropriately, could be reduced
to mo instructions—thereby inducing an equivalence
in their instruction streams. However, this peculiar-

by Chris Domas

ity is unique to x86, and it could be argued that the
MMU is then performing the calculations, even if
the processor core is not—different calculations are
being performed for different programs, they are just
being performed “elsewhere.”

Instead, we demonstrate that all programs, on
any architecture, could be simplified to a single,
universal instruction stream, in which the compu-
tations performed are precisely equivalent for every
program—if we look only at the instructions, rather
than their data.

In our proof of concept, we will illustrate reduc-
ing any C program to the same instruction stream on
the x86 architecture. It should be straightforward to
understand the adaptation to other languages and
architectures.

We begin the reduction with a rather ridiculous
tool called the M/o/Vfuscator. The M/o/Vfusca-
tor allows us to compile any C program into only
x86 mov instructions. That is not to say the in-
structions are all the same—the registers, operands,
addressing modes, and access sizes vary depending
on the program—but the instructions are all of the
mov variety. What would be the point of such a
thing? Nothing at all, but it does provide a useful
beginning for us—by compiling programs into only
mov instructions, we greatly simplify the instruc-
tion stream, making further reduction feasible. The
mov instructions are executed in a continuous loop,
and compiling a program??* produces an instruction
stream as follows:

start:
mov
mov
mov

mov
mov

mov ...
jmp start

32Perhaps it is necessary to specify, Turing-complete architecture.
33See The Page-Fault Weird Machine: Lessons in Instruction-less Computation by Julian Bangert et al., USENIX WOOT’13
or the 29C3 talk “The Page Fault Liberation Army or Gained in Translation” by Bangert & Bratus

34movcce -Wf-no-mov-loop program.c -o program

FineFunFor
WinterNights

| at many photo

& sbope. Slmply hang a sheet'

- darken the room and havea plcture‘

show of your own. Guessing
games,’ puzzles, illustrated songs———

thei'e are hundreds of way,s to
entertain yourself and frlendS_,leth'

\
| .;\\ The New |

| -_Mnrr@s@@p@ .

’ The 1916 Models have 1mproved

~ lenses and lighting system and ex-

. clusive adjustable card holder.

- Prices range from $2.50 to $25.00.
- Six sizes., Made for clectricity,
. acetylene and natural or artificial
~ gas. Everv New Mirroscope fully
~ guaranteed. f/

~ FREE: The New Mzrmscope Booklet
of shows and entertainments.
~ Send for it.

for the name, If
no dealer is near
you, we will ship
direct’ on receipt
of price.

" The
Mirroscope Co.

You can buy the
New Mirroscope at
most department,
and toy stores,

supply and hard- ‘

Cleveland, O.

16803 Waterloo Road

But our mov instructions are of all varieties—
from simple mov eax, edx to complex mov dl,
[esi+4*ecx+0x19afc09], and everything in be-
tween. Many architectures will not support such
complex addressing modes (in any instruction), so
we further simplify the instruction stream to pro-
duce a uniform variety of movs. Our immediate goal
is to convert the diverse x86 movs to a simple, 4-byte,
indexed addressing varieties, using as few registers
as possible. This will simplify the instruction stream
for further processing and mimic the simple load and
store operations found on RISC type architectures.
As an example, let us assume 0x10000 is a 4-byte
scratch location, and esi is kept at 0. Then

1‘m0v eax , edx

—

29

can be converted to

mov [0x10000+esi|, edx
mov eax, [0x10000+esi |

We have replaced the register-to-register mov va-
riety with a standard 4-byte indexed memory read
and write. Similarly, if we pad our data so that an
oversized memory read will not fault, and pad our
scratch space to allow writes to spill, then

‘mov al, [0x20000]

can be rewritten

mov [0x10000+esi|, eax
mov edi, [0x20000—3+esi |
mov [0x10000—3+esi], edi
mov eax, [0x10000+esi |

For more complex addressing forms, such as mov
dx, [eax+4xebx+0Oxdeadbeef], we break out the
extra bit shift and addition using the same technique
the M /o/Vfuscator uses—a series of movs to perform
the shift and sum, allowing us to accumulate (in the
example) eax+4*ebx into a single register, so that
the mov can be reduced back to an indexed address-
ing eax+0Oxdeadbeef.

With such transforms, we are able to rewrite our
diverse-mov program so that all reads are of the form
mov esi/edi, [base + esi/edi] and all writes of
the form mov [base + esi/edi], esi/edi, where

base is some fixed address. By inserting dummy
reads and writes, we further homogenize the instruc-
tion stream so that it consists only of alternating
reads and writes. Our program now appears as (for
example):

start :
mov esi, [0x149823 + edi]
mov [0x9fba09 + esi], esi

mov edi, [0x40labb + edi]
mov [0x3719ff + esi], edi
jmp start

The only variation is in the choice of register and
the base address in each instruction. This simplifica-
tion in the instruction stream now allows us to more
easily apply additional transforms to the code. In
this case, it enables writing a non-branching mov in-
terpreter. We first envision each mov as accessing
“virtual,” memory-based registers, rather than CPU
registers. This allows us to treat registers as sim-
ple addresses, rather than writing logic to select be-
tween different registers. In this sense, the program
is now

start:

MOVE | esi|, [0x149823 + [_edi]]
MOVE [0x9fba09 + [esi|], [_esi]
MOVE | edi], [0x401ab5 + [edi]]
MOVE [0x3719ff + [esi]], [_edi]

jmp start

where _esi and _edi are labels on 4-byte mem-
ory locations, and MOVE is a pseudo-instruction, ca-
pable of accessing multiple memory addresses. With
the freedom of the pseudo-instruction MOVE, we can

simplify all instructions to have the exact same form:
start :

MOVE [0 + [esi]], [0x149823 + [edi]]

MOVE [0x9fba09 + [_esi]], [0 + [_esi]]

MOVE [0 + [edi]], [0x401ab5 + [edi]]

MOVE [0x3719ff + [esi]], [0 + [_edi]]

jmp start

11
13
15
17
19
21
23

25

30

We can now define each MOVE by its tuple of
memory addresses:

{0, esi, 0x149823, edi}
{0x9fba09, esi, 0, _esi}

{0, _edi, 0x40lab5, _edi}
{0x3719ff, esi, 0, _edi}

and write this as a list of operands:

operands:

.long 0, _esi, 0x149823, edi
.long 0x9fba09, esi, 0, _esi
.long 0, _edi, 0x40lab5, _edi
.long 0x3719ff, esi, 0, _edi

We now write an interpreter for our pseudo-mov.
Let us assume the physical esi register now holds
the address of a tuple to execute:

; a pseudo—move
; Read the data from the source.
mov ebx, [esi+O0] ; Read the address of the
; virtual index register.
mov ebx, [ebx] ; Read the virtual index
; register.
add ebx, [esi-+4] ; Add the offset and
; index registers to
; compute a source
; address.
mov ebx, [ebx] ; Read the data from the
; computed address.
; Write the data to the destination.
mov edx, [esi+8] ; Read the address of the
; virtual index register.
mov edx, [edx] ; Read the virtual index
; register.
add edx, [esi+12] ; Add the offset and
; index registers to
; compute a destination
; address.

mov [edx], ebx ; Write the data to the
; destination address.

L P E\"4 | Make Your Boy a Leader

Give him a Leedawl Com-
§ pass for Christmas and let
him lead ‘‘the boys”
through the woods, over a trail or on a tramp.

It ’s the only Guaranteed Jeweled «
Compass for $1.00. 1 ([
Ifyourdealeydoes not have tient,write usforfolder C-12. | e

Taylor Instrument Companies, Rochester, N. Y.
Makers of Scientific Instruments of Superiority.

11

Finally, we execute this single MOVE interpreter
in an infinite loop. To each tuple in the operand
list, we append the address of the next tuple to ex-
ecute, so that esi (the tuple pointer) can be loaded
with the address of the next tuple at the end of each
transfer iteration. This creates the final system:

mov esi, operands
loop:

mov ebx, [esi+O0]
mov ebx, [ebx]
add ebx, [esi+4]
mov ebx, [ebx]
mov edx, [esi+8§]
mov edx, [edx]
add edx, [esi+12]
mov [edx], ebx
mov esi, [esi+16]
jmp loop

The operand list is generated by the compiler,
and the single universal program appended to it.
With this, we can compile all C programs down to
this exact instruction stream. The instructions are
simple, permitting easy adaptation to other archi-
tectures. There are no branches in the code, so the
precise sequence of instructions executed by the pro-
cessor is the same for all programs. The logic of
the program is effectively distilled to a list of mem-
ory addresses, unceremoniously processed by a mun-
dane, endless data transfer loop.

So, what does this mean for us? Of course, not so
much. It is true, all “code” can be made equivalent,
and if our job is to code, then our job is not so inter-
esting. But the essence of our program remains—it
had just been removed from the processor, diffused
instead into a list of memory addresses. So rather,
I suppose, that when all logic is distilled to noth-
ing, and execution has lost all meaning—well, then,
a programmer’s job is no longer to “code,” but rather
to “datal”

This project, and the proof of concept reduc-
ing compiler, can be found at Github®® and as an
attachment.?¢ The full code elaborates on the pro-
cess shown here, to allow linking reduced and non-
reduced code. Examples of AES and Minesweeper
running with identical instructions are included.

35git clone https://github.com/xoreaxeaxeax/reducto
36unzip pocorgtfol2.pdf reducto.tgz

31

Helps to Spring Fun

The Second
BOYS’ BOOK
OF MODEL

AEROPLANES

By Francis Arnold Collins

The book of books for every lad, and
every grown-up too, who has been caught
in the fascination of model aeroplane
experimentation, covering up to date the
science and sport of model aeroplane
building and’ flying, both in this country
and abroad.

There are detailed instructions for
building fifteen of the newest models,
with a special chapter devoted to parlor
aviation, full instructions for building
small paper gliders, and rules for con-
ducting model aeroplane contests.

The illustrations are from interesting

photographs and helpful working draw-
ings of over one hundred new models.

The price, $1.20 net, postage 11 cents

The Author’s Earlier Book
THE BOYS BOOK OF
MODEL AEROPLANES

It tells just how to build “a glider,” a
motor, monoplane and biplane models,
and how to meet and remedy common
faults—all so simply and clearly that
any lad can get results. The story of
the history and development of aviation
is told so accurately and vividly that it

- cannot fail to interest and inform young

and old.
Many helpful illustrations
The price, $1.20 net, postage 14 cents

All booksellers, or send direct to the
publishers :

THE CENTURY CO.

