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In 2005, M. Abadi and his gang presented a nifty
trick to prevent control flow hijacking, called Control
Flow Integrity. CFI is, essentially, a security policy
that forces the software to follow a predetermined
control flow graph (CFG), drastically restricting the
available gadgets for return-oriented programming
and other nifty exploit tricks.

Unfortunately, the current implementations in
both Microsoft’s Visual C++ and LLVM’s clang
compilers require source to be compiled with special
flags to add CFG checking. This is sufficient when
new software is created with the option of added se-
curity flags, but we do not always have such luxury.
When dealing with third party binaries, or legacy
applications that do not compile with modern com-
pilers, it is not possible to insert these compile-time
protections.

Luckily, we can combine static analysis with bi-
nary patching to add an equivalent level of protec-
tion to our binaries. In this article, I explain the
theory of CFI, with specific examples for patching
x86 32-bit ELF binaries—without the source code.

CFI is a way of enforcing that the intended con-
trol flow graph is not broken, that code always takes
intended paths. In its simplest applications, we
check that functions are always called by their in-
tended parents. It sounds simple in theory, but in
application it can get gnarly. For example, consider:

1 int a ( ) { return 0 ; }
int b ( ) { return a ( ) ; }

3 int c ( ) { return a ( ) + b ( ) + 1 ; }

For the above code, our pseudo-CFI might look
like the following, where called_by_x checks the
return address.

1 int a ( ) {
i f ( ! called_by_b && ! called_by_c ) {

3 e x i t ( ) ;
}

5 return 0 ;
}

7 int b ( ) {
i f ( ! called_by_c ) {

9 e x i t ( ) ;
}

11 return a ( ) ;
}

13 int c ( ) { return a ( ) + b ( ) + 1 ; }

Of course, this sounds quite easy, so let’s dig in
a bit further. Here is a very simple example pro-
gram to illustrate ROP, which we will be able to
effectively kill with our ghetto trick.

1 #include <s t r i n g . h>

3 void smashme(char∗ blah ) {
char smash [ 1 6 ] ;

5 s t r cpy ( smash , blah ) ;
}

7
int main ( int argc , char∗∗ argv ) {

9 i f ( argc > 1) {
smashme( argv [ 1 ] ) ;

11 }
}

In x86, the stack has a layout like the following.

Local Variables
Saved ebp

Return Pointer
Parameters

. . .

By providing enough characters to smashme, we
can overwrite the return pointer. Assume for now,
that we know where we are allowed to return to.
We can then provide a whitelist and know where it
is safe to return to in keeping the control flow graph
of the program valid.

Figure 4 shows the disassembly of smashme()
and main(), having been compiled by GCC.

Great. Using our whitelist, we know that
smashme should only return to 0x08048456, because
it is the next instruction after the ret. In x86, ret
is equivalent to something like the following. (This
is not safe for multi-threaded operations but we can
ignore that for now.)

1 pop ecx ; puts the re turn address to ecx
jmp ecx ; jumps to the re turn address
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[ 0 x08048320 ]> pdf@sym.smashme
2 / ( fcn ) sym.smashme 26

| ; arg i n t arg_2 @ ebp+0x8
4 | ; var i n t loca l_6 @ ebp−0x18

| ; CALL XREF from 0x08048451 ( sym.smashme)
6 | 0x0804841d 55 push ebp

| 0 x0804841e 89 e5 mov ebp , esp
8 | 0x08048420 83 ec28 sub esp , 0x28

| 0x08048423 8b4508 mov eax , dword [ ebp+arg_2 ] ; [ 0 x8 :4]=0
10 | 0x08048426 89442404 mov dword [ esp + 4 ] , eax

| 0x0804842a 8d45e8 lea eax , [ ebp−loca l_6 ]
12 | 0x0804842d 890424 mov dword [ esp ] , eax

| 0x08048430 e 8 b b f e f f f f ca l l sym. imp.strcpy
14 | 0x08048435 c9 leave

\ 0x08048436 c3 ret
16 [ 0 x08048320 ]> pdf@sym.main

/ ( f cn ) sym.main 33
18 | ; arg i n t arg_0_1 @ ebp+0x1

| ; arg i n t arg_3 @ ebp+0xc
20 | ; DATA XREF from 0x08048337 ( sym.main )

| ;−− main :
22 | 0x08048437 55 push ebp

| 0x08048438 89 e5 mov ebp , esp
24 | 0x0804843a 83 e4 f0 and esp , 0 x f f f f f f f 0

| 0x0804843d 83 ec10 sub esp , 0x10
26 | 0x08048440 837d0801 cmp dword [ ebp + 8 ] , 1 ; [ 0 x1 :4]=0 x1464c45

| ,=< 0x08048444 7e10 j l e 0x8048456
28 | | 0x08048446 8b450c mov eax , dword [ ebp+arg_3 ] ; [ 0 xc :4]=0

| | 0x08048449 83 c004 add eax , 4
30 | | 0 x0804844c 8b00 mov eax , dword [ eax ]

| | 0 x0804844e 890424 mov dword [ esp ] , eax
32 | | 0x08048451 e 8 c 7 f f f f f f ca l l sym.smashme

| | ; JMP XREF from 0x08048444 ( sym.main )
34 | ‘−> 0x08048456 c9 leave

\ 0x08048457 c3 ret

Figure 4 – Disassembly of main() and smashme().
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Cool. We can just add a check here. Perhaps
something like this?

pop ecx ; puts the re turn address to ecx
2 cmp ecx , 0x08048456 ; check t ha t we return to

the r i g h t p lace
jne 0x41414141 ; crash

4 jmp ecx ; e f f e c t i v e l y re turn

Now just replace our ret instruction with the
check. ret in x86 is simply this:

$ rasm2 −a x86 −b32 " r e t "
2 c3

where our code is this:

$ rasm2 −a x86 −b32 "pop ecx ; cmp ecx , 0
x08048456 ; jne 0x41414141 ; jmp ecx"

2 5981 f9568404080 f8534414141 f f e1

Sadly, this will not work for several reasons. The
most glaring problem is that ret is only one byte,
whereas our fancy checker is 15 bytes. For more
complicated programs, our checker could be even
larger! Thus, we cannot simply replace the ret
with our code, as it will overwrite some code after
it—in fact, it would overwritemain. We’ll need to
do some digging and replace our lengthy code with
some relocated parasite, symbiont, code cave, hook,
or detour—or whatever you like to call it!

Nowadays there aren’t many places to put our
code. Before x86 got its no-execute (NX) MMU bit,
it’d be easy to just write our code into a section like
.data, but marking this as +x is now a huge secu-
rity hole, as it will then be rwx, giving attackers a
great place for putting shellcode. The .text sec-
tion, where the main code usually goes, is marked
r-x, but there’s rarely slack space enough in this
section for our code.

Luckily, it’s possible to add or resize ELF sec-
tions, and there’re various tools to do it, such as
Elfsh, ERESI, etc. The challenge is rewriting the
appropriate pointers to other sections; a dedicated
tool for this will be released soon. Now we can add
a new section that is marked as r-x, replace our ret
with a jump to our new section—and we’re ready to
take off!

Well, wheels aren’t up yet. As mentioned before,
ret is c3, but absolute jumps are five bytes.

$ rasm2 −a x86 −b32 "jmp 0x41414141"
2 e93c414141

So what is left to do? Well, we can simply rewind
to the first complete opcode five bytes before the
ret, and add a jump, then relocate the remaining
opcodes. In this case, we could do something like
this:

smashme :
2 push ebp

mov ebp , esp
4 sub esp , 0x28

mov eax , dword [ ebp + 8 ]
6 mov dword [ esp + 4 ] , eax

lea eax , [ebp − 0x18 ]
8 mov dword [ esp ] , eax

jmp pa r a s i t e
10

pa r a s i t e :
12 ca l l sym. imp.strcpy

leave
14 pop ecx

cmp ecx , 0x08048456
16 jne 0x41414141

jmp ecx

Here, parasite is mapped someplace else in
memory, such as our new section.

With this technique, we’ll still to have to pass
on protecting a few kinds of function epilogues, such
as where a target of a jump is within the last five
bytes. Nevertheless, we’ve covered quite a lot of the
intended CFG.

This approach works great on platforms like
ARM and MIPS, where all instructions are constant-
length. If we’re willing to install a signal handler,
we can do better on x86 and amd64, but we’re ap-
proaching a dangerous situation dealing with sig-
nals in a generic patching method, so I’ll leave you
here for now. The code for applying the explained
patches is all open source and will soon be extended
to use emulation to compute relative calls.

Thanks for reading!
Jeff
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