
4 Master Boot Record Nibbles; or,
One Boot Sector PoC Deserves Another

by Eric Davisson

I was inspired by the boot sector Tetranglix game
by Juhani Haverinen, Owen Shepherd, and Shikhin
Sethi published as PoC‖GTFO 3:8. I feel more cre-
ative when dealing with extreme limitations, and
512 bytes (510 with the 0x55AA signature) of real-
mode assembly sounded like a great way to learn
BIOS API stuff. I mostly learned some int 0x10
and 0x16 from this exercise, with a bit of int 0x19
from a pull request.

The game looks a lot more like snake or nibbles,
except that the tail never follows the head, so the
game piece acts less like a snake and more like a
streak left in Tron. I called it Tron Solitaire be-
cause there is only one player. This game has an
advanced/dynamic scoring system with bonus and
trap items, and progressively increasing game speed.
This game can also be won.

I’ve done plenty of protected mode assembly and
machine code hacking, but for some reason have
never jumped down to real mode. Tetranglix gave
me a hefty head start by showing me how to do
things like quickly setting up a stack and some video
memory. I would have possibly struggled a little
with int 0x16 keyboard handling without this code
as a reference. Also, I re-used the elegant ran-
dom value implementation as well. Finally, the PIT
(Programmable Interval Timer) delay loop used in
Tetranglix gave me a good start on my own dynam-
ically timed delay.

I also learned how incredibly easy it was to get
started with 16-bit real mode programming. I owe
a lot of this to the immediate gratification from
utilities like qemu. Looking at OS guides like the
osdev.org wiki was a bit intimidating, because
writing an OS is not at all trivial, but I wanted
to start with much less than that. Just because I
want to write real mode boot sector code doesn’t
mean I’m trying to actually boot something. So a
lot of the instructions and guides I found had a lot
of information that wasn’t applicable to my unusual
needs and desires.

I found that there were only two small things I
needed to do in order to write this code: make sure
the boot image file is exactly 512 bytes and make
sure the last two bytes are 0x55AA. That’s it! All
the rest of the code is all yours. You could literally
start a file with 0xEBFE (two-byte unconditional in-
finite “jump to self” loop), have 508 bytes of nulls
(or ANYTHING else), and end with 0x55AA, and
you’ll have a valid “boot” image that doesn’t error
or crash. So I started with that simple PoC and
built my way up to a game.

The most dramatic space savers were also the
least interesting. Instead of cool low level hacks, it
usually comes down to replacing a bad algorithm.
One example is that the game screen has a nice blue
border. Initially, I drew the top and bottom lines,
and then the right and left lines. I even thought
I was clever by drawing the right and left lines to-
gether, two pixels at a time—because drawing a right
pixel and incrementing brings me to the left and
one row down. I used this side-effect to save code,
rewriting a single routine to be both right and left.

However, all of this was still too much code. I
tried something simpler: first splashing the whole
screen with blue, then filling in a black box to only
leave the blue border. The black box code still
wasn’t trivial, but much less code than the previ-
ous method. This saved me sixteen precious bytes!

Less than a week after I put this on Github, my
friend Darkvoxels made a pull request to change the
game-over screen. Instead of splashing the screen
red and idling, he just restarts the game. I liked
this idea and merged. As his game-over is just a
simple int 0x19, he saved ten bytes.

Although I may not have tons of reusable subrou-

9

tines, I still avoided inlining as much as possible. In
my experience, inlining is great for runtime perfor-
mance because it cuts out the overhead of jumping
around the code space and stack overhead. How-
ever, this tends to create more code as the tradeoff.
With 510 effective bytes to work with, I would gladly
trade speed for space. If I see a few consecutive in-
structions that repeat, I try to make a routine of
it.

I also took a few opportunities to use self-
modifying code to save on space. No longer do I
have to manually hex hack the w bit in the rwx at-
tribute in the .text section of an ELF header; real
mode trusts me to do all of the “bad” things that
dev hipsters rage at me about. So the rest of this
article will be about these hacks.

Two of the self-modifying code hacks in this code
are similar in concept. There are a couple of places
where I needed something similar to a global vari-
able. I could push and pop it to and from the stack
when needed, but that requires more bytes of code

overhead than I had to spare. I could also use a
dedicated register, but there are too few of those.
On the other hand, assuming I’m actually using this
dynamic data, it’s going to end up being part of an
operand in the machine code, which is what I would
consider its persisted location. (Not a register, not
the stack, but inside the actual code.)

As the pixel streak moves around on the game-
board, the player gets one point per character move-
ment. When the player collects a bonus item of
any value, this one-point-per gets three added to it,
becoming a four-points-per. If another additional
bonus item is collected, it would be up to 7 points.
The code to add one point is selfmodify: add ax,
1. When a bonus item is collected, the routine
for doing bonus points also has this line add byte
[selfmodify + 2], 3. The +2 offset to our add
ax, 1 instruction is the byte where the 1 operand
was located, allowing us to directly modify it.

10

On a less technical note, this adds to the strategy
of the game; it discourages just filling the screen up
with the streak while avoiding items (so as to not
create a mess) and just waiting out the clock. In
fact, it is nearly impossible to win this way. To win,
it is a better strategy to get as many bonuses as
early as possible to take advantage of this progres-
sive scoring system.

Another self-modifying code trick is used on
the “win” screen. The background to the “YOU
WIN!” screen does some color and character cycling,
which is really just an increment. It is initialized
with winbg: mov ax, 0, and we can later incre-
ment through it with inc word [winbg + 0x01].
What I also find interesting about this is that we
can’t do a space saving hack like just changing mov
ax, 0 to xor ax, ax. Yes, the result is the same;
ax will equal 0x0000 and the xor takes less code
space. However, the machine code for xor ax, ax is
0x31c0, where 0x31 is the xor and 0xc0 represents
“ax with ax.” The increment instruction would be
incrementing the 0xc0 byte, and the first byte of the
next instruction since the word modifier was used
(which is even worse). This would not increment an
immediate value, instead it would do another xor of
different registers each time.

Also, instead of using an elaborate string print
function, I have a loop to print a character at a
pointer where my “YOU WIN!” string is stored
(winloop: mov al, [winmessage]), and then use
self-modifying code to increment the pointer on each
round. (inc byte [winloop + 0x01])

The most interesting self-modifying code in this
game changes the opcode, rather than an operand.
Though the code for the trap items and the bonus
items have a lot of differences, there are a significant
amount of consecutive instructions that are exactly
the same, with the exception of the addition (bonus)
or the subtraction (trap) of the score. This is be-
cause the score actually persists in video memory,
and there is some code overhead to extract it and
push it back before and after adding or subtracting
to it.

So I made all of this a subroutine. In my as-
sembly source you will see it as an addition (math:
add ax, cx), even though the instruction initialized
there could be arbitrary. Fortunately for me, the
machine code format for this addition and subtrac-
tion instruction are the same. This means we can
dynamically drop in whichever opcode we want to
use for our current need on the fly. Specifically, the
add I use is ADD r/m16, r16 (0x01 /r) and the sub
I use is SUB r/m16, r16 (0x29 /r). So if it’s a bonus
item, we’ll self modify the routine to add (mov byte
[math], 0x01) and call it, then do other bonus re-
lated instructions after the return. If it’s a trap item,
we’ll self modify the routine to subtract (mov byte
[math], 0x29) and call it, then do trap/penalty in-
structions after the return. This whole hack isn’t
without some overhead; the most exciting thing is
that this hack saved me one byte, but even a single
byte is a lot when making a program this small!

I hope these tricks are handy for you when writ-
ing your own 512-byte game, and also that you’ll
share your game with the rest of us. Complete code
and prebuilt binaries are available in the ZIP portion
of this release.8

8unzip pocorgtfo11.pdf tronsolitare.zip

11

1 ; Tron So l i t a r e
; ∗This i s a PoC boot sec tor (<512 by te s) game

3 ; ∗Controls to move are j u s t up/down/ l e f t / r i g h t
; ∗Avoid touching yourse l f , b lue border , and the

5 ; unlucky red 7

7 [ORG 0x7c00] ; add to o f f s e t s
LEFT EQU 75

9 RIGHT EQU 77
UP EQU 72

11 DOWN EQU 80

13 ; I n i t the environment
; i n i t data segment

15 ; i n i t s tack segment a l l o c a t e area of mem
; i n i t E/ video segment and a l l o c a t e area of mem

17 ; Set to 0x03/80x25 t e x t mode
; Hide the cursor

19 xor ax , ax ;make i t zero
mov ds , ax ;DS=0

21
mov ss , ax ; s tack s t a r t s at 0

23 mov sp , 0x9c00 ; 200h past code s t a r t

25 mov ax , 0xb800 ; t e x t v ideo memory
mov es , ax ;ES=0xB800

27
mov al , 0x03

29 xor ah , ah
int 0x10

31
mov al , 0x03 ; Some BIOS crash without t h i s

33 mov ch , 0x26
inc ah

35 int 0x10

37 ;Draw Border
; F i l l in a l l b lue

39 xor di , di
mov cx , 0x07d0 ; whole screens worth

41 mov ax , 0 x1f20 ; empty b lue background
rep stosw ; push i t to video memory

43
; f i l l in a l l b l ack except for remaining b lue edges

45 mov di , 158 ; Almost 2nd row 2nd column (need
; to add 4)

47 mov ax , 0x0020 ; space char on b lack on b lack
f i l l i n :

49 add di , 4 ; Adjust for next l i n e and column
mov cx , 78 ; inner 78 columns (exc lude s ide

51 ; borders)
rep stosw ; push to video memory

53 cmp di , 0 x0e f e ; I s i t the l a s t co l o f l a s t l i n e
;we want?

55 jne f i l l i n ; I f not , loop to next l i n e

57 ; i n i t the score
mov di , 0 x0f02

59 mov ax , 0x0100 ;#CHEAT (You can se t the i n i t i a l
; score h igher than t h i s)

61 stosw

63 ; Place the game piece in s t a r t i n g pos i t i on
mov di , 0x07d0 ; s t a r t i n g pos i t i on

65 mov ax , 0 x2f20 ; char to d i sp l ay
stosw

67
mainloop :

69 ca l l random ;Maybe p lace an item on screen

71 ;Wait Loop
; Get speed (based on game/ score progress)

73 push di
mov di , 0 x0f02 ; s e t coordinate

75 mov ax , [es : di] ; read data at coordinate
pop di

77 and ax , 0 xf000 ; ge t most s i g n i f i c a n t n i b b l e
shr ax , 14 ; now va lue 0−3

79 mov bx , 4 ;#CHEAT, d e f au l t i s 4 ; make
; amount h igher for o v e r a l l

81 ; s lower (but s t i l l

; p rog re s s i v e) game
83 sub bx , ax ; bx = 4 − (0−3)

mov ax , bx ; ge t i t in to ax
85

mov bx , [0 x046C] ; Get timer s t a t e
87 add bx , ax ;Wait 1−4 t i c k s (p rogre s s i v e

; d i f f i c u l t y)
89 ; add bx , 8 ; unprogre s s i v e l y slow cheat

;#CHEAT (comment above l i n e out and uncomment
91 ; t h i s l i n e)

delay :
93 cmp [0 x046C] , bx

jne delay
95

; Get keyboard s t a t e
97 mov ah , 1

int 0x16
99 jz pe r s i s t e d ; i f no keypress , jump to

; p e r s i s t i n g move s t a t e
101

; Clear Keyboard bu f f e r
103 xor ah , ah

int 0x16
105

; Check for d i r e c t i ona l pushes and take act ion
107 cmp ah , LEFT

je l e f t
109 cmp ah , RIGHT

je r i gh t
111 cmp ah , UP

je up
113 cmp ah , DOWN

je down
115 jmp mainloop

117 ; Otherwise , move in d i r e c t i on l a s t chosen
pe r s i s t e d :

119 cmp cx , LEFT
je l e f t

121 cmp cx , RIGHT
je r i gh t

123 cmp cx , UP
je up

125 cmp cx , DOWN
je down

127
; This w i l l only happen be fore f i r s t keypress

129 jmp mainloop

131 l e f t :
mov cx , LEFT ; f o r pe r s i s t enc

133 sub di , 4 ; coordinate o f f s e t correc t ion
ca l l movement_overhead

135 jmp mainloop
r i gh t :

137 mov cx , RIGHT
ca l l movement_overhead

139 jmp mainloop
up :

141 mov cx , UP
sub di , 162

143 ca l l movement_overhead
jmp mainloop

145 down :
mov cx , DOWN

147 add di , 158
ca l l movement_overhead

149 jmp mainloop

151 movement_overhead :
ca l l co l l i s i on_check

153 mov ax , 0 x2f20
stosw

155 ca l l s co r e
ret

157
co l l i s i on_check :

159 mov bx , di ; current l o ca t i on on screen
mov ax , [es :bx] ; grab video bu f f e r + current

161 ; l o ca t i on

163 ; Did we Lose?
;#CHEAT: comment out a l l 4 o f these checks

165 ; (8 i n s t r u c t i on s) to be i n v i n c i b l e
cmp ax , 0 x2f20 ; did we land on green

167 ; (s e l f)?
je gameover

169 cmp ax , 0 x1f20 ; did we land on b lue
; (border)?

171 je gameover
cmp bx , 0 x0f02 ; did we land in score

173 ; coordinate?
je gameover

175 cmp ax , 0 xc f37 ; magic red 7
je gameover

177
; Score Changes

179 push ax ; save copy of ax/ item
and ax , 0 xf000 ;mask background

181 cmp ax , 0xa000 ; add to score
je bonus

183 cmp ax , 0xc000 ; sub t rac t from score

12

je penalty
185 pop ax ; r e s t o r e ax

ret
187

bonus :
189 mov byte [math] , 0x01

;make i t ems t u f f : rout ine use
191 ; add opcode

ca l l i t ems tu f f
193 stosw ; put data back in

mov di , bx ; r e s t o r e coordinate
195 add byte [s e l fmod i f y + 2] , 3

197 ret
penalty :

199 mov byte [math] , 0x29
;make i t ems t u f f : rout ine use

201 ; sub opcode
ca l l i t ems tu f f

203 cmp ax , 0xe000 ; san i ty check for in t e ge r
; underf low

205 ja underf low
stosw ; put data back in

207 mov di , bx ; r e s t o r e coordinate
ret

209
underf low :

211 mov ax , 0x0100
stosw

213 mov di , bx
ret

215
i t ems tu f f :

217 pop dx ; s t o re return
pop ax

219 and ax , 0 x000f
inc ax ; 1−8 ins tead of 0−7

221 shl ax , 8 ; mu l t i p l y va lue by 256
push ax ; s t o re the va lue

223
mov bx , di ; save coordinate

225 mov di , 0 x0f02 ; s e t coordinate
mov ax , [es : di] ; read data at coordinate and

227 ; sub t rac t from score
pop cx

229 math :
add ax , cx ; ’ add ’ i s j u s t a s u g g e s t i o n . . .

231 push dx ; r e s t o r e return
ret

233
sco r e :

235 push di
mov di , 0 x0f02 ; s e t coordinate

237 mov ax , [es : di] ; read data at coordinate
; f o r each mov of character , add ’n ’ to score

239 ; t h i s source shows add ax , 1 , however , each
; bonus item tha t i s p icked up increments t h i s

241 ; va lue by 3 each time an item i s picked up.
; Yes , t h i s i s s e l f modifying code , which i s

243 ; why the l a b l e ’ s e l fmod i f y : ’ i s seen above , to
; be convenient ly used as an address to p i vo t

245 ; o f f o f in an add byte [s e l fmod i f y + o f f s e t to
; ’ 1 ’] , 3 i n s t ru c t i on

247 s e l fmod i f y : add ax , 1 ; increment character in
; coordinate

249 stosw ; put data back in
pop di

251 ;Why 0xf600 as score c e i l i n g :
; i f i t was something l i k e 0 x f f f f , a score from

253 ; 0 x f f f e would l i k l e y in t e g e r over f low to a low
; range (due to the progre s s i v e) s co r ing .

255 ; 0 xf600 g i v e s a good amount of s l a c k for t h i s .
; However , i t ’ s s t i l l " t e c hn i c a l l y " p o s s i b l e to

257 ; over f low ; for example , h i t t i n g a ’7 ’ bonus
; item a f t e r a lready g e t t i n g more than 171

259 ; bonus items (2048 po in t s for bonus , 514
; po in t s per move) would make the score go from

261 ; 0 x f 5 f f to 0x0001.
cmp ax , 0 xf600 ; i s the score high enough to

263 ; ’ win ’ ;#CHEAT
ja win

265 ret

267 random :
; Decide whether to p lace bonus/ trap

269 rdt s c
and ax , 0 x000f

271 cmp ax , 0x0007
jne undo

273
push cx ; save cx

275
; Gett ing random p i x e l

277 redo :
rd t s c ; random

279 xor ax , dx ; xor i t up a l i t t l e
xor dx , dx ; c l e a r dx

281 add ax , [0 x046C] ;moar randomness
mov cx , 0x07d0 ;Amount of p i x e l s on screen

283 div cx ; dx now has random va l
shl dx , 1 ; ad jus t for ’ even ’ p i x e l va lues

285 ; Are we c l obbe r ing other data?
cmp dx , 0 x0f02 ; I s the p i x e l the score?

287 je redo ; Get a d i f f e r e n t va lue

289 push di ; s t o re coord
mov di , dx

291 mov ax , [es : di] ; read data at coordinate
pop di ; r e s t o r e coord

293 cmp ax , 0 x2f20 ; Are we on the snake?
je redo

295 cmp ax , 0 x1f20 ; Are we on the border?
je redo

297
; Display random p i x e l

299 push di ; save current coordinate
mov di , dx ; put rand coord in current

301
; Decide on item−type and va lue

303 powerup :
rd t s c ; random

305 and ax , 0x0007 ; ge t random 8 va lues
mov cx , ax ; cx has rand va lue

307 add cx , 0 x5f30 ; b a s e l i n e
rd t s c ; random

309 ; background e i t h e r ’A’ or ’C’ (l i g h t green or
; red)

311 and ax , 0x2000 ; keep b i t 13
add ax , 0x5000 ; turn b i t 14 and 12 on

313 add ax , cx ; item−type + value

315 stosw ; d i s p l ay i t
pop di ; r e s t o r e coordinate

317
pop cx ; r e s t o r e cx

319
undo :

321 ret

323 gameover :
int 0x19 ; Reboot the system and r e s t a r t

325 ; the game.

327 ; Legacy gameover , doesn ’ t reboot , j u s t ends with
; red screen

329 ; xor di , d i
;mov cx , 80∗25

331 ;mov ax , 0 x4f20
; rep stosw

333 ; jmp gameover

335 win :
; c l e a r screen

337
mov bx , [0 x046C] ; Get timer s t a t e

339 add bx , 2
delay2 :

341 cmp [0 x046C] , bx
jne delay2

343
mov di , 0

345 mov cx , 0x07d0 ; enough for f u l l screen
winbg : mov ax , 0x0100

347 ; xor ax , ax wont work , needs to
; be t h i s machine−code format

349 rep stosw ; commit to video memory

351 mov di , 0x07c4 ; coord to s t a r t ’YOU WIN! ’ message
xor cl , c l ; c l e a r counter r e g i s t e r

353 winloop : mov al , [winmessage]
; ge t win message po in ter

355 mov ah , 0 x0f ; white t e x t on b lack background
stosw ; commit char to video memory

357 inc byte [winloop + 0x01]
; next character

359 cmp di , 0x07e0 ; i s i t the l a s t character?
jne winloop

361 inc word [winbg + 0x01]
; incrememnt f i l l char/ f g /bg

363 ; (whichever i s next)
sub byte [winloop + 0x01] , 14

365 ; back to f i r s t character upon
; next f u l l loop

367 jmp win

369 winmessage :
db 0x02 , 0x20

371 dq 0 x214e495720554f59 ;YOU WIN!
db 0x21 , 0x21 , 0x20 , 0x02

373
;BIOS s i g and padding

375 times 510−($−$$) db 0
dw 0xAA55

377
; Pad to f l oppy d i s k .

379 ; t imes (1440 ∗ 1024) − ($ − $$) db 0

13

