4 Master Boot Record Nibbles; or,
One Boot Sector PoC Deserves Another

I was inspired by the boot sector Tetranglix game
by Juhani Haverinen, Owen Shepherd, and Shikhin
Sethi published as PoC||GTFO 3:8. T feel more cre-
ative when dealing with extreme limitations, and
512 bytes (510 with the 0x55AA signature) of real-
mode assembly sounded like a great way to learn
BIOS API stuff. I mostly learned some int 0x10
and 0x16 from this exercise, with a bit of int 0x19
from a pull request.

The game looks a lot more like snake or nibbles,
except that the tail never follows the head, so the
game piece acts less like a snake and more like a
streak left in Tron. I called it Tron Solitaire be-
cause there is only one player. This game has an
advanced /dynamic scoring system with bonus and
trap items, and progressively increasing game speed.
This game can also be won.

I’ve done plenty of protected mode assembly and
machine code hacking, but for some reason have
never jumped down to real mode. Tetranglix gave
me a hefty head start by showing me how to do
things like quickly setting up a stack and some video
memory. I would have possibly struggled a little
with int 0x16 keyboard handling without this code
as a reference. Also, I re-used the elegant ran-
dom value implementation as well. Finally, the PIT
(Programmable Interval Timer) delay loop used in
Tetranglix gave me a good start on my own dynam-
ically timed delay.

I also learned how incredibly easy it was to get
started with 16-bit real mode programming. I owe
a lot of this to the immediate gratification from
utilities like qemu. Looking at OS guides like the
osdev.org wiki was a bit intimidating, because
writing an OS is not at all trivial, but I wanted
to start with much less than that. Just because I
want to write real mode boot sector code doesn’t
mean 'm trying to actually boot something. So a
lot of the instructions and guides I found had a lot
of information that wasn’t applicable to my unusual
needs and desires.

by Eric Davisson

I found that there were only two small things I
needed to do in order to write this code: make sure

the boot image file is exactly 512 bytes and make
sure the last two bytes are 0x55AA. That’s it! All
the rest of the code is all yours. You could literally
start a file with 0xEBFE (two-byte unconditional in-
finite “jump to self” loop), have 508 bytes of nulls
(or ANYTHING else), and end with 0x5544, and
you’ll have a valid “boot” image that doesn’t error
or crash. So I started with that simple PoC and
built my way up to a game.

The most dramatic space savers were also the
least interesting. Instead of cool low level hacks, it
usually comes down to replacing a bad algorithm.
One example is that the game screen has a nice blue
border. Initially, I drew the top and bottom lines,
and then the right and left lines. I even thought
I was clever by drawing the right and left lines to-
gether, two pixels at a time—because drawing a right
pixel and incrementing brings me to the left and
one row down. I used this side-effect to save code,
rewriting a single routine to be both right and left.

However, all of this was still too much code. I
tried something simpler: first splashing the whole
screen with blue, then filling in a black box to only
leave the blue border. The black box code still
wasn’t trivial, but much less code than the previ-
ous method. This saved me sixteen precious bytes!

Less than a week after I put this on Github, my
friend Darkvoxels made a pull request to change the
game-over screen. Instead of splashing the screen
red and idling, he just restarts the game. I liked
this idea and merged. As his game-over is just a
simple int 0x19, he saved ten bytes.

Although I may not have tons of reusable subrou-



tines, I still avoided inlining as much as possible. In
my experience, inlining is great for runtime perfor-
mance because it cuts out the overhead of jumping
around the code space and stack overhead. How-
ever, this tends to create more code as the tradeoff.
With 510 effective bytes to work with, I would gladly
trade speed for space. If I see a few consecutive in-
structions that repeat, I try to make a routine of
it.

I also took a few opportunities to use self-
modifying code to save on space. No longer do I
have to manually hex hack the w bit in the rwx at-
tribute in the .text section of an ELF header; real
mode trusts me to do all of the “bad” things that
dev hipsters rage at me about. So the rest of this
article will be about these hacks.

Two of the self-modifying code hacks in this code
are similar in concept. There are a couple of places
where I needed something similar to a global vari-
able. I could push and pop it to and from the stack
when needed, but that requires more bytes of code

overhead than I had to spare. I could also use a
dedicated register, but there are too few of those.
On the other hand, assuming I'm actually using this
dynamic data, it’s going to end up being part of an
operand in the machine code, which is what I would
consider its persisted location. (Not a register, not
the stack, but inside the actual code.)

As the pixel streak moves around on the game-
board, the player gets one point per character move-
ment. When the player collects a bonus item of
any value, this one-point-per gets three added to it,
becoming a four-points-per. If another additional
bonus item is collected, it would be up to 7 points.
The code to add one point is selfmodify: add ax,
1. When a bonus item is collected, the routine
for doing bonus points also has this line add byte
[selfmodify + 2], 3. The +2 offset to our add
ax, 1 instruction is the byte where the 1 operand
was located, allowing us to directly modify it.

BOLDPORT

CLUG

UB " Seo—e et g ot it
D &O 0601_.&”_0\0 Q) ~IT 3
@ (*]
Qo007 0307 Foeoﬁoﬂ' >

10 KL

o
ﬂhmtmnsist?r% LM3a3|

A new electronics project
every month!

330 pF ©.31 KO

To become a member of the exclusive Boldport Club

Call now!

(0777)9606045

And our friendly operators will take payment

Or write to Boldport Limited, Arch 12, Raymouth Road, London SE16 2DB, United Kingdom

10



On a less technical note, this adds to the strategy
of the game; it discourages just filling the screen up
with the streak while avoiding items (so as to not
create a mess) and just waiting out the clock. In
fact, it is nearly impossible to win this way. To win,
it is a better strategy to get as many bonuses as
early as possible to take advantage of this progres-
sive scoring system.

Another self-modifying code trick is used on
the “win” screen. The background to the “YOU
WIN!” screen does some color and character cycling,
which is really just an increment. It is initialized
with winbg: mov ax, 0, and we can later incre-
ment through it with inc word [winbg + 0x01].
What I also find interesting about this is that we
can’t do a space saving hack like just changing mov
ax, 0 to xor ax, ax. Yes, the result is the same;
ax will equal 0x0000 and the xor takes less code
space. However, the machine code for xor ax, axis
0x31c0, where 0x31 is the xor and 0xcO represents
“ax with ax.” The increment instruction would be
incrementing the 0xc0 byte, and the first byte of the
next instruction since the word modifier was used
(which is even worse). This would not increment an
immediate value, instead it would do another xor of
different registers each time.

EGMIR

8unzip pocorgtfoll.pdf tronsolitare.zip

11

Also, instead of using an elaborate string print
function, I have a loop to print a character at a
pointer where my “YOU WIN!” string is stored
(winloop: mov al, [winmessage]), and then use
self-modifying code to increment the pointer on each
round. (inc byte [winloop + 0x01])

The most interesting self-modifying code in this
game changes the opcode, rather than an operand.
Though the code for the trap items and the bonus
items have a lot of differences, there are a significant
amount of consecutive instructions that are exactly
the same, with the exception of the addition (bonus)
or the subtraction (trap) of the score. This is be-
cause the score actually persists in video memory,
and there is some code overhead to extract it and
push it back before and after adding or subtracting
to it.

So I made all of this a subroutine. In my as-
sembly source you will see it as an addition (math:
add ax, cx), even though the instruction initialized
there could be arbitrary. Fortunately for me, the
machine code format for this addition and subtrac-
tion instruction are the same. This means we can
dynamically drop in whichever opcode we want to
use for our current need on the fly. Specifically, the
add I use is ADD r/m16, r16 (0x01 /r) and the sub
Tuseis SUB r/m16, ri6 (0x29 /r). Soifit’s a bonus
item, we’ll self modify the routine to add (mov byte
[math], 0x01) and call it, then do other bonus re-
lated instructions after the return. If it’s a trap item,
we’ll self modify the routine to subtract (mov byte
[math], 0x29) and call it, then do trap/penalty in-
structions after the return. This whole hack isn’t
without some overhead; the most exciting thing is
that this hack saved me one byte, but even a single
byte is a lot when making a program this small!

I hope these tricks are handy for you when writ-
ing your own 512-byte game, and also that you’ll
share your game with the rest of us. Complete code
and prebuilt binaries are available in the ZIP portion
of this release.®



<

©

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

55

57

59

61

63

65

67

69

71

73

77

79

81

;Tron Solitare
;  *This is
;  *Controls
;  *Awoid touching
;junlucky red 7

[ORG 0x7c00]
LEFT EQU 75
RIGHT EQU 77
UP EQU 72
DOWN EQU 80

the
data
stack

s Init
H init
; init

a PoC boot
to mowve

sector ( <512 bytes) game
are just wup/down/left/right
yourself, blue border, and the

jadd to offsets

environment
segment
segment
; init E/video segment and allocate

allocate area of mem

area of mem

; Set to 0xz08/80x25 text mode

; Hide the cursor
xor ax, ax ;make it zero
mov ds, ax ; DS=0
mov ss, ax ;stack starts at 0
mov sp, 0x9c00 ;200h past code start
mov ax, 0xb800 ;jtext wvideo memory
mov es, ax ; ES=0xB800

mov al, 0x03
xor ah, ah
int 0x10

mov al, 0x03
mov ch, 0x26
inc ah

int 0x10

; Draw Border

;Some BIOS crash without this

; Fill in all blue

xor di, di

mov cx, 0x07d0 jwhole screens worth

mov ax, 0x1f20 ;empty blue background

rep stosw ;push it to video memory

; fill in all black except for remaining blue edges

mov di, 158 ; Almost 2nd row 2nd column (need
jto add 4)

mov ax, 0x0020 ;jspace char on black on black

fillin :

add di, 4 ; Adjust for meaxt line and column

mov cx, 78

rep stosw

cmp di, OxOefe
jne fillin
;inmit the score
mov di, 0x0f02
mov ax, 0x0100
stosw
; Place the game
mov di, 0x07d0
mov ax, 0x2f20
stosw

mainloop:
call random

; Wait Loop

sinmer 78 columns (ezclude side
;borders)

;push to wvideo memory

;Is it the last col of last line
Jwe want?

;If not, loop to mezt line
;#CHEAT (You can set the initial

jscore higher than this)

piece in starting position
;starting position
jchar to display

; Maybe place an item on screen

;Get speed (based on game/score progress)

push di

mov di, 0x0f02 ;set coordinate

mov ax, [es:di]| ;read data at coordinate

pop di

and ax, 0xf000 ;get most significant nibble

shr ax, 14 ;now wvalue 0—38

mov bx, 4 ;#CHEAT, default is 4; make
;jamount higher for owerall

jslower (but still

143

145
147
149
151
153

155

161
163

165

169
171
173

175
179

181

183

12

;progressive )

sub bx, ax jbe = 4 — (0—
mov ax, bx jget it into
mov bx, [0x046C];Get timer state

add bx, ax i Wait 1—4 ticks

sdifficulty)

sadd bz, 8 junprogressively
J#CHEAT (comment above line out
S this line)
delay :
cmp [0x046C], bx
jne delay
;Get keyboard state
mov ah, 1
int 0x16
jz persisted ;if no keypress,

ipersisting move

; Clear Keyboard buffer
xor ah, ah

int 0x16

; Check for directional pushes an
cmp ah, LEFT

je left

cmp ah, RIGHT

je right

cmp ah, UP

je up

cmp ah, DOWN
je down
jmp mainloop

; Otherwise , mowve in direction la
persisted :

cmp cx, LEFT

Jje left

cmp cx, RIGHT

je right

cmp cx, UP

je up

cmp cx, DOWN

game
3)

ax

(progressive

cheat
and uncomment

slow

jump to
state

d take action

st chosen

; This will only happen before first keypress
jmp mainloop
left :
mov c¢cx, LEFT ;for persistenc
sub di, 4 jcoordinate offset correction
call movement_ overhead
jmp mainloop
right :
mov cx, RIGHT
call movement_overhead

jmp mainloop

up :
mov cx, UP
sub di, 162
call movement overhead
jmp mainloop

down :
mov cx, DOWN
add di, 158

call movement overhead

jmp mainloop

movement overhead:
call collision check
mov ax, 0x2f20
stosw
call
ret

score

collision check:
mov bx, di
[es:bx]

;current loca
;grab wvideo b
jlocation

mov ax,

;Did we Lose?

tiom on screen
wffer 4 current

j#CHEAT: comment out all 4 of these checks

; (8 imstructions) to be imvincible

cmp ax, 0x2f20 ;did we land on green
i(self)e

je gameover

cmp ax, 0x1f20
;(border)?

je gameover

cmp bx, 0x0f02 ;did we

;did we land

land in

on blue

score

jcoordinate?

je gameover
cmp ax, 0xcf37
je gameover

;magic red

; Score Changes

push ax ;save copy

7

of az/item

and ax, 0xf000 ;mask background
cmp ax, 0xa000 j;add to score

je bonus

cmp ax, 0xc000 ;subtract from score




185

187

189

191

195

197

199

201

205

207

209

211

225

227

229

231

235

237

239

241

253

255

257

261

263

265

267

271

273

275

277

281

283

je penalty

pop ax ;jrestore ax
ret
bonus:
mov byte [math], 0x01
;make itemstuff: rToutine use
;add opcode
call itemstuff
stosw jput data back in
mov di, bx ;restore coordinate
add byte [selfmodify + 2], 3
ret
penalty :
mov byte [math], 0x29
;make itemstuff: routine wuse
;sub opcode
call itemstuff
cmp ax, 0xe000 ;sanity check for integer
junderflow
ja underflow
stosw ;put data back in
mov di, bx ;jrestore coordinate
ret
underflow :
mov ax, 0x0100
stosw
mov di, bx
ret
itemstuff:
pop dx jstore return
pop ax
and ax, 0x000f
inc ax ;1—8 instead of 0—7
shl ax, 8 ;multiply value by 256
push ax ;store the wvalue
mov bx, di ;save coordinate
mov di, 0x0f02 ;set coordinate
mov ax, [es:di] ;read data at coordinate and
jsubtract from score
pop cx
math :
add ax, cx ;’add’ is just a suggestion...
push dx ;restore return
ret
score :
push di
mov di, 0x0f02 ;set coordinate
mov ax, [es:di] jread data at coordinate
;for each mov of character, add ’'n’ to score
jthis source shows add ax, 1, however, each
;bonus item that is picked up increments this
;jvalue by 8 each time an item is picked wup.
:Yes, this is self modifying code, which is
;why the lable ’selfmodify:’ is seen above, to
;jbe conveniently used as an address to pivot
;off of in an add byte [selfmodify + offset to
;’1°], 8 imstruction
selfmodify: add ax, 1 ;increment character in
;jcoordinate
stosw ;put data back in
pop di
;Why 0xf600 as score ceiling:
;if it was something like Ozffff, a score from
;0xfffe would likley integer overflow to a low
;jrange (due to the progressive) scoring.
;0xf600 gives a good amount of slack for this.
; However, it ’s still "technically" possible to
joverflow; for example, hitting a 7’ bonus
;item after already getting more than 171
;jbonus items (2048 points for bonus, 514
;points per move) would make the score go from
;0xf5ff to 0x0001.
cmp ax, 0xf600 ;is the score high enough to
; ‘win ’ ;#CHEAT
ja win
ret
random :
;Decide whether to place bonus/trap
rdtsc
and ax, 0x000f
cmp ax, 0x0007
jne undo
push cx ;save cz
; Getting random pizel
redo:
rdtsc ;random
xor ax, dx jxor it up a little
xor dx, dx ;clear dz
add ax, [0x046C] ;moar randomness
mov cx, 0x07d0 ;jAmount of pixels on screen
div cx ;dx mow has random wval
shl dx, 1 ;adjust for ’even’' pizel values

285
287

289

293

295

299
301
303

305

309
311
313

315

319
321
323

325

329
331
333

335

339
341
343

345

359
361
363

365
369
371
373

375

379

13

;Are we clobbering

cmp dx, 0x0f02
je redo

push di

mov di, dx

mov ax, [es:di]
pop di

cmp ax, 0x2f20
je redo

cmp ax, 0x1f20
je redo

; Display random pizel

other data?
;jIs the pixel the score?
;Get a different wvalue

;store coord

;read data at coordinate

jrestore coord
;Are we on the snake?

;Are we on the border?

push di ;save current coordinate
mov di, dx ;put rand coord im current
jDecide on item—type and value
powerup
rdtsc ;random
and ax, 0x0007 ;get random 8 walues
mov cx, ax ;cx has rand wvalue
add cx, 0x5f30 jbaseline
rdtsc ;random
;background either ’'A’ or 'C’ (light green or
jred)
and ax, 0x2000 ;keep bit 18
add ax, 0x5000 ;turn bit 14 and 12 on
add ax, cx ;item—type + wvalue
stosw ;display it
pop di ;restore coordinate
pPop cx ;jrestore cx
undo :
ret
gameover :
int 0x19 ;Reboot the system and restart
jthe game.
;Legacy gameover, doesn’t reboot, just ends with
jred screen
jezor di, di
;jmov cx, 80%25
jmov ax, 0x4f20
jrep stosw
;jmp gameover
win :
jclear screen
mov bx, [0x046C] ; Get timer state
add bx, 2
delay?2:
cmp [0x046C|, bx
jne delay?2
mov di, 0
mov cx, 0x07d0 ;enough for full screen
winbg: mov ax, 0x0100
jzor ax, axz wont work, needs to
;be this machine—code format
rep stosw ;commit to wideo memory
mov di, 0x07c4 jcoord to start ’YOU WIN!’ message
xor cl, cl iclear counter register
winloop: mov al, |[winmessage ]
;get win message pointer
mov ah, 0x0f ;white text on black background
stosw ;commit char to wvideo memory
inc byte [winloop + 0x01]
;mext character
cemp di, 0x07e0 ;is it the last character?
jne winloop
inc word [winbg + 0x01]
jincrememnt fill char/fg/bg
; (whichever is mnext)
sub byte [winloop + 0x01], 14
;back to first character upon
jmext full loop
Jjmp win
winmessage :
db 0x02, 0x20
dq 0x214e495720554f59 ;YOU WIN'!
db 0x21, 0x21, 0x20, 0x02
;BIOS sig and padding
times 510—($—%$$) db 0
dw 0xAA55
; Pad to floppy disk.
jtimes (1440 % 1024) — ($ — $$) db 0




