8 On Error Resume Next

by Jeffball

Don’t you just long for the halcyon days of Visual Basic 6 (VB6)? Between starting arrays at 1 and
only needing signed data types, Visual Basic was just about as good as it gets. Well, I think it’s about time
we brought back one of my favorite features: On Error Resume Next. For those born too late to enjoy the
glory of VB6, On Error Resume Next allowed those courageous VB6 ninjas who dare wield its mightiness to
continue executing at the next instruction after an exception. While this may remove the pesky requirement
to handle exceptions, it often caused unexpected behavior.

When code crashes in Linux, the kernel sends the SIGSEGV signal to the faulting program, commonly
known as a segfault. Like most signals, this one too can be caught and handled. However, if we don’t properly
clean up whatever caused the segfault, we’ll return from that segfault just to cause another segfault. In this
case, we simply increment the saved RIP register, and now we can safely return. The third argument that is
passed to the signal handler is a pointer to the user-level context struct that holds the saved context from
the exception.

void segfault sigaction (int signal, siginfo t =*si, void * ptr) {
((ucontext t *)ptr)—>uc mcontext.gregs [REG_ RIP|++;

Now just a little code to register this signal handler, and we’re good to go. In addition to SIGSEGV,
we’d better register SIGILL and SIGBUS. SIGILL is raised for illegal instructions, of which we’ll have many
since our On Error Resume Next handler may restart a multi-byte instruction one byte in. SIGBUS is used
for other types of memory errors (invalid address alignment, non-existent physical address, or some object
specific hardware errors, etc) so it’s best to register it as well.

struct sigaction sa;

memset(&sa, 0, sizeof(sigaction));
sigemptyset(&sa.sa_ mask) ;
sa.sa_sigaction = segfault sigaction;
sa.sa_flags = SA_SIGINFO;

sigaction (SIGSEGV, &sa, NULL);
sigaction (SIGILL, &sa, NULL);
sigaction (SIGBUS, &sa, NULL);

In order to help out the users of buggy software, I've included this code as a shared library that registers
these handlers upon loading. If your developers are too busy to deal with handling errors or fixing bugs,
then this project may be for you. To use this code, simply load the library at runtime with the LD_PRELOAD
environment variable, such as the following:

1| $ LD PRELOAD=./liboern.so ./login

ot

Be wary though, this may lead to some unexpected behavior. The attached example shell server illustrates
this, but can you figure out why it happens?®!

$ nc localhost 5555

Please enter the password:

— AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Password correct , starting access shell ...

51unzip pocorgtfo08.pdf onerror.zip #Beware of spoilers!

45




