
8 Innovations with Linux core files for advanced process forensics

by Ryan O’Neill,
who also publishes as Elfmaster

8.1 Introduction

It has been some time since I’ve seen any really innovative steps forward in process memory forensics. It
remains a somewhat arcane topic, and is understood neither widely nor in great depth. In this article I will
try to remedy that, and will assume that the readers already have some background knowledge of Linux
process memory forensics and the ELF format.

Many of us have been frustrated by the near-uselessness of Linux (ELF) core files for forensics analysis.
Indeed, these files are only useful for debugging, and only if you also have the original executable that the
core file was dumped from during crash time. There are some exceptions such as /proc/kcore for kernel
forensics, but even /proc/kcore could use a face-lift. Here I present ECFS, a technology I have designed to
remedy these drawbacks.

8.2 Synopsis

ECFS (Extended core file snapshots) is a custom Linux core dump handler and snapshot utility. It can be
used to plug directly into the core dump handler by using the IPC functionality available by passing the
pipe ‘|’ symbol in the /proc/sys/kernel/core_pattern. ECFS can also be used to take an ecfs-snapshot of
a process without killing the process, as is often desirable in automated forensics analysis for whole-system
process scanning. In this paper, I showcase ECFS in a series of examples as a means of demonstrating its
capabilities. I hope to convince you how useful these capabilities will be in modern forensics analysis of
Linux process images—which should speak to all forms of binary and process-memory malware analysis. My
hope is that ECFS will help revolutionize automated detection of process memory anomalies.

ECFS creates files that are backward-compatible with regular core files but are also prolific in new
features, including section headers (which core files do not have) and many new section headers and section
header types. ECFS includes full symbol table reconstruction for both .dynsym and .symtab symbol tables.
Regular core files do not have section headers or symbol tables (and rely on having the original executable for
such things), whereas an ecfs-core contains everything a forensics analyst would ever want, in one package.

Since the object and readelf output of an ecfs-core file is huge, let us examine a simple ecfs-core for a
64-bit ELF program named host. The process for host will show some signs of virus memory infection or
backdooring, which ECFS will help bring to light.

The following command will set up the kernel core handler so that it pipes core files into the stdin of our
core–to–ecfs conversion program named ecfs.

echo ’ |/opt/ecfs/bin/ecfs −i −e %e −p %p −o /opt/ecfs/cores/%e.%p ’ > /proc/ sys / ke rne l /
core_pattern

Next, let’s get the kernel to dump an ecfs file of the process for host, and then begin analyzing this file.

1 $ k i l l −11 ‘ p ido f host ‘

8.3 Section header reconstruction example

1 $ r e a d e l f −S /opt/ e c f s / co r e s / host .10710

49

There are 40 section headers, starting at offset 0x23fff0:

1 Sect ion Headers :
[Nr] Name Type Address Offset

3 Size EntSize Flags Link In fo Align
[0] NULL 0000000000000000 00000000

5 0000000000000000 0000000000000000 0 0 0
[1] . i n t e r p PROGBITS 0000000000400238 00002238

7 000000000000001 c 0000000000000000 A 0 0 1
[2] . no t e NOTE 0000000000000000 000004 a0

9 0000000000000bd8 0000000000000000 A 0 0 4
[3] .hash GNU_HASH 0000000000400298 00002298

11 000000000000001 c 0000000000000000 A 0 0 4
[4] .dynsym DYNSYM 00000000004002b8 000022b8

13 00000000000000 a8 0000000000000018 A 5 0 8
[5] . dyn s t r STRTAB 0000000000400360 00002360

15 0000000000000050 0000000000000018 A 0 0 1
[6] . r e l a . d y n RELA 00000000004003 e0 000023 e0

17 0000000000000018 0000000000000018 A 4 0 8
[7] . r e l a . p l t RELA 00000000004003 f8 000023 f8

19 0000000000000090 0000000000000018 A 4 0 8
[8] . i n i t PROGBITS 0000000000400488 00002488

21 000000000000001a 0000000000000000 AX 0 0 8
[9] . p l t PROGBITS 00000000004004b0 000024b0

23 0000000000000070 0000000000000010 AX 0 0 16
[1 0] . t e x t PROGBITS 0000000000400000 00002000

25 0000000000001000 0000000000000000 AX 0 0 16
[1 1] . f i n i PROGBITS 0000000000400724 00002724

27 0000000000000009 0000000000000000 AX 0 0 16
[1 2] .eh_frame_hdr PROGBITS 0000000000400758 00002758

29 0000000000000034 0000000000000000 AX 0 0 4
[1 3] .eh_frame PROGBITS 000000000040078 c 00002790

31 00000000000000 f4 0000000000000000 AX 0 0 8
[1 4] .dynamic DYNAMIC 0000000000600 e28 00003 e28

33 00000000000001d0 0000000000000010 WA 0 0 8
[1 5] . g o t . p l t PROGBITS 0000000000601000 00004000

35 0000000000000050 0000000000000008 WA 0 0 8
[1 6] .data PROGBITS 0000000000600000 00003000

37 0000000000001000 0000000000000000 WA 0 0 8
[1 7] . b s s PROGBITS 0000000000601058 00004058

39 0000000000000008 0000000000000000 WA 0 0 8
[1 8] .heap PROGBITS 000000000093 b000 00005000

41 0000000000021000 0000000000000000 WA 0 0 8
[1 9] ld−2 . 1 9 . s o . t e x t SHLIB 0000003000000000 00026000

43 0000000000023000 0000000000000000 A 0 0 8
[2 0] ld−2 . 1 9 . s o . r e l r o SHLIB 0000003000222000 00049000

45 0000000000001000 0000000000000000 A 0 0 8
[2 1] ld−2 . 1 9 . s o . d a t a . 0 SHLIB 0000003000223000 0004 a000

47 0000000000001000 0000000000000000 A 0 0 8
[2 2] l i b c −2 . 1 9 . s o . t e x t SHLIB 0000003001000000 0004 c000

49 00000000001bb000 0000000000000000 A 0 0 8
[2 3] l i b c −2. 1 9 . s o . unde SHLIB 00000030011bb000 00207000

51 0000000000200000 0000000000000000 A 0 0 8
[2 4] l i b c −2 . 1 9 . s o . r e l r SHLIB 00000030013bb000 00207000

53 0000000000004000 0000000000000000 A 0 0 8
[2 5] l i b c −2 . 1 9 . s o . d a t a SHLIB 00000030013 bf000 0020b000

55 0000000000002000 0000000000000000 A 0 0 8
[2 6] e v i l _ l i b . s o . t e x t INJECTED 00007 fb0358c3000 00215000

57 0000000000002000 0000000000000000 A 0 0 8
[2 7] . p r s t a t u s PROGBITS 0000000000000000 0023 f000

59 0000000000000150 0000000000000150 0 0 4
[2 8] . f d i n f o PROGBITS 0000000000000000 0023 f150

61 0000000000000 c78 0000000000000214 0 0 4
[2 9] . s i g i n f o PROGBITS 0000000000000000 0023 fdc8

63 0000000000000080 0000000000000080 0 0 4
[3 0] . auxvec to r PROGBITS 0000000000000000 0023 f e48

65 0000000000000130 0000000000000008 0 0 8
[3 1] . exepath PROGBITS 0000000000000000 0023 f f 7 8

67 0000000000000024 0000000000000008 0 0 1
[3 2] . p e r s o n a l i t y PROGBITS 0000000000000000 0023 f f 9 c

69 0000000000000004 0000000000000004 0 0 1
[3 3] . a r g l i s t PROGBITS 0000000000000000 0023 f f a 0

71 0000000000000050 0000000000000001 0 0 1
[3 4] .stack PROGBITS 00007 f f f 51d82000 00000000

73 0000000000021000 0000000000000000 WA 0 0 8
[3 5] .vdso PROGBITS 00007 f f f 5 1 d f e 0 0 0 0023 c000

75 0000000000002000 0000000000000000 WA 0 0 8

50

[3 6] . v s y s c a l l PROGBITS f f f f f f f f f f 6 0 0 0 0 0 0023 e000
77 0000000000001000 0000000000000000 WA 0 0 8

[3 7] .symtab SYMTAB 0000000000000000 00240b81
79 0000000000000078 0000000000000018 38 0 4

[3 8] . s t r t a b STRTAB 0000000000000000 00240 bf9
81 0000000000000037 0000000000000000 0 0 1

[3 9] . s h s t r t a b STRTAB 0000000000000000 002409 f0
83 0000000000000191 0000000000000000 0 0 1

As you can see, there are even more section headers in our ecfs-core file than in the original executable
itself. This means that you can disassemble a complete process image with simple tools that rely on section
headers such as objdump! Also, please note this file is entirely usable as a regular core file; the only change
you must make to it is to mark it from ET_NONE to ET_CORE in the initial ELF file header. The reason it
is marked as ET_NONE is that objdump would know to utilize the section headers instead of the program
headers.

1 $ t o o l s / e t_ f l i p host .107170 <− this command f l i p s e_type from ET_NONE to ET_CORE (And v i c e versa)
$ gdb −q host host .107170

3 [New LWP 10710]
Core was generated by ‘ e c f s_ t e s t s / host ’ .

5 Program terminated with signal SIGSEGV, Segmentation fau l t .
#0 0x00007fb0358c375a in ?? ()

7 (gdb) bt
#0 0x00007fb0358c375a in ?? ()

9 #1 0x00007fff51da1580 in ?? ()
#2 0x00007fb0358c3790 in ?? ()

11 #3 0x0000000000000000 in ?? ()

For the remainder of this paper we will not be using traditional core file functionality. However, it is
important to know that it’s still available.

So what new sections do we see that have never existed in traditional ELF files? Well, we have sections
for important memory segments from the process that can be navigated by name with section headers. Much
easier than having to figure out which program header corresponds to which mapping!

1 [1 8] .heap PROGBITS 000000000093 b000 00005000
0000000000021000 0000000000000000 WA 0 0 8

3 [3 4] .stack PROGBITS 00007 f f f 51d82000 00000000
0000000000021000 0000000000000000 WA 0 0 8

5 [3 5] .vdso PROGBITS 00007 f f f 5 1 d f e 0 0 0 0023 c000
0000000000002000 0000000000000000 WA 0 0 8

7 [3 6] . v s y s c a l l PROGBITS f f f f f f f f f f 6 0 0 0 0 0 0023 e000
0000000000001000 0000000000000000 WA 0 0 8

Also notice that there are section headers for every mapping of each shared library. For instance, the
dynamic linker is mapped in as it usually is:

[1 9] ld−2 . 1 9 . s o . t e x t SHLIB 0000003000000000 00026000
2 0000000000023000 0000000000000000 A 0 0 8

[2 0] ld−2 . 1 9 . s o . r e l r o SHLIB 0000003000222000 00049000
4 0000000000001000 0000000000000000 A 0 0 8

[2 1] ld−2 . 1 9 . s o . d a t a . 0 SHLIB 0000003000223000 0004 a000
6 0000000000001000 0000000000000000 A 0 0 8

Also notice the section type is SHLIB. This was a reserved type specified in the ELF man pages that is
never used, so I thought this to be the perfect opportunity for it to see some action. Notice how each part
of the shared library is given its own section header: <lib>.text for the code segment, <lib>.relro for
the read-only page to help protect against .got.plt and .dtors overwrites, and <lib>.data for the data
segment.

51

Another important thing to note is that in traditional core files only the first 4,096 bytes of the main
executable and each shared libraries’ text images are written to disk. This is done to save space, and,
considering that the text segment presumably should not change, this is usually OK. However, in forensics
analysis we must be open to the possibility of an RWX text segment that has been modified, e.g., with inline
function hooking.

8.4 Heuristics
Also notice that there is one section showing a suspicious-looking shared library that is not marked as the
type SHLIB but instead as INJECTED.

[2 6] e v i l _ l i b . s o . t e x t INJECTED 00007 fb0358c3000 00215000
2 0000000000002000 0000000000000000 A 0 0 8

“#define SHT_INJECTED 0x200000” is custom and the readelf utility has been modified on my system
to reflect this. A standard readelf will show it as <unknown>.

This section is for a shared library that was considered by ecfs to be maliciously injected into the process.
The ecfs core handler does quite a bit of heuristics work on its own, and therefore leaves very little work for
the forensic analyst. In other words, the analyst no longer needs to know jack about ELF in order to detect
complex memory infections (more on this with the PLT/GOT hook detection later!)

Note that these heuristics are enabled by passing the -h switch to /opt/bin/ecfs. Currently, there
are occasional false-positives, and for people designing their own heuristics it might be useful to turn the
ecfs-heuristics off.

8.5 Custom section headers
Moving on, there are a number of other custom sections that bring to light a lot of information about the
process.

[2 7] . p r s t a t u s PROGBITS 0000000000000000 0023 f000
2 0000000000000150 0000000000000150 0 0 4

[2 8] . f d i n f o PROGBITS 0000000000000000 0023 f150
4 0000000000000 c78 0000000000000214 0 0 4

[2 9] . s i g i n f o PROGBITS 0000000000000000 0023 fdc8
6 0000000000000080 0000000000000080 0 0 4

[3 0] . auxvec to r PROGBITS 0000000000000000 0023 f e48
8 0000000000000130 0000000000000008 0 0 8

[3 1] . exepath PROGBITS 0000000000000000 0023 f f 7 8
10 0000000000000024 0000000000000008 0 0 1

[3 2] . p e r s o n a l i t y PROGBITS 0000000000000000 0023 f f 9 c
12 0000000000000004 0000000000000004 0 0 1

[3 3] . a r g l i s t PROGBITS 0000000000000000 0023 f f a 0
14 0000000000000050 0000000000000001 0 0 1

I will not go into complete detail for all of these, but will later show you a simple parser I wrote using the
libecfs API that is designed specifically to parse ecfs-core files. You can probably guess as to what most of
these contain, as they are somewhat straightforward; i.e., .auxvector contains the process’ auxiliary vector,
and .fdinfo contains data about the file descriptors, sockets, and pipes within the process, including TCP
and UDP network information. Finally, .prstatus contains elf_prstatus and similar structs.

8.6 Symbol table resolution
One of the most powerful features of ecfs is the ability to reconstruct full symbol tables for all functions.

$ r e a d e l f −s host .10710
2

Symbol t ab l e ’ .dynsym ’ conta in s 7 e n t r i e s :

52

4 Num: Value Size Type Bind Vis Ndx Name
0 : 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

6 1 : 000000300106 f2c0 0 FUNC GLOBAL DEFAULT UND fput s
2 : 0000003001021dd0 0 FUNC GLOBAL DEFAULT UND __libc_start_main

8 3 : 000000300106 edb0 0 FUNC GLOBAL DEFAULT UND f g e t s
4 : 00007 fb0358c3000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

10 5 : 000000300106 f070 0 FUNC GLOBAL DEFAULT UND fopen
6 : 00000030010 c1890 0 FUNC GLOBAL DEFAULT UND s l e ep

12
Symbol t ab l e ’ .symtab ’ conta in s 5 e n t r i e s :

14 Num: Value Size Type Bind Vis Ndx Name
0 : 00000000004004b0 112 FUNC GLOBAL DEFAULT 10 sub_4004b0

16 1 : 0000000000400520 42 FUNC GLOBAL DEFAULT 10 sub_400520
2 : 000000000040060d 160 FUNC GLOBAL DEFAULT 10 sub_40060d

18 3 : 00000000004006b0 101 FUNC GLOBAL DEFAULT 10 sub_4006b0
4 : 0000000000400720 2 FUNC GLOBAL DEFAULT 10 sub_400720

Notice that the dynamic symbols (.dynsym) have values that actually reflect the location of where those
symbols should be at runtime. If you look at the .dynsym of the original executable, you would see those
values all zeroed out. With the .symtab symbol table, all of the original function locations and sizes
have been reconstructed by performing analysis of the exception handling frame descriptors found in the
PT_GNU_EH_FRAME segment of the program in memory.37

8.7 Relocation entries and PLT/GOT hooks

Another very useful feature is the fact that ecfs-core files have complete relocation entries, which show the
actual runtime relocation values—or rather what you should expect this value to be. This is extremely handy
for detecting modification of the global offset table found in .got.plt section.

1 $ r e a d e l f −r host .10710

3 Re locat ion s e c t i o n ’ .rela.dyn ’ at of f set 0x23e0 conta in s 1 e n t r i e s :
Offset In f o Type Sym. Value Sym. Name + Addend

5 000000600 f f 8 000400000006 R_X86_64_GLOB_DAT 00007 fb0358c3000 __gmon_start__ + 0

7 Re locat ion s e c t i o n ’ . r e l a .p l t ’ at of f set 0 x23f8 conta in s 6 e n t r i e s :
Offset In f o Type Sym. Value Sym. Name + Addend

9 000000601018 000100000007 R_X86_64_JUMP_SLO 000000300106 f2c0 fput s + 0
000000601020 000200000007 R_X86_64_JUMP_SLO 0000003001021dd0 __libc_start_main + 0

11 000000601028 000300000007 R_X86_64_JUMP_SLO 000000300106 edb0 f g e t s + 0
000000601030 000400000007 R_X86_64_JUMP_SLO 00007 fb0358c3000 __gmon_start__ + 0

13 000000601038 000500000007 R_X86_64_JUMP_SLO 000000300106 f070 fopen + 0
000000601040 000600000007 R_X86_64_JUMP_SLO 00000030010 c1890 s l e ep + 0

Notice that the symbol values for the .rela.plt relocation entries actually show what the GOT should
be pointing to. For instance:

000000601028 000300000007 R_X86_64_JUMP_SLO 000000300106 edb0 f g e t s + 0

This means that 0x601028 should be pointing at 0x300106edb0, unless of course it hasn’t been resolved
yet, in which case it should point to the appropriate PLT entry. In other words, if 0x601028 has a value that
is not 0x300106edb0 and is not the corresponding PLT entry, then you have discovered malicious PLT/GOT
hooks in the process. The libecfs API comes with a function that makes this heuristic extremely trivial to
perform.

37I cover this nifty technique in more detail at http://www.bitlackeys.org/#eh_frame.

53

8.8 Libecfs Parsing and Detecting DLL Injection

Still sticking with our host.10710 ecfs-core file, let us take a look at the output of readecfs, a parsing
program I wrote. It’s a very small C program; its power comes from using libecfs.

1 $. / r e ad e c f s . . / i n f e c t e d / host .10710
− read_ecfs output f o r f i l e . . / i n f e c t e d / host .10710

3 − Executable path (. exepath) : /home/ryan/ g i t / e c f s / e c f s_ t e s t s / host
− Thread count (. p r s t a t u s) : 1

5 − Thread i n f o (. p r s t a t u s)
[thread 1] pid : 10710

7
− Exited on s i g n a l (. s i g i n f o) : 11

9 − f i l e s / p ipes / so cke t s (. f d i n f o) :
[fd : 0] path : /dev/ pts /8

11 [fd : 1] path : /dev/ pts /8
[fd : 2] path : /dev/ pts /8

13 [fd : 3] path : / e tc /passwd
[fd : 4] path : /tmp/passwd_info

15 [fd : 5] path : /tmp/ e v i l_ l i b . s o

17 a s s i gn i ng
− Pr int ing shared l i b r a r y mappings :

19 ld−2 . 1 9 . s o . t e x t
ld−2 . 1 9 . s o . r e l r o

21 ld−2 . 1 9 . s o . d a t a . 0
l i b c −2 . 1 9 . s o . t e x t

23 l i b c −2 . 1 9 . s o . u nd e f
l i b c −2 . 1 9 . s o . r e l r o

25 l i b c −2 . 1 9 . s o . d a t a . 1
e v i l _ l i b . s o . t e x t // HMM INTERESTING

27
.dynsym : − 0

29 .dynsym : fput s − 300106 f2c0
.dynsym : __libc_start_main − 3001021dd0

31 .dynsym : f g e t s − 300106 edb0 // OF IMPORTANCE
.dynsym : __gmon_start__ − 7 fb0358c3000

33 .dynsym : fopen − 300106 f070
.dynsym : s l e ep − 30010 c1890

35
.symtab : sub_4004b0 − 4004b0

37 .symtab : sub_400520 − 400520
.symtab : sub_40060d − 40060d

39 .symtab : sub_4006b0 − 4006b0
.symtab : sub_400720 − 400720

41
− Pr int ing out GOT/PLT c h a r a c t e r i s t i c s (p ltgot_info_t) :

43 g o t s i t e : 601018 gotva lue : 300106 f2c0 g o t s h l i b : 300106 f2c0 p l t v a l : 4004 c6
g o t s i t e : 601020 gotva lue : 3001021dd0 go t s h l i b : 3001021dd0 p l t v a l : 4004d6

45 g o t s i t e : 601028 gotva lue : 7 fb0358c3767 go t s h l i b : 300106 edb0 p l t v a l : 4004 e6 // WHAT IS WRONG HERE?
g o t s i t e : 601030 gotva lue : 4004 f6 g o t s h l i b : 7 fb0358c3000 p l t v a l : 4004 f6

47 g o t s i t e : 601038 gotva lue : 300106 f070 go t s h l i b : 300106 f070 p l t v a l : 400506
g o t s i t e : 601040 gotva lue : 30010 c1890 go t s h l i b : 30010 c1890 p l t v a l : 400516

49
− Pr int ing aux i l i a r y vec to r (. a u x i l l i a r y) :

51 AT_PAGESZ: 1000
AT_PHDR: 400040

53 AT_PHENT: 38
AT_PHNUM: 9

55 AT_BASE: 0
AT_FLAGS: 0

57 AT_ENTRY: 400520
AT_UID: 0

59 AT_EUID: 0
AT_GID: 0

61
− Disp lay ing ELF header :

63 e_entry : 0x400520
e_phnum : 20

65 e_shnum : 40
e_shof f : 0 x 2 3 f f f 0

67 e_phoff : 0x40
e_shstrndx : 39

69
−−− truncated r e s t o f output −−−

54

Just from this output alone, you can see so much about the program that was running, including that
at some point a file named /tmp/evil_lib.so was opened, and—as we saw from the section header output
earlier—it was also mapped into the process.

[2 6] e v i l _ l i b . s o . t e x t INJECTED 00007 fb0358c3000 00215000
2 0000000000002000 0000000000000000 A 0 0 8

Not just mapped in, but injected—as shown by the section header type SHT_INJECTED. Another red flag
can be seen by examining the line from my parser that I commented on with the note “WHAT IS WRONG
HERE?”

g o t s i t e : 601028 gotva lue : 7 fb0358c3767 go t s h l i b : 300106 edb0 p l t v a l : 4004 e6

The gotvalue is 0x7fb0358c3767, yet it should be pointing to 0x300106edb0 or 0x4004e6. Notice
anything about the address that it’s pointing to? This address 0x7fb0358c3767 is within the range of
evil_lib.so. As mentioned before it should be pointing at 0x300106edb0, which corresponds to what
exactly? Well, let’s take a look.

1 $ r e a d e l f −r host .10710 | grep 300106 edb0
000000601028 000300000007 R_X86_64_JUMP_SLO 000000300106 edb0 f g e t s + 0

So we now know that fgets() is being hijacked through a PLT/GOT hook! This type of infection has
been historically somewhat difficult to detect, so thank goodness that ECFS performed all of the hard work
for us.

To further demonstrate the power and ease-of-use that ECFS offers, let us write a very simple memory
virus/backdoor forensics scanner that can detect shared library (DLL) injection and PLT/GOT hooking.
Writing something like this without libecfs would typically take a few thousand lines of C code.

−− de t e c t_d l l_ in f e c t i on . c −−
2

#include " . . / l ibec f s .h"
4

int main (int argc , char ∗∗ argv)
6 {

ec f s_e l f_t ∗desc ;
8 ecfs_sym_t ∗dsyms , ∗ lsyms ;

char ∗progname ;
10 int i ;

char ∗ l ibname ;
12 ecfs_sym_t ∗dsyms ;

unsigned long evi l_addr ;
14

i f (argc < 2) {
16 p r i n t f ("Usage : %s <ecfs_file>\n" , argv [0]) ;

e x i t (0) ;
18 }

20 desc = load_ec f s_ f i l e (argv [1]) ;
progname = get_exe_path (desc) ;

22
f o r (i = 0 ; i < desc−>ehdr−>e_shnum; i++) {

24 i f (desc−>shdr [i] .sh_type == SHT_INJECTED) {
libname = strdup(&desc−>shs t r t ab [desc−>shdr [i] .sh_name]) ;

26 p r i n t f (" [!] Found maliciously injected shared library : %s\n" , l ibname) ;
}

28 }
pltgot_info_t ∗ p l t go t ;

30 int ret = get_pltgot_info (desc , &p l t go t) ;

55

f o r (i = 0 ; i < re t ; i++) {
32 i f (p l t go t [i] .got_entry_va != p l t go t [i] .shl_entry_va && p l t go t [i] .got_entry_va !=

p l t go t [i] .plt_entry_va)
p r i n t f (" [!] Found PLT/GOT hook , function ’name’ i s pointing at %lx instead

of %lx\n" ,
34 p l t go t [i] .got_entry_va , evi l_addr = p l t go t [i] .shl_entry_va) ;

}
36 ret = get_dynamic_symbols (desc , &dsyms) ;

f o r (i = 0 ; i < re t ; i++) {
38 i f (dsyms [i] . symval == evi l_addr) {

p r i n t f (" [!] %lx corresponds to hijacked function : %s\n" , dsyms [i] .symval , &dsyms [i] . s t r t a b [
dsyms [i] . nameo f f s e t]) ;

40 break ;
}

42 }
}

This program analyzes an ecfs-core file and detects both shared library injection and PLT/GOT hooking
used for function hijacking. Let’s now run it on our ecfs file.

1 $. / de t e c t_d l l_ in f e c t i on host .10710
[!] Found mal i cous ly i n j e c t e d shared l i b r a r y : e v i l _ l i b . s o . t e x t

3 [!] Found PLT/GOT hook , func t i on ’name’ i s po in t ing at 7 fb0358c3767 in s t ead o f 300106 edb0
[!] 300106 edb0 corresponds to h i j acked func t i on : f g e t s

With just simple forty lines of C code, we have an advanced detection tool capable of detecting an
advanced memory infection technique, commonly used by attackers to backdoor a system with a rootkit or
virus.

8.9 In Closing
If you liked this paper and are interested in using or contributing to ECFS, feel free to contact me. It will
be made available to the public in the near future.38

Shouts to Orangetoaster, Baron, Mothra, Dk, Sirus, and Per for ideas, support and feedback regarding
this project.

38http://github.com/elfmaster/ecfs

56

