3 Coastermelt

by Micah Elizabeth Scott

3.1 Getting Inside Your Optical Drive’s Head

This is the first of perhaps several articles on the adventures of coastermelt, an art-hacking project with
the goal of creating cheap laser graffiti using discs burned by Blu-Ray drives with hacked firmware.

3.1.1 Art Hacking Manifesto

If an engineer is a problem solver, hackers and artists are more like problem tinkerers. Some of the most
interesting problems are so far beyond the scope of any direct solution that it seems futile to even approach
them head-on. It is the artist’s purview to creatively approach these problems, sideways or upside down if
necessarye

When an engineer is paid to make a tool, is it not the money itself that ultimately decides the tool’s
function? I believe that to be a hacker is to see tools as things not only to make but to re-make and subvert.
By this creative reapplication of technology, research and problem-solving need not be restricted to those
who own the means of production.

So says the Maker’s manifesto: if you can’t open it, you don’t own it. I’d like to build on this: if we work
together to open it, we all own it. And maybe we can all learn something along the way.

3.1.2 1 heard there were laser robots?

Why yes, laser robots! Optical discs may be all but dead as a data storage medium, but the latest BD-RW
drives contain feats of electromechanical engineering that leave any commercial 2D or 3D printer in the dust.
Using a 405 nm laser, they can create marks only 150 nm long, with accuracy better than 70 nm. Tiny
lenses mounted on a fast electromagnetic suspension can keep perfect focus on grooves only 320 nm apart
as the disc spins at over 7 m/s.

A specialized system-on-chip generates motor and laser control signals, amplifies and demodulates the
light signals captured by a photodiode array, and it does all of this in the service of fairly pedestrian tasks
like playing motion pictures and making backups of cat photos.

My theory is that, with quite a lot of effort, it would be possible to create new firmware for a common
Blu-Ray burner such that we could burn discs with arbitrary patterns. Instead of the modulated binary data
that stays nicely separated into the tracks of a spiral groove, I think we can treat the whole disc surface as
a canvas to draw on with sub-100 nm precision.

If this works, it should be possible to create patterns fine enough that they diffract interestingly under red
laser illumination. By bouncing a powerful laser pointer off of a specially burned BD-R disc and targeting a
flat surface, perhaps we can control the shape of the eventual illumination well enough to project words or
symbols.

This is admittedly a very long shot. Perhaps the patterns have nowhere near enough resolution. Perhaps
the laser pointer would need to be much too powerful. If this works out, I dream of creating a mobile printing
press for light graffiti. If not, I suspect the project may still lead somewhere interesting.

3.1.3 Device Under Test

For coastermelt I chose the Samsung SE-506CB optical drive, a portable USB 2.0 burner that’s currently
quite popular. It retails for about $80. Inside, I found an MT1939 SoC, an undocumented and highly
application-specific chip from MediaTek. It was easy to find some firmware updates which became a starting
point for understanding this complicated black box.

My current understanding is that the MT1939 contains a pokey ARMTY processor core along with a lot of
strange application-specific peripherals and about 4 MB of RAM. There’s also an 8-bit 8051 processor core

in there, which shares access to the USB controller. The USB software stack seems to be confusingly split
between the ARM firmware and the tiny 8051 firmware, for still-unknown reasons.

There are two customized and undocumented motor control chips from TI, which drive a stepper motor,
brushless motor, and the voice coils that quickly position and focus the lenses. As far as I can tell, these
chips just act as high-power load drivers. All of the logic and timing seems to be within that MT1939 chip.

3.1.4 How did we get here anyway?

This has been a complex journey full of individual hacks that could each make an interesting story. In my
experience, reverse engineering is much like playing a point-and-click or text adventure game. There’s a
huge world to explore, and so much of your time can be spent on probing the boundaries of that world,
understanding who the characters are and what their motivations are, and suffering through plenty of
enlightening but frustrating dead-ends.

I wanted to share this process as best I could, in a way that could be documentation for the project, an
educational peek into the world of reverse engineering, and an invitation to collaborate. I created a video
series® with two episodes so far. I won’t repeat those stories here; let’s go somewhere new.

3.1.5 Down the Rabbit Hole

If you take the blue pill, the story ends, and you wake up believing your optical drives only accept standard
SCSI commands that read and write data according to the established MMC specifications.

Of course, that is a convenient fairy tale. Firmware updates exist, and so we know the protocol must be
Turing-complete already. In this tiny world, our red pill is a patched firmware image that adds a backdoor?
with enough functionality to implement a simple debugger. After installing the patch,> we can go in:

backdoor micah$./cmshell.py

e T Lt I -
[N PO D [(Y I O P) PUPRRVINEN DUV PR
--IPython Shell for Interactive Exploration---------------—-———-—-

Read, write, or fill ARM memory. Numbers are hex. Trailing _ is
short for 0000, leading _ adds ’pad’ scratchpad RAM offset.
Internal _ are ignored so you can use them as separators.
rd 1ff_ 100
wr _ 1febb
ALSO: rdw, wrb, fill, watch, find
bitset, bitfuzz, peek, poke, read_block

Disassemble, assemble, and invoke ARM assembly:

dis 3100
asm _4 mov r3, #0x14
dis _4 10

ea mrs r0, cpsr; ldr r1, =0xaa000000; orr rO, ril
ALSO: tea, blx, assemble, disassemble, evalasm

Shttps://vimeo.com/channels/coastermelt
4https://github.com/scanlime/coastermelt
5There’s a Getting Started section in the README that should help.

Or compile and invoke C++ code with console output:

ec 0x42

ec ((uint16_t*)pad) [40]++

ecc println("Hello World!")
ALSO: console, compile, evalc

Live code patching and tracing:

hook -Rrcm "Eject button" 18eb4d
ALSO: ovl, wrf, asmf, ivt

You can use integer globals in C++ and ASM snippets,
or define/replace a named C++ function:

fc uint32_t* words = (uint32_t*) buffer
buffer = pad + 0x100
ec words[0] += 0x50
asm _ ldr rO, =buffer; bx 1lr
You can script the device’s SCSI interface too:
sc c ac # Backdoor signature
sc 8 £ff 00 ff # Undocumented firmware version
ALSO: reset, eject, sc_sense, sc_read, scsi_in, scsi_out

With a hardware serial port, you can backdoor the 8051:

bitbang -8 /dev/tty.usb<tab>

wx8 4b50 ab

rx8 4400
Happy hacking! -- Type ’thing?’ for help on ’thing’ or
“MeS‘14 >?> for IPython, ’%h’ for this again.
In [1]:

Such a strange debugger! At a basic level everything works by peek and poke in memory with the
occasional call. The shell is based on the delightful IPython, with commands for easy inline C++ and
assembly code. Integer variables and register values are bridged across languages when possible.

3.1.6 GO NORTH; LOOK

You have entered a console full of strange commands. The CPU seems to be an ARM. You don’t know what
it’s doing now, but it runs your commands when asked. Before you appears a vast 32-bit address space,
mostly empty.

You happen to see a note on the ground, a splotchy Hilbert curve napkin sketch followed by a handwritten
table of hexadecimal numbers with uncertain names scrawled nearby.

Flash, 2 MB 00000000 - O01fffff
... write-protected bootloader, 64 kB 00000000 - 0000ffff

...loadable, 1863 kB 00010000 - 001lelfff
...storage, 120 kB 001e2000 - OO1fffff
DRAM, 4 MB 01c08000 - 02007fff
MMIO 04000000 - 043fffff

You can peek around at memory, and things seem to be as they appear for the most part. The flash
memory can be read and disassembled, interrupt vectors pointing to code that can unfurl into many hours
of disassembly and head-scratching. DRAM at this point is like a ghost town, plenty of space to build
scaffolding or conduct science.

In [1]: ea mov r0O, pc; mov rl, sp
r0 = 0x01e4000c, rl = 0x0200067c

In [2]: rdw 200067c 30

0200067c 01000000 01e40000 01£f£c290 00000007 0000000d 01ffc2a8 0004bad7 00000000
0200069c 01£f£fc290 02000cf8 01f£fc290 02000cf8 0001efa9 00000000 00000000 02000cdc
020006bc 01ffb76c 02000cOe 0001ec2f 00000000 02000cdc 01ffb76c 00018c07 00000000
020006dc 00018e31 00000032 02000cdc 00167558 00000000 00000000 00000000 00000000
020006fc 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0200071c 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Using some inline assembly, we find the program counter and stack pointer, and separately we dump the
memory where the top of the stack was. These can’t tell us what the firmware would have been doing had
we not rudely interrupted with our backdoor, but these are breadcrumbs showing us some of the steps the
firmware took just before we intervened.

3.1.7 30 Gauge Enamel-Coated Freedom

Direct physical access is of course the ultimate hacking tool. With the USB backdoor we can send the
ARM processor cutesy little notes asking it or even daring it to run instructions for us, but this will end in
heartbreak if we expect to hold the CPU’s attention for longer than one fleeting SCSI command.

Heartbreak is a complicated thing though, sometimes it can act like a forest fire leaving the ground fertile
for fresh inspiration. If the ARM and the SCSI driver were to never speak again, how could we still contact
the ARM? This is where we need to warm our soldering irons. If there’s blue wire there’s a way. Let’s add
a serial port for the next step.

3.3v Serial IN +

3.3v Serial OUT

3.1.8 GET WALKTHROUGH

In the first coastermelt video, I got as far as using this serial port to build an alternate debug backdoor
that can break free from the control flow in the original firmware.

In [1]: bitbang -8 /dev/tty.usbserial-A400378p

Handler compiled to 0x2e8 bytes, loaded at 0x1e48000

ISR assembled to Oxdc bytes, loaded at 0x1e48300

Hook at 0x18ccc, returning to Ox18cce

RAM overlay, 0x8 bytes, loaded at 0x18ccc

Connecting to bitbang backdoor via /dev/tty.usbserial-A400378p
Debug interface switched to <bitbang.BitbangDevice instance at 0x102979998>
305 / 305 words sent
* 8051 backdoor is Oxef bytes, loaded at 0x1e49000
* ARM library is 0x3d4 bytes, loaded at 0x1e490f0
* 8051 backdoor running

* ¥ X X X %

In the second video, I introduced a CPU emulator that can run the ARM firmware on your host computer,
proxying all I/O operations back to the debug backdoor while of course logging them.

In [2]: sim

235 / 235 words sent

* Installed High Level Emulation handlers at 01e00000

- initialized simulation state

[INIT] 0 ----- >00000000 ldr pc, [pc, #24]
r0=00000000 r4=00000000 1r8=00000000 r12=00000000
r1=00000000 r5=00000000 r9=00000000 sp=00000000
r2=00000000 r6=00000000 r10=00000000 Ilr=ffffffff
r3=00000000 r7=00000000 r11=00000000 pc=00000000

Now we can follow in the normal firmware’s footsteps, mapping out the tiny islands of I/O scattered
through this sea of memory addresses. As the %sim command churns away, every instruction and memory
access shows up in trace.log. In the video you can see a demo where a properly arranged replay of these
register writes can trigger motor movement.

This trace log is like a walkthrough, showing us exactly how the normal firmware would use the hardware.
It’s helpful, but certainly not without its limitations. There’s so much data that it takes some clever filtering
to get much out of it, and it’s quite slow to run the simulation. It’s a starting point, though, and it can offer
clues and memory addresses to use in other experiments with other tools.

At this point in the project, we have some basic implements of cartography, but there isn’t much of a
map yet. Do you like exploring? I have the feeling there’s some really neat stuff in here. With so much
interesting hardware to map out, there’s enough adventure to share. Take an interesting journey, and be
sure to tell us what you finde

