
7 More Cryptographic Coloring Books

by Philippe Teuwen

7.1 Weird crypto

In PoC‖GTFO 5:3 we taught you kids why ECB is a weak encryption mode, as helpfully shown by the
ElectronicColoringBook.py script.12 As you may have guessed, we’ll see that in some circumstances CBC
deserves the same treatment!

Don’t worry, though! Most of the time CBC mode is fine, but sometimes weirdos like our buddy Ange
Albertini do impossibly fancy things with crypto such as AngeCryption. I wouldn’t risk offending our
PoC‖GTFO’s loyal readers by explaining AngeCryption all over again,13 but please recall that it relies on
the fact that you can decrypt plaintext to obtain ciphertext. This reverse-ciphertext encrypts back to the
original plaintext because block encryption and decryption operations can be safely exchanged.

Let’s try to reproduce the example given by Ange in his RMLL2014 presentation, available in a translated
slide deck titled “Let’s play with crypto.”

Figure 6: “If we encrypt the final result, we get our first random data, followed by our target picture.”

This example uses PNG images, so we’ll begin with two logos in PNG format and of equal width. We’ll
take those of Google and DuckDuckGo, with a small change: I removed subtle gradients from the original
PNGs so that we get large areas of the same flat color. To better illustrate the vulnerability, we need to work
on uncompressed, non-interlaced images. A tool called advpng14 takes care of flattening the PNG images
and minimizing the metadata by grouping all IDAT chunks into a single chunk.

1 $ advpng −z −0 goog l e . png
$ advpng −z −0 duckduckgo . png

Now we can construct our AngeCryption example using Ange’s PNG-in-PNG tool (Google for it with
“corkami” and “src/angecryption/PiP/PIP.py” as search terms).

$ python PIP . py goog l e . png duckduckgo . png combined . png CBC_can_fail_too

The resulting combined.png displays the Google logo and, when decrypted, displays the DuckDuckGo
logo.

12https://doegox.github.io/ElectronicColoringBook/
13See PoC‖GTFO 3:11 and its retrospectively funny quote: “We’ll use the standard AES-128 algorithm in CBC mode, which

is proven to be semantically secure when used with a random IV.”
14http://advancemame.sourceforge.net/
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Figure 7: combined.png

Ange’s PIP.py does the opposite of what the slide proposes, just to show that it’s also possible. So, to
match the tool and the rest of the article you need to swap the ENC and DEC operations. It still remains
pure AngeCryption.

Figure 8: “If we decrypt the final result, we get our first random data, followed by our target picture”

7.2 Time to fire up ElectronicColoringBook.py

1 $ python Elect ron icCo lor ingBook . py combined . png −p4 −c255

Figure 9: combined.png as seen through ElectronicColoringBook.py.

What can we see at this point?
We recovered the Google logo but it was not encrypted, so we aren’t done yet. Still, we can see a few

artifacts compared to what we obtained with ECB on a pure bitmap. It also looks like we couldn’t recover
the correct aspect ratio either. In fact, it did get correctly recovered, but the display included extra PNG
metadata bytes, so the image got slightly skewed.
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The artifacts in that image are due to the additional structure of the PNG format that is absent from
a plain BMP. In a PNG image, each scan line is preceded by a byte of metadata describing which filter to
apply to that line. In our case, those extra bytes are all null bytes indicating the absence of a filter. It is this
one extra byte on each line that misaligns the blocks in our image recreation and skews it. It also breaks the
uniform areas, so they are not that easy to paint over. Moreover, you can see a few blotches of gray here and
there in the white area. That’s because the image data, even when uncompressed, is still not raw pixels but
a zlib stream encapsulating some DEFLATE data that has its own metadata15 at the start of each 64 kB
block.

Rather than adding additional complexity to our script to handle each of these specific quirks, it turns
out that we can correct the misalignment due to the presence of metadata bytes by specifying a non-integer
width:

1 $ python Elect ron icCo lor ingBook . py combined . png −p4 −o3 −c255 −x 600.345

Figure 10: combined.png, fine-tuned

15See rfc1951.txt.
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The bottom of the image is completely black, which is how ElectronicColoringBook.py represents
non-repeating blocks. That’s what we expect from CBC-encrypted data, as opposed to ECB.

7.3 The downside
Now we can get to the second half of the story, the decrypted combined.png displaying the DuckDuckGo logo.
We’ll use decrypt-PIP.py, a helper script created by PIP.py, and then apply ElectronicColoringBook.py
to the output dec-duckduckgo.png.

1 $ python decrypt−PIP . py

Figure 11: dec-duckduckgo.png

1 $ python Elect ron icCo lor ingBook . py dec−duckduckgo . png −p4 −o3 −c255 −x 600.345

Figure 12: dec-duckduckgo.png as seen through ElectronicColoringBook.py

But what is this new devilry? Oh, no! The Google logo is still visible. Is the CBC gone all evil on us, so
can’t shake it off?

32



7.4 Why, oh why?

Recall that in the CBC mode, encryption of each block depends on all the previous blocks:

block cipher

encryption
Key

Ciphertext

Plaintext

block cipher

encryption
Key

Ciphertext

Plaintext

block cipher

encryption
Key

Ciphertext

Plaintext

Initialization

Vector

Figure 13: Cipher Block Chaining (CBC) mode encryption

But the Google part of the image is not the result of an encryption but of a decryption, remember? We
must account for how these blocks feed into the CBC process.
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Figure 14: Cipher Block Chaining (CBC) mode decryption

Here, the ciphertext is that of the original Google image. For its image parts of constant color, we get
the same ciphertext blocks over and over.

Plaintext blocks of that series will be Pn = DecK(Cn) ⊕ Cn−1 ≡ DecK(C) ⊕ C if all ciphertext blocks
are the same.

The first plaintext block from a repetitive area depends on the previous (different) block. Thus its content
is different from the following repetitive plaintext blocks.

So CBC in decryption mode is almost as bad as ECB: decrypting n repetitive blocks will give one arbitrary
block followed by n− 1 repetitive blocks (while ECB would give n repetitive blocks). That’s why transitions
around Google letters look slightly thicker.

In principle, we could paint over CBC when used in reverse mode as easily as we painted over ECB,
but it’s actually quite difficult in our example because, as you recall, the image data of PNG format is not
merely raw pixels such as in the BMP or PNM formats.

In real life, decryption is usually used on data that previously went through encryption. Since the point
of the CBC mode is to prevent repetitions in the ciphertext, we don’t generally need to fear them, although,
theoretically, they could still happen. (By a stroke of bad luck, we might get EncK(C ⊕ P ) = C to occur
for a given P for some combination of C and the key K.)

Let us recall another CBC fact: even if you only know the key but not the initialization vector (IV),
you can still decrypt combined.png almost fully. Only the first block will be wrongly decrypted, which is
not that hard to reconstruct; even if left corrupted, it won’t prevent ElectronicColoringBook.py from
revealing both images. Look back at Figure 14 to understand why.

So the upshot of our case study is that single-block encryption and decryption operations can still be
exchanged almost safely, although the chaining mode does throw some gotchas into the process.
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7.5 Exploring other chaining modes

So what about the other chaining modes that use an IV?

The CFB mode suffers of a similar problem because, in decryption mode, the block encryption depends
only on the previous ciphertext. This previous ciphertext can be repeated under AngeCryption, so the
resulting plaintext also repeats: Pn = EncK(Cn−1)⊕ Cn ≡ EncK(C)⊕ C.
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Figure 15: Cipher Feedback (CFB) mode decryption

The OFB mode makes a block cipher into a synchronous stream cipher and therefore doesn’t have this
issue. Encryption and decryption are just XOR with the same keystream, which only depends on the IV and
the key K: keystream1 = EncK(IV ), keystreamn = EncK(keystreamn−1) and Pn = keystreamn ⊕ Cn.
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Figure 16: Output Feedback (OFB) mode decryption

Let’s try this out. We modify PIP.py to replace MODE_CBC by MODE_OFB and inverse the order of operations
to compute the IV. Indeed, if for CBC we computed IV = DecK(C1) ⊕ P1, for OFB we must compute
IV = DecK(C1 ⊕ P1). Then we repeat the same experiment:

1 $ python PIP_OFB. py goog l e . png duckduckgo . png combined . png OFB_AngeCryption
$ python decrypt−PIP . py

3 $ python Elect ron icCo lor ingBook . py dec−duckduckgo . png −p4 −o3 −c255 −x 600.345
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Figure 17: dec-duckduckgo.png (OFB version) as seen through ElectronicColoringBook.py

Finally! We get a “secure” version of AngeCryption. As a bonus, unlike CBC, if you only knew the key
but not the IV, you wouldn’t be able to recover anything.

Another alternative is the CTR mode, which is pretty similar to OFB: Pn = EncK(counter++) ⊕ Cn.
The OFB initialization vector would play the role of the initial counter value: counter = DecK(C1 ⊕ P1).
And, as for OFB, knowing only the key but not the initial counter value is useless.
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Figure 18: Counter (CTR) mode decryption

Note that both OFB and CTR have their own special limitations typical of stream ciphers: bitflipping
attacks, keystream reuse, and so on. However, none of these are an issue in this unusual use case of ours.

The PCBC (Propagating CBC) mode would work as well, because each block decryption depends on
the previous ciphertext and the previous plaintext: Pn = DecK(Cn) ⊕ Cn−1 ⊕ Pn−1. It’s not supported in
PyCrypto, however, and is not very common.

7.6 Some more PoC

Before we wrap up, I’d like to circle back to a variation of AngeCryption suggested by Gynvael Coldwind,
and so rightfully called GynCryption. GynCryption doesn’t rely on IV forgery, but rather tries to find a
key that transforms the plaintext into the ciphertext we want. For a PNG, it requires control over the first
16 bytes, but this cannot reasonably be done for an entire block. On the other hand, controlling the first 6
bytes of a JPG is enough to be able to insert a small comment section. GynCryption was originally based
on ECB, but nothing prevents us from replacing ECB by CBC, CFB, OFB, or by CTR with a null IV or
a reset counter respectively—as we’ve shown above, those are only slightly better than ECB. In this issue’s
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polyglot archive you can find two proofs of concept, gyncryption_ofb.pdf and gyncryption_cfb.pdf that
you can decrypt into a JPG with a null IV/counter and the same key “@doegox_5f32c6e5”.

With OFB and CTR, once you have found such a key, you may be tempted to reuse it with any other
(small) PDF and JPG, and it will work because they are similar to stream ciphers: a change in a plaintext
block affects only the corresponding bits of the ciphertext, not the entire block. But remember that stream
ciphers are only secure if you don’t reuse the keystream—so don’t reuse your key for the same mode, find
another one! Otherwise a simple XOR of both files will result into the XOR of the plaintext data (and
padding), and the keystream will be entirely removed.

7.7 Conclusions
Of course, since AngeCryption and GynCryption are far more likely to be used as crypto curios rather than
as serious tools for serious situations, their security is not that crucial. Still, it is good to understand the risks
associated with non-standard uses of block cipher modes—this understanding should serve as an antidote to
their blind reuse in inappropriate contexts.
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