
3 Gekko the Dolphin
by Fiora

3.1 The Porpoise of Dolphin
Dolphin is one of the most popular emulators, supporting games and other
applications for the GameCube and Wii game consoles. Featuring a highly
optimized just-in-time (JIT) compiler and graphics unit that translates GPU
opcodes into vertices, textures, and shaders, Dolphin is able to emulate almost
all GameCube and Wii games at high speeds on a modern x86 CPU.

Instead of trying to do a detailed anatomy of the entire system, much of
which is beyond my current understanding, in this PoC‖GTFO article I’m going
to focus on some particularly evil assembly optimizations and interesting bug
fixes in the Dolphin JIT from the past two months—some large and dramatic,
others small and elegant (or horrifically hacky, depending on your perspective!)
But first, let’s do a quick overview of how Dolphin works and some of the
biggest difficulties inherent in Gamecube/Wii emulation.

Dolphin’s JIT is superficially similar to a typical PowerPC emulator, but
things are not nearly so simple as they appear. The GameCube Gekko CPU
(and the extremely similar Broadway CPU on the Wii) has a number of par-
ticularly odd features that aren’t present on a typical PowerPC.

• A “paired singles” SIMD unit, somewhat similar to 3DNow! but com-
plicated by some of PowerPC’s inherent weirdnesses with floating-point
(32 bit floats are represented as 64 bit internally, similar to x87).

• Built-in “graphics quantization” registers, which allow quantized loads
and stores based on runtime-variable parameters, up to and including the
data type to be converted to and from.

• A complex memory layout with mirrored regions and a slew of MMIO fea-
tures, including a memory-mapped FIFO usually connected to the GPU,
but which can also be repurposed for other uses by games.

• The ability to directly access—and modify—the active GPU frame buffer.

• Complex cache manipulation features, such as the ability to enable a
“locked cache” and access memory as cached or uncached.

• A floating point unit with its own very unique definition of the word
“multiply.”

Making emulation even more difficult, games tend to abuse every aspect of
the system imaginable, from the precise rounding of every floating point in-
struction to self-modifying code to behavior that isn’t even defined in IBM’s
specification for the CPU. Additionally, games typically run in supervisor mode,
giving them the ability to abuse a wide variety of features user-mode applica-
tions can’t. All of this leads to severe limits on the shortcuts Dolphin can take;
the most benign-seeming optimization often results in a slew of unintended
consequences. Dolphin can’t even reorder memory loads; an attempt to do
this resulted in a real game failing because of exception handling semantics not
being maintained.3
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00AA AAAA 0000 0BBB 00CC CCCC 0000 0DDD
AAAAAA 6 bit code representing the quantization factor (2−32 to 231) for loads.

BBB 3 bit code representing the data type for loads (float, S8, U8, S16, or U16).
CCCCCC 6 bit code representing the quantization factor (2−32 to 231) for stores.

DDD 3 bit code representing the data type for stores (float, S8, U8, S16, or U16).

Figure 1: GQR Register Format

Yes, there are applications that require precise emulation of MMU mechanics, including post-exception
rollback. Yes, there are applications that intentionally try to execute an address of 0x00000001 to trigger a
custom exception handler, and won’t run unless this behavior is properly emulated. Yes, there are applica-
tions that modify code without properly flushing the CPU instruction cache and rely on the mere hope that
the old code will have been since replaced in the cache. And yes, there are applications that may do many
of these things with the intent of sabotaging Dolphin emulation.

Yet we still have to emulate a 729 MHz PowerPC CPU on a 2-3 GHz x86 CPU, all while trying to run
programs that may very well be trying to prevent us from doing so.

3.2 Reserved bits are really just shy

A number of games were breaking in mysterious fashion with the JIT implementation of “paired singles”
quantized loads and stores. Some crashed, while others had wildly broken lighting effects or other strange
artifacts. Yet, even upon very close inspection, the JIT implementation was nearly identical to the (order-
of-magnitude slower) interpreter implementation, which worked correctly. What could games possibly be
doing here to break the JIT?

To understand this bug, it is crucial to understand the precise layout of the Gekko CPU’s eight graphics
quantization registers (GQRs). Each quantized load and each quantized store references one of these eight
registers to act as its parameters. Figure 1 describes the format of the GQR registers.

The manual describes the other bits as being zero, but unfortunately, that isn’t quite true. They were
assumed to be zero, but the CPU never enforced this. Games could–and half a dozen games did–smuggle
flag bits through these reserved register bits. Whether this was a bug, or perhaps done for some attempt at
anti-emulation code, or even a strange sort of thread-local storage, we may never know.

The JIT’s flawed assumption caused the implementation to either read out of bounds in the quantization
array or even outright jump to an invalid function pointer. Fortunately, masking out those bits was just a
single and operation; the main cost of this glitch was days of debugging by puzzled developers.

Since resolving this issue, I’ve written hardware tests to test reserved bits in other system registers too,
which revealed all sorts of strange behavior. For example, the XER (fixed-point exception register), is laid
out as follows.

1 [SO ] [OV] [CA]0 0000 0000 0000 0000 0000 0AAA AAAA

SO is the summary overflow flag, OV is the overflow flag, and CA is the carry flag, with AAAAAAA being
a 7 bit control code for string load/store instructions.

But on the Gekko, the actual bits that the CPU allowed to be set in XER were 0xE000FF7F; it apparently
supported setting the 8 bits in XER[16-23] even though it doesn’t support the associated instruction, the
string compare instruction lscbx (load string and compared byte indexed, similar to rep cmpsb on x86). I
sincerely doubt any games used those bits in XER, but one can never be quite certain of such a thing.
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3.3 Practice your multiplication,
or you might become a GameCube CPU when you grow up!

For as long as it’s existed, Dolphin has had trouble with replays, like those in racing games (Mario Kart,
F-Zero) and fighting games (Super Smash Brothers). Emulation often desynced dramatically within seconds
of the start of a console-recorded replay, with cars flying off the racetrack or Mario tripping off the side of
the stage. The same happened in reverse, when emulator-recorded replays were transferred to a physical
console. This was particularly dramatic in the case of Mario Kart’s ghost feature, in which the game let you
play against “ghosts” recorded by the developers of the game. The ghosts would very quickly drive into a
wall, making victory quite trivial, if not very satisfying.

The source of this strange yet consistent desyncing was the way these games recorded replays. Instead of
recording the movement of the karts or characters, the games record the player’s input. This is a much more
compact representation, but unfortunately, it means the most minuscule error on playback can accumulate
until the result desyncs completely. To make replays, ghosts, and other similar features function correctly,
Dolphin’s floating point unit would have to match the Gekko’s to the last bit of rounding.

For many months the Dolphin developer Magumagu exhaustively attempted to reverse-engineer the
hardware FPU and make a software implementation. One by one, precise versions of instructions were
implemented. Among the first victims were frsqrte, approximate inverse square root, and fres, the ap-
proximate reciprocal, which were replaced with table-driven versions matching the actual Gekko hardware.
But it still wasn’t enough; replays still constantly desynced, and bizarrely, the trouble seemed to trace back
to the multiply instruction.

Some consoles do use non-IEEE floating point, like the Playstation 2; the curiosities of emulating this
could make for an article of its own. Yet the Gekko was supposedly equipped with an IEEE-compatible
floating point unit, denormals and all! How could multiplies on a GameCube give different results than on
a typical desktop PC even with identical rounding flags set?

The problem, as Magumagu discovered, traced back to exactly how the floating point unit’s internals
were implemented. A double-precision float has 53 bits of mantissa; combined with three guard bits, this
makes a 56 bit input. Accordingly, the Gekko had a 56x28 bit multiply and performed double-precision
multiplies by combining the results of two 56x28 bit multiplies. Single precision multiplies were done with
just one execution of the multiply unit.

But on the Gekko, all floating-point numbers are stored as 64 bit doubles. Single precision operations
have reduced output precision and clamp their output to 32 bit precision, but are still stored as 64 bit
doubles. Technically, according to the manual, you’re not supposed to perform single-precision operations
on double-precision values; the result is supposedly undefined. But, of course, countless games did it all over
the place, so we still have to emulate it in a way that matches the behavior of the hardware.

Most single-precision operations seemed to be fine with double-precision input; a single-precision floating-
point add, for example, seemed to be identical to performing a double-precision add and then rounding to
single-precision. But, as Magumagu discovered, multiplies were their own unique brand of bizarre: they
rounded the right hand side operand’s mantissa to 25 bits of precision (for 28 including guard bits), then
performed a 56x28 bit multiply. Note that 25 bits gives neither single nor double precision; it’s something
in between.

Fortunately, it took just four SSE instructions to perform this rounding operation for each multiply:

1 movapd xmm1, xmm0
pand xmm0, [ truncate_mantissa ] ; 0xFFFFFFFFF8000000

3 pand xmm1, [ round_bit ] ; 0x0000000008000000
paddq xmm0, xmm1

The overall performance loss was barely measurable compared to the literally dozens of games with fixed
replays or physics, ranging from Zelda: The Wind Waker to Donkey Kong Country.

As Dolphin’s primary tester, Justin Chadwick, once said, “Fiora, I hate how in your build the AI no
longer bounces off the track in Mario Kart Wii. It makes it a lot harder to win.”
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3.4 Dolphin intentionally makes thousands of segfaults
Emulating one CPU’s virtual memory subsystem on another CPU is hard. Doing so quickly is even harder.
A direct approach would be to map one host page to each emulated page, but that’s impossible on Windows
because the Alpha AXP CPU didn’t have a “load 32 bit integer” instruction. I’m not making this up.4 The
existence of MMIO, VRAM being directly mapped into CPU memory, and mirrored sections of the memory
map certainly don’t help.

The simplest approach would be to send every load and store through software address translation, but
this proves to be fantastically slow. (Remember, we can only spend about three or four x86 cycles per
Gekko CPU cycle!) Dolphin does support a variant of this as “full MMU emulation mode,” which a few
games with particular complex memory layouts do require. But for most games, it gets away with a vastly
more elegant—or horrific—solution. Which one applies to you depends on how you feel about intentionally
triggering thousands of segfaults.

For every memory access, Dolphin first tries to perform address constant propagation—if we know which
area of memory an address is in, we can directly pass off the load or store to wherever it’s supposed to go;
usually a direct RAM access or a push to the FIFO. For the rest of the memory accesses, it shouts “YOLO”
and just goes for it, with seemingly no care for what might happen if the access isn’t to valid RAM.

But Dolphin has an ace up its sleeve: it’s replicated the rough address space layout of the Gekko CPU
in virtual memory using the operating system’s shared memory features. Yes, that’s a four gigabyte chunk
of contiguous address space, including mirrored sections. (Addresses 0x8010000 and 0x0010000 map to
the same place due to mirroring.) Sections that aren’t directly mapped to physical RAM are marked as
inaccessible.

When the “YOLO” access fails, a segfault is thrown by the operating system and caught by Dolphin’s
handler, which proceeds to backpatch the x86 code that caused the segfault to jump to a trampoline which
then redirects to the slow, safe memory access handler. Thus, only the few memory accesses that actually
go to non-RAM addresses take the slow route, while the rest are simply a mov and bswap.

This feature, called “fastmem,” isn’t at all new to Dolphin, but is nevertheless among a core reservoir of
hacks that keep Dolphin’s JIT fast. Tests suggest it provides at least a 15-20% CPU performance benefit
over runtime address range checking.

3.5 Wasting all your cache is a good way to go bankrupt
As mentioned in the previous section, a few games make sufficient use of the GameCube’s fancy MMU
features that they need to take the slow path—full MMU emulation. While address translation (which is
hopelessly unoptimized in Dolphin) is a significant cost, the greatest speed cost actually comes from the
other consequences of full MMU mode. One of these is that it must check exceptions manually after every
single memory operation, and if so, flush the register state, revert any address update that occurred in the
load, and jump to the handler. It’s all rather painful and an optimizer’s worst nightmare, as it generates
massive code bloat and places great constraints on instruction reordering and other aspects of optimization.

Because of all this, full MMU games tend to require incredible amounts of CPU power to emulate. While
a few are at least playable on a very fast PC, others aren’t so lucky. Rogue Squadron 2, for example, was
developed by Factor 5, a game developer notorious for their ability to squeeze performance never thought
possible out of consoles. In the Nintendo 64 era, they rewrote the GPU firmware to render five times more
polygons than it was ever meant to. In Rogue Squadron 2, their incredible stressing of the Gamecube has
led to a game that runs at half-speed in Dolphin on a 4 Ghz Intel Haswell CPU.

In addition, likely due to Dolphin’s incomplete MMU implementation, a number of full MMU games
simply don’t boot at all: Rogue Squadron 3, Toy Story 3, and Disney Infinity among them. Particularly in
the case of the latter, this might very well be anti-emulation code.

Profiling Rogue Squadron 2 with VTune suggested L1 instruction cache misses occurred at a rather high
rate. The cost of cache misses is hardly a new topic in the optimization world, but code cache misses tend to
be glossed over. Modern x86 CPUs have vast instruction fetch bandwidth, long pipelines to absorb fetch miss
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bubbles, and while performance can certainly be improved by reducing code size, it’s often not considered a
major factor.

Regardless of this, I figured I would see how much could be gained. I created a “far code buffer” in which
to stuff all the rarely-used generated code (like exception handling and recovery for each memory access)
instead of having it inline. Maybe this would get us a few percent of a speed increase?

With one rather simple commit, Rogue Squadron 2 sped up over 30% on my Ivy Bridge. The bloating of
the generated code had cost so much that the CPU spent roughly 40% of its time sitting idle, waiting for new
instructions to come in. The gain was even larger—over 50%—on another developer’s Haswell, most likely
because the Haswell has even higher instructions per clock-cycle count, and is thus even more susceptible to
being front-end bound. Even in POV-Ray, a heavily floating-point-bound benchmark that doesn’t use the
MMU and was hardly known for its binary size, the gain was roughly 6% overall.

Never underestimate the value of instruction cache on modern CPUs. With a Haswell’s four ALUs, two
load units, and one store unit, it might very well be able to chew through instructions much, much faster
than you can feed it.

3.6 It’s normally abnormal for denormals to renormalize

I mentioned previously how the Gekko CPU internally stores all its floats—even 32 bit ones—as 64 bit doubles.
This means that Dolphin has to convert floats to 64 bit on load, and convert back to 32 bit on store, at least
if the lfs (load float single) and stfs (store float single) instructions are used. Hypothetically, if a value
was loaded immediately and then stored, an optimizing recompiler could remove the conversion, but this
can only sometimes be proven safely.

This wouldn’t be an issue normally, outside of the small speed cost of a single extra conversion operation
on each load and store. But unfortunately, yet again, games are not so kind. A strangely large number of
games use lfs and stfs to copy integer data, which means the conversion process of float-to-double-to-float
must be lossless, regardless of input. This would normally work, but at the same time, a large number
of games also set the flush-to-zero (FTZ) floating point flag, which causes denormal floating point results
to be set to zero by the CPU. Unfortunately, this also applies to our float-to-double and double-to-float
conversions, so any game copying integer data that happens to look like a denormal float will have its data
corrupted.

We can’t turn off FTZ, because that would result in floating point arithmetic errors of the same sort
that motivated the multiplication rounding changes mentioned previously. We also can’t toggle FTZ off
then back on again; the floating point control registers on x86 take upwards of fifty cycles to modify. The
initial solution was to set rounding flags for SSE2, then do the load/store conversions using x87 (which,
conveniently, doesn’t even support FTZ). The one tricky part was fixing up the NaN flags afterward, as x87
handles NaN differently from SSE2, setting an exception flag instead. This is what the double-to-float code
looked like.

movsd [ temp64 ] , xmm0
2 movsd xmm1, xmm0

fld [ temp64 ]
4 ptest xmm1, [ double_exponent ] ; 0x7FF0000000000000

fstp [ temp32 ]
6 movss xmm0, [ temp32 ]

jnc .dont_reset_qnan_bit
8 pandn xmm1, [ double_qnan_bit ] ; 0x0008000000000000

psrlq xmm1, 29
10 vpandn xmm0, xmm1, xmm0

.dont_reset_qnan_bit :

This is better than fifty cycles per load and store, but it’s still inefficient and gross enough to make x86
assembly writers everywhere squirm in discomfort. The overall speed penalty was around 20% on Super
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Smash Brothers Melee—but there was little choice, since the alternative was inaccurate emulation that broke
many games.

Fortunately, there is one other way. What if we just checked for denormals, passed them off to a slow,
rarely-taken code path, and sent everything else through SSE? This has the bonus effect of not needing to
fix up the NaN bit, since only denormals (not NaNs) would take the x87 path. The resulting code looks like
the following.

1 movq rax , xmm0
shr rax , 55

3 sub al , 0x6D
cmp al , 3

5 jbe . x87conve r s i on
cvtsd2ss xmm0, xmm0

7 jmp . c on t i nue
movsd [ temp64 ] , xmm0

9 f ld [ temp64 ]
fstp [ temp32 ]

11 movss xmm0, [ temp64 ]
. c on t i nue :

The comparison at the top is a bit tricky and designed to minimize code size, since this code will be
duplicated countless times throughout generated JIT code. The only actual exponents that need to take
the slow path are those in the range [0x369, 0x380], but sending a few more to minimize the size of the
comparison has negligible effect on performance (in this case, [0x368, 0x387]). The comparison could be
simpler if zeroes are also sent to the slow path, but testing shows that there’s a very large proportion of
zeroes—as many as a third of the inputs. With the check shown here, only 0.01% of floats take the slow path
and the overall performance penalty for this change drops from 20% to 2%.

As a side note, the official IBM manual claims that the Gekko/Broadway CPU uses denormals-are-zero
(DAZ) in addition to FTZ when the non-IEEE (NI) flag is set. Curiously, actual hardware testing shows
that the CPU doesn’t ever seem to actually do this.

3.7 Hey I just RET you, and this is crazy,
but here’s my address, so CALL me maybe?

Modern x86 CPUs typically have a built-in return stack, designed to predict where a ret instruction is
heading, with the assumption that every call is paired with exactly one ret. This is a pretty good assumption,
and in the rare cases where it fails, the performance cost is typically equivalent to a branch misprediction.
Without this prediction, a return would be relatively costly and difficult to predict—little different from an
indirect branch jmp [rsp] or similar.

PowerPC has its own similar call and return instructions: �bl (branch with link) and blr (branch to link
register). The first jumps to a location and stores the old location in the link register (the return address),
while the latter jumps to the location stored in the link register. When emulating blr, Dolphin treats it
as an indirect jump to the link register. This is the natural translation for such an instruction, but it is
costly from a branch misprediction standpoint, since such a branch is extremely difficult to predict correctly.
Profiling shows a non-trivial number of micro-ops lost to branch mispredictions.

Comex’s idea was to re-use the CPU’s existing return prediction stack. On a bl instruction, instead of
jumping to the target function, he would push the emulated destination address onto the stack and then
call the target JIT’d function. When emulating a blr instruction, instead of jumping to the given link
register, he compares the link register against the one stored on the stack at [rsp+8], and if the two match,
returns with ret. If functions call and return as expected, this approach should give near-perfect branch
prediction. Despite the seeming increase in instruction count, this led to roughly an eight percent overall
speed increase across nearly every game merely from improved return prediction.

The one danger of this is the possibility of the stack overflowing. If a game uses bl without an associated
blr, the return stack will continually grow until Dolphin crashes. Comex’s first solution was to clear the
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stack whenever a misprediction occurred; this reduces the problem to the pure evil case of an application
that used bl hundreds of thousands of times in a row without any blr. Out of curiosity and being a bit
pedantic about correctness, he decided to support this case as well, writing a short test case that triggered
the problem and setting up guard pages and extending the signal handler to catch any failure.

The core concept of this optimization is not too different from fastmem. Hijack a hardware CPU feature
(in that case, memory protection, in this case, return address prediction) and use it to help emulate the
same feature of the target CPU, even if it wasn’t really intended for that purpose.

3.8 Through the SUBFIC and the SRAW we carry on

Like x86, PowerPC has a number of instructions that set flags based on their result. Unlike x86, there are
two ways in which this can happen. There’s condition flags (GT, LT, EQ, SO) which can be set by a comparison
operation or an arithmetic instruction with the Rc bit set. This is a lot more convenient than x86, because
one can generally avoid clobbering the flags when they’re not needed, which makes code more efficient and,
coincidentally, emulation easier.

Carry flags, on the other hand, are not quite so friendly. Some common instructions set carry uncon-
ditionally (subfic, sraw, srawi), enough so that carry calculation becomes a significant cost even in code
that doesn’t make heavy use of carry bits. The calculation of carry bits for sraw and srawi in particular is
a bit non-trivial, easily requiring a half-dozen or so extra instructions on x86 to emulate.

The first step to optimizing carries was to enhance PPCAnalyst, the class that performs dependency
analysis on instructions. If an instruction calculates a carry bit, but that bit is overwritten before being used
or before reaching a JIT block exit, we can omit the calculation of that carry bit entirely.

PPCAnalyst also has an instruction reordering pass that uses dependency information to reorder instruc-
tions wherever it can be sure doing so is safe. This was originally just used to move comparison instructions
next to branches so the two can be merged, but it can be extended to support a wide variety of operations.

I modified the instruction reordering pass to attempt to “stick” pairs of carry-using instructions next
to each other. A large number of common PPC idioms use sequences such as subc+subfe; not merely
arithmetic on variables larger than the register size. One example is r0 = (r1 != r2).

subf r3 , r1 , r2
2 addic r0 , r3 , −1

subfe r0 , r0 , r3

The PowerPC Compiler Writer’s Guide lists a number of these in the appendix.5

The third and final step was to take advantage of this; if the next instruction is going to consume the
carry bit, take advantage of the x86 carry flag instead of storing the carry bit in the emulated CPU state.
This is a slightly tricky (and limited) optimization, since it requires the instructions to follow each other
directly, since most instructions will clobber the x86 flags.

Combined with the “sticky” reordering, these changes were able to drastically reduce instruction count
in carry-heavy code; some recompiled sequences dropped in size by a factor of two or more. Some games,
such as Virtual Console games (an emulator inside an emulator!) went as much as 12% faster just with these
carry optimizations.

An interesting future optimization might be to recognize some of the aforementioned multi-instruction
compiler idioms and transform them into equivalent idiomatic x86 code; this could be even better than
merely optimizing the individual instructions!

3.9 Capturing performance from the flags

As mentioned in the previous section, many integer operations, such as comparisons and operations with
the Rc (record) bit set, have the ability to set result flags in the PowerPC condition register. The condition

5https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF7785256996007558C6
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register is split into eight 4 bit sections, each of which represents one result, consisting of the LT, GT, EQ, and
SO flags. This is in sharp contrast to x86, for which most instructions set flags unconditionally. It only has
a single condition flags register instead of eight.

Emulating operations on these flags efficiently is critical to performance in Dolphin. It’s often difficult
to prove that an update to the flags register won’t be used again following its most immediate use (e.g. a
conditional branch), so the relevant calculations can’t be omitted.

Delroth and Calc84maniac discovered a brilliant way to optimize Dolphin’s internal flag representation
to minimize the work required to set and read flag bits. These two operations represent the vast majority
of operations on flags; everything else, such as boolean operations between flag bits and reading out the
flags register, is practically a rounding error by comparison. In addition, reading out flag bits is done almost
entirely by conditional branch operations.

The flag representation they invented involves the flags being stored as a 64 bit integer. Bit 63 is equal
to !GT, bit 62 equal to LT, bit 61 equal to SO (a flag not fully emulated by Dolphin, but also rarely used
except as the output of a boolean flag operation), bit 32 always set, and bits 0-31 set to zero if EQ.

This representation has the useful property that it can be calculated using a single instruction from the
result of any integer operation; a 32− >64 bit sign extend (movsxd on x86_64). Individual flags can also be
read out with single operations:

1 GT = ( s64 )CR > 0
LT = CR & (1 << 62)

3 EQ = ( s32 )CR == 0
SO = CR & (1 << 61)

While this dramatically complicated operations such as loading the flags register, the overall performance
effect was tremendous. Performance improvements in typical games ranged from six to fourteen percent
merely from being able to omit most of the instructions (and code bloat) involved in flag calculation. This
change also inspired later optimizations, like splitting carry bits into their own emulated register instead of
storing them in XER. There’s no requirement that an emulator maintain the same data representations the
ISA describes, so long as it transparently performs whatever conversions are necessary for correct emulation.

3.10 With Dolphin, Wii have a bright future

Dolphin still has a long way to go. The graphics engine is imperfect and still missing a few rather difficult
features, like zfreeze and OpenGL line-width support. Dual-core mode is still sometimes a bit finicky with
timing-sensitive games. GPU to CPU data transfer can be a speed issue, as well as vertex loading for
geometry-heavy games. There are still many driver issues, like the long compilation times for shaders, that
cause unwanted stutter and slowness.

The HLE audio engine is good but not perfect, with some games still requiring low-level emulation to
avoid glitches. Countless minor bugs, from subtle depth buffer issues to issues with non-normal floating
point numbers and console glitches not being reproducible in Dolphin, still exist. On the CPU side, even
with many optimizations, some games are still slow, and a few still don’t even boot properly.

But improvements like these are a start. Already, many games that were far too slow to be playable on
all but the fastest overclocked Haswell CPUs are accessible to a much wider audience. And while Dolphin is
not and probably never will be a perfectly cycle-accurate emulator (in fact, because of DVD read times and
NAND write times, no two physical consoles will even produce identical results!), it may now be accurate
enough to create at least some console-verifiable replays and speed runs.

Figure 2 gives some examples of the performance improvements, measured on a variety of synthetic
benchmarks and games known for being performance-intensive, between revision 2301 (late July of 2014)
and revision 3378 (late September of 2014), as measured on my Ivy Bridge CPU.

Dolphin is hardly a new project; it was open-sourced six years ago and developed as a closed-source
project for many years before that. It’s far too easy to assume that relatively stable, mature projects don’t
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POV-Ray 62% faster
LUA “binary trees” benchmark 48% faster
Sonic Colors 39% faster
Rogue Leader 103% faster
F-Zero GX 110% faster
The Last Story 38% faster
Xenoblade Chronicles 40% faster

Figure 2: Dolphin Performance Improvements

have much room for improvement; as new contributors, we have to resist the urge to shy away from projects
like this, because often there are still vast gains to be had.

Thank you so much to Comex and Delroth for their part in these two months of incredible CPU emulation
performance improvements. Thanks also to Justin Chadwick (JMC4789) for his unmatched testing and bug
bisection skills across hundreds of games, as well as the monthly Dolphin progress report writeups. And
thanks to all the other devs: Ryan Houdek, Skidau, Lioncash, Shuffle2, Magumagu, Calc84maniac, Rachel
Bryk and many others, for their tireless work on the other aspects of Dolphin, bug fixes, and assistance with
the endless ignorant questions I asked on the way to learning the inner workings of Dolphin’s CPU emulation
engine.

Dolphin has been the most approachable project of any I’ve yet tried to contribute to, from the helpful
developers to the relatively clean codebase. I somehow managed to become the go-to woman for the JIT in
a mere six or so weeks, despite having never conceived before that I could ever contribute meaningfully to
an open source project.

For anyone looking to contribute, there’s an abundant supply of interesting (or terrifying, depending
on your perspective) emulation bugs just itching for someone to attack with the single-step debugger and
printf hammer. Plus, with the brand new 64 bit ARM JIT, there are countless instructions that still
need implementations—and there are certainly lots of missing optimizations for the x86 JIT too. Drop by
#dolphin-dev on Freenode or drop us a pull request—any help is always appreciated!
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