9 A Vulnerability in Reduced Dakarand from PoC||GTFO 01:02

by joernchen of Phenoelit

I’'m not a math guy, so this is a poor man’s RNG analysis. Try it yourself at home!

9.1 Introduction

In PoC||GTFO 01:02, Dan Kaminsky proposed the following code for use as a Random Number Gen-
erator, arguing that the phase difference between a fast clock and a slow clock is sufficient to produce
random bits in a high level language. This is a reduced version of his Dakarand program, with the intent
of the reduction being that if there is any vulnerability within the code, that vuln ought to be exploitable.

// These functions form an RNG.
function millis () {return Date.now();}
function flip coin ()

{n=0; then = millis()+1; while(millis()<=then) {n=!n;} return n;}
function get fair bit ()

{while (1) {a=flip coin(); if(a!=flip coin()) {return(a);}}}
function get random byte ()

{n=0; bits=8; while(bits ——){n<<=1; n|=get fair bit();} return n;}

// Use it like this.
report console = function () {while(1){console.log(get random byte());}}
report console ();

Actually the above code boils down to the function flip coin, which takes a boolean value n=0 and
continuously flips it until the next millisecond. The outcome of this repeated flipping shall be a random
bit. We neglect the get fair bit function mostly in this analysis, as it just slows down the process and
adds almost no additional entropy. For gathering random bits we are just left with the clock ticking for
us.

9.2 A Naive Analysis

In order to analyze the output of the RNG we need some of its output,
so I simply put up a small HTML piece which would pull out 100.000
random bytes out of the above RNG and log it to the HTML document.
Then a severe 90-minute DoS on my Firefox 24 happened, after which I
managed to copy and paste one hundred thousand uint8 t results into
a text file.

After messing with several tools like ministat, sort and uniq I could
show with the following ruby script that this RNG (on my machine)
has a strong bias towards bytes with low hamming weights:

communicating

#!/usr/bin/env ruby with your
f=File.open (ARGV[0]) ns-gzll!gzepngh':mom?essors!m

TV/TTY kbd./display (16 lines x 64 characters) $500
Keyboard/CRT Monitor (24 lines x 80 characters) $700

h = Hash.new = = = = oo o = = = m
f.each line do |m)| e —— 4

n =m.to i
if h{n|.nil?
h[n]=1
else
h[n] = h[n]+1
end
end

t = h.sort_by do |k,v| v end

25

t.each do |a]
puts "Num:\ t#{a[0]} "+
"\tCount:\ t#{a[1]} "+
"\tWeight:\ t#{a[0].to_s(2).split("").reject{]|j|j=—"0"}.count}"
end

The shortened output of this script on the 100k 8bit numbers is as follows. Note that the heavy
hamming weights, like 11111111 are least common and the light hamming weights, like 00000000 are

most common.
Value Count Weight

255 22 8
254 23 7
251 28 7
253 29 7
127 32 7
239 34 7
191 34 7
223 36 7
247 37 7
132 1173 2
64 1821 1
32 1881 1
16 1922 1
1 1934 1

8 2000 1

4 2042 1

2 2133 1
128 2145 1
0 3918 0

The table lists the Number which is the output of the RNG along with this number’s hamming weight
as well as the count of this number in total within the 100.000 random bytes. For a random distribution
of all possible bytes we could expect roughly a count of 390 for each byte. But as we see, the number 0
with the hamming weight 0 peaks out with a count of 3918, whereas 255 with the hamming weight of 8
is generated 22 times by the RNG. That’s not fair!

9.3 My fair bit is not fair!

Real statistical analysis of an RNG is hard, and I will not attempt it here.
Still, looking at a few simple distributions might give us a hint (alas, only a

hint) of what might behind the unfairness. Watisa
First, a short recap on how this RNG works: CLOCALPEEP?
We’ve got a 1 millisecond timeslot from t0 to t1, where at t1 the flip coin i‘h"e‘"c"él’élimih';iL 2
N - « a clocl
method will stop. The first call to get random byte can happen anywhere hour, minute, second
— — « acalendar
between t0 and t1: i b \
« an audio alarm H' = ; ‘
Someawhere hare the JS engine jumps in Allon one board for your :
o\ J 4 > TRS-80 Model |1
/ il It includes a pacemaker battery which will
give over 8 years of continuous timekeeping.
Let’s say it is here:
\ JCKLE
t0)

¥

L/ $ott , PICKLES & TROUT

Now the algorithm happily flips the bit until t1 and hands over the result
of this flipping as a random bit (note that we’re omitting get fair bit here).

26

Although we cannot predict the output of a single run of flip coin, things get a bit more predictable
when we make a lot of consecutive calls to flip_coin. Let’s say we need the time d to process and store
the result of flip coin. So the next time we flip coin we are at t1 + d1:

tl ; | - t2 }

Now the RNG flips the coin until t2 in order to give us a random bit. As we are calling the RNG
more than twice in a row, the next flip _coin is at t2+d2, and so on.

The randomness and fairness of the RNG’s random bit depends on how fairly and randomly we get
odd and even values of d, since that the same amount of flips yields the same bit as we have a static start
value of 0/false.!’ So it makes sense to look at the distribution of d. To visualize this and to compare
it with another browser I came up with this slight modification of the RNG that counts the flips and
records them right inside the HTML page:

function flip coin ()
{i=0;n=0; then=millis ()+1; while(millis()<=then) {n=In;i++} return [n,i];}

function get fair bit()
{while (1) {a=flip coin(); if(a[0]!=flip coin ()[0]) {return(a);}}}

function doit (){
var i = 10000;
while (i ——){
var d = document.getElementByld (¢ ‘target’’);
var content = document.createTextNode(get fair bit().toString() + ‘‘\n’’);
d.appendChild (content);

Loading the page in Chromium and Firefox and throwing them into gnuplot, we get:
Firefox Chromium
450 20 T
18 |- N 1
400 | . +
350 N 16 + 1’_ 4
+ 14 +

, 300 F T " r

g g 12f H

S 250 g = s

g £ 10+ -+ B

3 200 F B 3 -

S 8 8 j'-.-_ 4
1501 1 6 -
100 - 1 4t r—

-
50 - 1 2k i
o R oL
10000 ‘ 20000 ‘30000 ‘ A(“)‘(‘]OO 50000 60000 70000 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Cycle Count Cycle Count

We can see that the graph for Chromium has a lot more variance in the number of coin flip within
a millisecond than that for Firefox. Although, strictly speaking, it might still be possible to get good
randomness with poor variance if the few frequent values were to alternate just so due to some underlying
scheduling magic, it seems reasonable to expect that the same magic would also increase the variance in
the flip numbers.

We can also see, with the help of simple UNIX tools, that Chromium counts do not peak out to a
certain value, unlike those of Firefox:

" The second coin flip in get fair _bit complicates it a bit, but it cannot substantially improve the RNG’s entropy if it
lacks in the first place.

27

$ sort iter Firefox|uniq —c|sort —n $ sort iter Chromium|uniq —c|sort —n
176 64683 15 45147
181 64671 15 45282
195 64673 16 44947
195 64684 vs 16 45004
207 64717 ' 16 45010
217 64672 16 45076
286 64718 16 45086
318 64721 17 45059
393 64719 17 45107
405 64720 19 45092

9.4 Closing words

In conclusion we see that in Firefox under stress Dan’s RNG appears to fail at exactly the point he wanted
to use as the main source of randomness. The tiny clock differentials used to gather the entropy are
not given often enough in Firefox. There is still much room to stress this RNG implementation. Bonus
rounds would include figuring exactly what the significant difference between the Firefox and Chromium
JavaScript runtime is that causes this malfunction on Firefox. Also attacks on other JavaScript runtimes
would be interesting to see. It might even be the case that this implementation has different results
under different conditions with respect to CPU load.

A broader question occurs: The Dakarand RNG relies on what could be called a “code clock.” It may be
that in many kinds of environments stressed code clocks tend to go into phase with one another. Driven
by stress to seek comfort in each other’s rhythms, their chance encounters may grow into something more
close and intimate, grinding into periodic patterns. Which, of course, is bad for randomness. Can we
learn to tell such environments from others, where periodization with stress doesn’t happen? —PML

MODEL CC-7 SPECIFICATIONS:

DIGITAL DATA RECORDER $149.95
FOR COMPUTER or TELETYPE USE NEW — 8080 1/O BOARD with ROM.

A. Recording Mode: Tape saturation binary.
This is not an FSK or Home type recorder.
No woice capability. No Modem. (NRZ)

. Two channels (1) Clock, {2) Data. OR, Two
data channels providing four (4) tracks on
the cassette. Can also be used for Bi-Phase,
Manchester codes etc.

@

C.Inputs: Two (2). Will accept TTY, TTL or
RS 232 digital.
D. Outputs: Two (2). Board changeabie from

RS 232 to TTY or TTL digital.

. Runs at 2400 baud or less, Synchronous or
Asynchronous. Runs at 4800 baud or less,
Synchronous or Asynchronous. Runs at
3.1""/sec. Speed regulation * 5%

m

ul

. Compatability: Will interface any computer
or terminal with a serial 1/0. (Altair, Sphere,
M6800, PDP8, LS 11, IMSAL, etc.

G. Other Data: (110-220 V), (5060 Hz); 3
Watts total; UL listed 955D; three wire line
cord; on/off switch; audio, meter and light
operation monitors. Remote control of mo-
tor optional. Four foot, seven conductor
remoting cable provided., Uses high grade
audio cassettes.

. Warrantee: 90 days. All units tested at 300
and 2400 baud before shipment. Test cas-
sette with 8080 software program included.
This cassette was recorded and played back
during quality controf.

ALSO AVAILABLE: MODEL CC-7A with vari-
able speed motor. Uses electranic speed control
at 4”'[sec, or less, Regulation * .2%

Runs at 4800 baud Synchronous or Asynchro-
nous without external circuitry.

Recommended for quantity users who ex-
change tapes. Comes with speed adjusting tape
to set exact speed.

I

Any baud rate up to 4800

Uses the industry standard tape satura-
tion method to beat all FSK systems ten to
one, No modems or FSK decoders required,
Loads 8K of memory in 17 seconds. This
recorder, using high grade audio cassettes,
enables you to back up your computer by
loading and dumping programs and data fast
as you go, thus enabling you to get by with
less memory. Can be software controlled.

Model CC7 . ..$149.95
Model CC7A... $169.95

NATIONAL multiplex

CORPORATION

Permanent Relief from “Bootstrap Chafing”

This is our new "‘turnkey’’ board. Tum on
your Altair or Imsai and go (No Bootstrap-
ping). Controls one terminal (CRT or TTY}
and one or two cassettes with all programs
in ROM, Enables you to turn on and just
type in what you want done, Loads, Dumps,
Examines, Modifies from the keyboard in
Hex. Loads Octal. For the cassettes, it is a
fully software controlled Load and Dump at
the touch of a key. Even loads MITS Basic.
Ends ““Bootstrap Chafe’ forever, Uses 512
bytes of ROM, one UART for the terminal
and one USART for the Cassettes. Our
orders are backing up on this one. No. 2810
(R)

Kit form $140. — Fully assembled and
tested $170.00

Send Two Dollars for Cassette Operating
and Maintenance Manual with Schematics
and Software control data for 8080 and
6800. Includes Manual on
1/0 board above. Postpaid

Master Charge & BankAmericard accepted.

On orders for Recorders and Kits please add
$2.00 for Shipping & Handling.
(N.J. Residents add 5% Sales Tax)

3474 Rand Avenue, Box 288
South Plainfield, New Jersey 07080
{201) 561-3600

28

This page intentionally left blank.
Draw your own damned picture.

29

