
8 This OS is also a PDF
by Ange Albertini

A careful reader may have noticed that a bootable OS image was hidden in the last issue of PoC ‖GTFO,
as one of the files in its dual PDF/ZIP structure (if you haven’t, download and extract it now!). This
time, though, let’s hide it in plain sight. You will find by running ‘qemu-system-i386 -fda pocorgtfo02.pdf’
that the PDF file you are reading is also a bootable disk image.

8.1 Requirements
To combine two file types, we first need to list the requirements of each format and then produce a single
file that meets both sets of requirements with no conflicts.

What makes a bootable disk image? An X86 machine begins booting by copying the first 512 byte
sector, the Master Boot Record, into RAM and executing it. The requirements for a functional MBR
are simple:

• 16 bit x86 code starts at offset 00.

• It will be executing at the 0000:7c00 address in RAM.

• It must be 512 bytes long, ending with the signature 55, AA

• Labels and primary partition tables are optional, but can go within this sector.

• It must contain code that finds and loads into RAM the code for the next boot stage (such as an
OS loader).

PDF files are a mixture of text and binary fragments, which are parsed from the start of the file and
delimited by words and newlines. The requirements for a valid PDF are also simple and surprisingly
flexible:

• It is initially parsed as text.

• The signature “%%PDF-” must be present within the first 1024 bytes. It can be present there twice
or more.

• Comment lines begin with ‘%’, which is 25 in hex.

• Binary characters other than CRLF are acceptable in a comment.

• “Multi-line” binary objects or simply larger objects can also be stored in object streams, which are
declared like this:

<obj number> <rev i s i on > obj
<<>>
stream
<stream content>
endstream
endobj

8.2 Strategy
In most cases, we can freely prepend anything at the start of the file as long as the above requirements
are fulfilled. Luckily, the % comment character is 0x25, which encodes nicely as an x86 and instruction.
Thus, the head of the file can be 25FFFF: and ax, 0xffff, which also starts a PDF comment. We can
then add a jump into the next part of the code, which will be stored in a dummy object stream below,
and then finish our first line. Adding a PDF signature will prevent any potential problem in case the
stream object is too long: it can then contain anything, of any length, as long as it doesn’t contain the
‘endstream’ keyword.

21

; t h i s w i l l encode as ‘%\ x f f \ x f f \xeb\x21 ’ , a comment l i n e
and ax , −1
jmp s t a r t

%PDF−1.5

999 0 obj
<<>>
stream

code :
. . .

; put the 55AA s i gna tu r e at the end o f the 512 block
t imes 200h − 2 − ($ − $$) db 0cch

db 55h , 0aah

endstream
endobj

8.3 An Unexpected Challenge
This was almost too easy, but there is a caveat to keep in mind. I’ll mention it here to save you the
headache when reproducing these results.

This new challenge emerged as I was testing the bootable PDF files with different PDF readers.
Since we pre-pend our MBR without altering the contents of the original document, the original’s cross-
reference table XREF is no longer in sync with the actual file offsets. Technically, this makes the XREF
tables corrupted.

Corrupted XREFs are so common that they are usually transparently recovered by all PDF readers,
even picky ones such as PDF.JS. However, your pdflatex may generate a document based on the opti-
mized PDF 1.5 specification, where the XREF is stored not in cleartext as in PDF 1.4, but rather as a
separate, compressed object. This configuration choice is made for the user by the TeX distribution, so
even a freshly updated pdflatex install may generate PDF 1.4 documents.

Even when compressed, corrupted XREFs are recovered by some readers, such as GS and Sumatra.
Unfortunately, Foxit, Adobe, Firefox, Chrome, and Poppler-based readers—such as Evince and Okular—
would reject such a document. Although rejecting corrupted documents out of hand is the best strategy,
even Pastor Laphroaig would be pretty pissed if folks couldn’t read his epistles because of this.

A simple and elegant workaround that achieves 100% reader compatibility with our MBR PDF is to
make sure that, even if your pdflatex distribution generates a 1.5 format document, it doesn’t compress
the XREF. This is easily done by adding the following command to your LATEX source.

\ pd fob j compre s s l eve l=0

This command will cause pdflatex to store non-objects uncompressed while still taking advantage of
other 1.5 features such as reducing document bloat. I should add that, although the fix looks trivial,
finding the real cause and the most elegant solution was a challenge.

— — — —

Enjoy booting this PDF, and be sure to share copies—both electronic and paper—so that your
neighbors can enjoy it as well!

22

00000000 25 ff ff e9 fc 00 0a 25 50 44 46 2d 31 2e 35 0a |%......%PDF-1.5.|
00000010 39 39 39 39 20 30 20 6f 62 6a 0a 3c 3c 3e 3e 0a |9999 0 obj.<<>>.|
00000020 73 74 72 65 61 6d 0a 0a 50 6f 43 20 6f 72 20 47 |stream..PoC or G|
00000030 54 46 4f 20 49 73 73 75 65 20 30 78 30 32 0a 0d |TFO Issue 0x02..|
00000040 62 79 20 52 74 2e 20 52 76 64 2e 20 50 61 73 74 |by Rt. Rvd. Past|
00000050 6f 72 20 4d 61 6e 75 6c 20 4c 61 70 68 72 6f 61 |or Manul Laphroa|
00000060 69 67 20 61 6e 64 20 46 72 69 65 6e 64 73 0a 0a |ig and Friends..|
00000070 0d 00 59 6f 75 20 68 61 76 65 20 62 65 65 6e 20 |..You have been |
00000080 65 61 74 65 6e 20 62 79 20 61 20 67 72 75 65 2e |eaten by a grue.|
00000090 20 20 53 6f 72 72 79 2e 0a 0d 54 72 79 20 74 68 | Sorry...Try th|
000000a0 69 73 3a 20 71 65 6d 75 2d 73 79 73 74 65 6d 2d |is: qemu-system-|
000000b0 69 33 38 36 20 2d 66 64 61 20 70 6f 63 6f 72 67 |i386 -fda pocorg|
000000c0 74 66 6f 30 32 2e 70 64 66 0a 0d 00 31 29 20 52 |tfo02.pdf...1) R|
000000d0 65 61 64 69 6e 67 20 6b 65 72 6e 65 6c 20 66 72 |eading kernel fr|
000000e0 6f 6d 20 64 69 73 6b 2e 0a 0d 00 32 29 20 45 78 |om disk....2) Ex|
000000f0 65 63 75 74 69 6e 67 20 6b 65 72 6e 65 6c 2e 0a |ecuting kernel..|
00000100 0d 00 be 27 7c e8 3e 00 31 c0 8e d8 30 d2 cd 13 |...’|.>.1...0...|
00000110 0f 82 97 00 be cc 7c e8 2c 00 b8 e0 07 8e c0 31 |......|.,......1|
00000120 db b8 10 02 b5 00 b1 02 b6 00 b2 00 cd 13 72 7b |..............r{|
00000130 b8 00 7e 89 c6 e8 38 00 be eb 7c e8 08 00 ea 00 |..~...8...|.....|
00000140 00 e0 07 e8 65 00 ac 3c 00 74 06 b4 0e cd 10 eb |....e..<.t......|
00000150 f5 c3 89 c3 c1 e8 0c e8 39 00 89 d8 c1 e8 08 e8 |........9.......|
00000160 31 00 89 d8 c1 e8 04 e8 29 00 89 d8 e8 24 00 c3 |1.......)....$..|
00000170 31 c9 ad e8 dc ff e8 2c 00 83 c1 02 81 f9 00 02 |1......,........|
00000180 75 f0 c3 30 31 32 33 34 35 36 37 38 39 41 42 43 |u..0123456789ABC|
00000190 44 45 46 50 56 83 e0 0f 05 83 7d 89 c6 ac b4 0e |DEFPV.....}.....|
000001a0 cd 10 5e 58 c3 b8 20 0e cd 10 c3 be 72 7c e8 95 |..^X..r|..|
000001b0 ff eb fe ea 00 00 ff ff cc cc cc cc cc cc cc cc |................|
000001c0 cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc |................|
000001d0 cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc |................|
000001e0 cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc |................|
000001f0 cc cc cc cc cc cc cc cc cc cc cc cc cc cc 55 aa |..............U.|

Hey kids! Can you color the bytes of this MBR to indicate what’s going on?

23

CALC.EXE‖GTFO

24

