4 Making a Multi-Windows PE

by Ange Albertini

4.1 Evolution of the PE Loader

The loader for PE, Microsoft’s Portable Ezecutable format, evolved slowly, and became progressively stricter
in its interpretation of the format. Many oddities that worked in the past were killed in subsequent loader
versions; for example, the notorious TinyPE* doesn’t work after Windows XP, as subsequent revisions of
Windows require that the OptionalHeader is not truncated in the file, thus forcing a TinyPE to be padded
to 252 bytes (or 268 bytes in 64 bit machines) to still load. Windows 8 also brings a new requirement that
AddressO f EntryPoint < SizeO fHeaders when AddressO fEntryPoint # 0, so old-school packers like
FSG3 no longer work.

So there are many real-life examples of binaries that just stop working with the next version of Windows.
It is, on the other hand, much harder to create a Windows binary that would continue to run, but differently—
and not just because of some explicit version check in the code, but because the loader’s interpretation of
the format changed over time. This would imply that Windows is not a single evolving OS, but rather a
succession of related yet distinct OSes. Although I already did something similar, my previous work was
only able to differentiate between XP and the subsequent generations of Windows.® In this article I show
how to do it beyond XP.

4.2 A Look at PE Relocations

PE relocations have been known to harbor all sorts of weirdness. For example, some MIPS-specific types
were supported on x86, Sparc or Alpha. One type appeared and disappeared in Windows 2000.

Typically, PE relocations are limited to a simple role: whenever a binary needs to be relocated, the stan-
dard Type 3 (HIGH_LOW) relocations are applied by adding the delta LoadedImage Base— HeaderImageBase
to each 32 bit immediate.

However, more relocation types are available, and a few of them present interesting behavioral differences
between operating system releases that we can use.

Type 9 This one has a very complicated 64-bit formula under Windows 7 (see Roy G Big’s vcode2.txt
from Valhalla Issue 3 at http://spth.virii.lu/v3/), while it only modifies 32 bits under XP. Sadly,
it’s not supported anymore under Windows 8. It is mapped to MIPS_JMPADDR16, TA64_IMM64 and
MACHINE_SPECIFIC_O.

Type 4 This type is the only one that takes a parameter, which is ignored under versions older than
Windows 8. It is mapped to HIGH_ADJ.

Type 10 This type is supported by all versions of Windows, but it will still help us. It is mapped to DIR64.

So Type 9 relocations are interpreted differently by Windows XP and 7, but they have no effect under
Windows 8. On the other hand, Type 4 relocations behave specially under Windows 8. In particular, we
can use the Type 4 to turn an unsupported Type 9 into a supported Type 10 only in Windows 8. This is
possible because relocations are applied directly in memory, where they can freely modify the subsequent
relocation entries!

4nttp://www.phreedom.org/research/tinype/
5Fast Small Good, by bart/xt
6See “TLS AddressOfIndex in an Imports descriptor” for differentiating OS versions by use of Corkami’s t1s_aoi0SDET.asm.



4.3 Implementation

Here’s our plan:
1. Give a user-mode PE a kernel-mode ImageBase, to force relocations,
2. Add standard relocations for code,
3. Apply a relocation of Type 4 to a subsequent Type 9 relocation entry:

e Under XP or Win7, the Type 9 relocation will keep its type, with an offset of 0f00h.

e Under Win8, the type will be changed to a supported Type 10, and the offset will be changed to
0000hA.

4. We end up with a memory location, that is either:

XP Modified on 32b (00004000%),
Win7 modified on 64b (08004000h), or

Win8 left unmodifed (00000000%), because a completely different location was modified by a Type 10
relocation.

;relocation Type 4, to patch unsupported relocation Type 9 (Windows™8)
block startl:

.VirtualAddress dd relocbase — IMAGEBASE

.SizeOfBlock dd BASE RELOC SIZE OF BLOCK1

; offset +1 to modify the Type, parameter set to —1
dw (IMAGE REL BASED HIGHADJ << 12) | (reloc4 + 1 — relocbase), —1
BASE RELOC SIZE OF BLOCKI equ — block startl

our Type 9 / Type 10 relocation block:

Type 10 under Windows8,

; Type 9 under XP/W7, where it behaves differently
block start2:

.VirtualAddress dd relocbase — IMAGEBASE
.SizeOfBlock dd BASE RELOC SIZE OF BLOCK2

J

J

; 9d00h will turn into 9f00h or a000h
reloc4 dw (IMAGE REL BASED MIPS JMPADDRI6 << 12) | 0d00h
BASE RELOC_SIZE OF BLOCK2 equ $ — block start2

We now have a memory location modified transparently by the loader, with a different value depending
on the OS version. This can be extended to generate different code, but that is left as an exercise for the
reader.

10



